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Abstract

In this paper, we show how to determine several properties of a finite graph G

from its Ihara zeta function ZG(u). If G is connected and has minimal degree at
least 2, we show how to calculate the number of vertices of G. To do so we use a
result of Bass, and in the case that G is nonbipartite, we give an elementary proof
of Bass’ result. We further show how to determine whether G is regular, and if so,
its regularity and spectrum. On the other hand, we extend work of Czarneski to
give several infinite families of pairs of non-isomorphic non-regular graphs with the
same Ihara zeta function. These examples demonstrate that several properties of
graphs, including vertex and component numbers, are not determined by the Ihara
zeta function. We end with Hashimoto’s edge matrix T. We show that any graph G

with no isolated vertices can be recovered from its T matrix. Since graphs with the
same Ihara zeta function are exactly those with isospectral T matrices, this relates
again to the question of what information about G can be recovered from its Ihara
zeta function.

1 Introduction and Statement of Results

In this paper we study properties of graphs which are determined by the Ihara zeta
function. Here, we allow multiple edges and loops in graphs. The Ihara zeta function,
defined below, was introduced by Ihara in 1966 [4], and in its present form associates
to each finite graph a zeta function. In the remainder of this paper, we will generally
refer to this function simply as the zeta function. It has long been known that for any
graph G whose minimal degree is at least 2, the number of edges of G can be computed
from ZG(u) by considering the degree of the polynomial ZG(u)−1 [1]. It is natural to
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ask then whether the Ihara zeta function determines other properties such as the vertex
number, component number, or regularity of an arbitrary graph G. In fact, examples
from Czarneski [2] demonstrate that in general the Ihara zeta function determines none
of these quantities.

On the other hand, when we restrict to graphs with a single connected component,
the story becomes much nicer. A natural framework in which to study the zeta function
involves regarding G as the quotient of an infinite tree X by an automorphism group Γ.
This quotient always results in a connected graph, so it is natural to expect that the Ihara
zeta function has nice properties on connected graphs which it loses when it is extended
to multiple component graphs. An important result in this direction is the following.

Theorem 1. Let G be a connected graph with minimal degree at least 2. Then it can be
determined from the zeta function whether G is

i) not bipartite,
ii) bipartite but not cyclic, or
iii) bipartite and cyclic,

and in these cases the vertex number n of G is given by
i) n = e − δ
ii) n = e − δ + 1
iii) n = e − δ + 2

where δ is the number of times 1− u2 divides ZG(u)−1 and e is the number of edges of G.

We can apply this result to study regular graphs and their spectra. The spectrum of
a graph refers to the eigenvalues of its adjacency matrix.

Theorem 2. If G is a connected graph with minimal degree at least 2, then from the zeta
function ZG(u) it can be determined whether G is regular. Moreover, if G is regular, the
regularity and spectrum of G can be computed from ZG(u).

Aubi Mellein proved that if G and G′ are both known to be regular, then their zeta
functions are equal if and only if they have the same spectrum [5]. Theorem 2 is a
strengthening of this result.

The proof of the previous two theorems rely on a theorem of Bass’ in [1]. In the case
that G is nonbipartite, we give an elementary proof of the necessary theorem.

Theorem 3. Let G be a connected nonbipartite graph with minimal degree at least 2.
Then (1 − u2) does not divide det(I − Au + Qu2).

In the previous theorem, A denotes the adjacency matrix and Q the degree minus one
matrix, both defined in the next section.

Finally, we explore the relation of G and ZG(u) to the edge adjacency matrix T , which
was introduced by Hashimoto [3]. For a graph with minimal degree at least 2, ZG(u) is
closely related to the spectrum of the T matrix. Specifically, if z1...z2e are the roots of
ZG(u)−1, then z−1

1 ...z−1
2e are the eigenvalues of T . Therefore, the question of when two

graphs have the same zeta function is equivalent to the question of when two graphs are
isospectral with respect to the T matrix. This is analogous to the classic question of when
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are two graphs isospectral with respect to the adjacency matrix. The following theorem is
therefore interesting: it shows that, just as a graph G can be recovered from its adjacency
matrix, G can also be recovered from its T matrix.

Theorem 4. For a graph G with no vertices of degree 0, G can be recovered from the edge
adjacency operator T .

In the following section, we establish the necessary definitions and preliminaries for
the remainder of the paper. Then in Section 3 we work with vertex number and regularity,
giving proofs for Theorem 1 and Theorem 2. In Section 4, we give an elementary proof of
Theorem 3. In Section 5 we give examples of infinite families of pairs of non-isomorphic
graphs with the same zeta function, which show that ZG(u) does not in general determine
G, and that if G is not required to be connected, ZG(u) does not even determine the
vertex number or component number of G. Finally in Section 6, we consider the edge
adjacency matrix T and prove Theorem 4.

2 Preliminaries

The zeta function of a finite graph is defined analogously to the zeta function of an
algebraic variety over a finite field.

Definition. A prime walk in a finite graph G is a class of primitive closed backtrackless
tailless walks in G, with w ∼ w′ if they are related by a cyclic permutation of vertices.

Here, a closed walk is one which begins and ends at the same vertex, a primitive closed
walk is one which is not the power of any other, a backtrackless walk is one in which no
edge is traversed and then immediately backtracked upon, and a tailless walk is one which
is backtrackless under any cyclic permutation of vertices.

Definition. The degree or length of a prime walk p is defined as the length of the path w,
for any path w that is a representative of the class p.

The length of a path is the number of edges the path passes through, counting mul-
tiplicity. That is, a single edge contributes as many times as the path passes through it.
We now give the definiton of the zeta function of a finite graph G.

Definition. The Ihara zeta function ZG(u) of a graph G is defined by

ZG(u) =
∏

prime walks p of G of nonzero length

(1 − udp)−1, (1)

where dp is the length of the prime walk p.

Note that ZG(u) converges for small |u|.
In this paper, we allow multiple edges in a graph. By an md2 graph, we mean a graph

G with minimum degree at least 2. Equivalently G is md2 if it contains no vertices of
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degree 1 or 0. This is a natural class of graphs to consider with respect to the zeta function
because adding vertices of degree 1 or 0 does not change ZG(u). The zeta function of G
depends only on the nontrivial prime walks in G and adding a vertex of degree 0 adds no
paths of nonzero length, so does not change ZG(u). Similarly, adding a vertex of degree
1 can only add paths of zero length or new paths with tails, and again these don’t give
rise to additional nontrivial prime walks.

Bass showed that if G has minimal degree at least 2, ZG(u) is the inverse of a polyno-
mial [1].

ZG(u) =
1

(1 − u2)e−ndet(I − Au + Qu2)
, (2)

where A is the adjacency matrix of G and Q = D − I where D is the diagonal matrix
with Dii equal to the degree of vertex i.

Hashimoto gave another formula [3], valid when G has minimal degree at least 2:

ZG(u) =
1

det(I − Tu)
, (3)

where T is the edge adjacency matrix of G, defined as follows.
First construct a digraph ~G on n vertices by replacing each edge of G with two oppo-

sitely oriented diedges d and d̄. If a diedge d points from vertex i to vertex j, then vertex
i is called the tail of d, and vertex j is called the head of d.

Label the 2e diedges of ~G d1...d2e, with de+i = d̄i, i = 1, 2...e. A diedge di is said to
flow into a diedge dj if head(di) = tail(dj) and di 6= d̄j.

Definition. The T matrix is defined by

tij =

{

1 if di flows into dj

0 otherwise.

Note that taking powers of T generates the backtrackless, tailless walks through G.

3 Computing invariants of G from ZG(u)

3.1 Vertex number

It has long been known that the number of edges of any graph with minimal degree 2 can
be computed from its zeta function [1]. This is easily seen from Bass’ formula for the zeta
function.

Lemma 5. If G is md2, then the number of edges e of G is given by e = 1
2
deg(ZG(u)−1)

Proof. Because G is md2, det(Q) 6= 0. By equation (2), the degree of ZG(u)−1 is 2n −
2n + 2e = 2e.

We aim to show that vertex number and regularity are also determined by the zeta
function. The result for vertex numbers will follow from the next lemma and theorem.
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Lemma 6. ZG(u) determines i) whether G is bipartite and ii) whether G is cyclic.

The following theorem was proved by Bass [1].

Theorem 7 (Bass). Suppose that G is a connected md2 graph. Let d be the number of
times 1 − u2 divides det(I − Au + Qu2). Then

d =











0 if G is nonbipartite

1 if G is bipartite but not a 2n cycle

2 if G is a 2n cycle.

Now we combine Lemma 6 and Theorem 7 to prove Theorem 1 as follows:

Proof of Theorem 1. Recall Bass’ formula for the zeta function of G

ZG(u)−1 = (1 − u2)e−ndet(I − Au + Qu2).

This formula shows that
n = e − δ + d, (4)

where δ is the number of times 1−u2 divides ZG(u)−1 and d is the number of times 1−u2

divides det(I −Au + Qu2). By Lemma 6, whether G is bipartite or not and whether it is
cyclic or not can be determined from ZG(u). Then Theorem 7 can be applied to obtain
d. Equation (4) then becomes the formula given in the theorem statement.

Now we give a proof of Lemma 6:

Proof. i) Whether G is bipartite can be determined from ZG(u). To begin with, a graph
G is nonbipartite if and only if it contains a prime walk of odd degree.

⇒ G is nonbipartite, so G contains an odd cycle C. C then represents a prime walk
of odd degree.

⇐ If G is bipartite, then every closed walk has even degree, and hence every prime
walk has even degree.

Next, G does contain a prime walk of odd degree ⇔ an odd power of u appears in the
power series ZG(u).

To see this, consider the Euler product form of the Zeta function.

ZG(u) =
∏

prime walks p of G of nonzero length

(1 − udeg(p))−1

=
∏

prime walks p of nonzero length

(1 + udeg(p) + u2deg(p) + u3deg(p)...).

Hence G is not bipartite if and only if an odd power of u appears in the power series
ZG(u). Luckily, we know ZG(u)−1 is a polynomial, so it suffices to check whether any odd
power of u appears in ZG(u)−1.

ii) We can also determine whether G is cyclic from ZG(u). In particular, G is an
n-cycle if and only if ZG(u) = (1 + un + u2n...)2.
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⇒ By direct computation.
⇐ If ZG(u) = (1 + un + u2n...)2, then G has exactly two prime walks, each of length

n. This implies that G must be either an n-cycle or a linear graph of length n. (A linear
graph of length n is a graph consisting of n+1 vertices v1...vn+1, and n edges joining v1

and v2, v2 and v3, ..vn and vn+1. Such a graph can be drawn as a line segment divided
into n edges, hence the name.) Then the assumption that G is md2 forces G to be an
n-cycle.

3.2 Regularity

We are now ready to show that the regularity of G can be determined from ZG(u).

Proof of Theorem 2. We can deduce results on regularity by comparing the trace and
determinant of the degree matrix Q. The important fact is that both quantities can be
obtained from ZG(u) now that n and e can be.

First, we recover det(I − Au + Qu2) by

det(I − Au + Qu2) =
(1 − u2)n−e

ZG(u)
, (5)

as the quantities on the right can all be recovered from ZG(u). Because G is md2,
det(Q) 6= 0 so det(Q) is the leading coefficient of det(I − Au + Qu2) and we can recover
det(Q). On the other hand, tr(Q) = 2e−n which now can also be computed from ZG(u).

A graph G is regular if and only if Q is a multiple of I which by the inequality of
arithmetic and geometric means occurs if and only if

det(Q) =

(

tr(Q)

n

)n

.

In this case, the regularity of G is tr(Q)
n

+ 1.
Hence ZG(u) determines whether G is regular and if so its regularity. Now we show

that if G is regular, its spectrum can be computed from the zeta function.
The adjacency matrix A is always a real symmetric matrix, hence always diagonalize-

able. On the other hand, if G is regular then both Q and I are scalar matrices, so all
three matrices can be simultaneously diagonalized and

det(I − Au + Qu2) =
∏

i

(qu2 − aiu + 1),

where q is one less than the regularity of G and ai are the eigenvalues of A.
On the other hand, equation (5) showed that det(I−Au+Qu2) can be recovered from

ZG(u). Factoring this polynomial into linear terms and then pairing terms ciu−1, cju−1
such that cicj = q recovers the eigenvalues of A: ai = ci + cj.

Conversely, requiring only that G be a regular md2 graph, ZG(u) can be recovered
from the spectrum of G. Suppose the spectrum of G is λ1...λn. Recall that the spectrum of
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G is defined to be the spectrum of the adjacency matrix A. Hence from λ1...λn we deduce
that A is conjugate to the diagonal matrix L with λ1...λn on its diagonal. Equivalently,
A = PLP−1 for an invertible matrix P . We also conclude that the number of vertices of G
is n. It is well known that the regularity of G, q +1, is equal to the largest element of the
spectrum of G. The number of edges e is then 1

2
n(q + 1). Hence we have recovered both

the matrix Q = qI, where I is the identity matrix, and the number of edges e. Finally
because I and Q are scalar matrices, det(I − Au + Qu2) = det(P (I − Au + Qu2)P−1) =
det(I − Lu + Qu2), which we can compute as we have recovered the matries I, L, and Q
already. Now ZG(u) can be computed as [(1 − u2)e−ndet(I − Au + Qu2)]

−1
.

4 An elementary proof in the case that G is a non-

bipartite connected md2 graph

In the case that G was nonbipartite, Theorem 7 was key to computing the quantity n−e,
the number of vertices minus the number of edges, from ZG(u). In this section we give
an elementary proof of that theorem in the case that G is nonbipartite - that is, we prove
Theorem 3, which states that in this case (1−u2) does not divide det(I −Au+Qu2). We
do so by showing that det(I − Au + Qu2) evaluated at u = −1 is nonzero. In particular,
we show that det(I + A + Q) > 0. To begin, we introduce the auxilliary matrix

Y =











x11 + ... + x1n x12 ... x1n

x21 x21 + ... + x2n ... x2n

...
. . .

...
xn1 xn2 ... xn1 + ... + xnn











.

We do so because under the substitution

ϕ(xij) =

{

aij if i 6= j

2aij if i = j,
(6)

the matrix Y becomes the matrix I + A + Q we are interested in.
The determinant of Y can be expanded as a polynomial in the variables xij and

analyzed as follows.

det(Y ) =
∑

J=(j1...jn)∈In
n

(wJ)PJ , (7)

where In
n denotes all ordered n-tuples of the integers 1, ...n, PJ denotes the product

x1,j1 ...xn,jn
and wJ is an integer coefficient dependent on J . We will show that under

the map ϕ, all the terms wJPJ are non-negative, and that for a nonbipartite graph there
is at least one nonzero term, which will suffice to show that det(I + A + Q) > 0. The
essential thing now is to study the coefficients wJ . To this end, we introduce the following
definition.
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Definition. Let SJ denote the set of all σ ∈ Sn such that PJ appears in the expansion of
y1,σ(1)...yn,σ(n).

This is a useful definition because of the following equation.

wJ =
∑

σ∈SJ

sgn(σ). (8)

A natural way to analyze the set SJ is through an auxilliary digraph DJ . These
digraphs DJ will allow us to relate the determinant of I + A + Q to the graph G itself.
We associate to each ordered n-tuple J = (j1...jn) a digraph DJ on the vertices of G and
a diedge from each vertex i to ji.

1

3

4

5

2

Figure 1: The digraph DJ for J = (23153).

To each cycle of the digraph i1 → ... → ir, we naturally associate the cyclic permuta-
tion (i1...ir) - and denote the set of all such associated cyclic permutations by CJ . Then
we relate the set SJ to the set CJ . First, we need the following lemma.

Lemma 8. The permutations in CJ are disjoint.

Proof. Assume there are two nondisjoint cycles c1 and c2 in DJ . Then they share some
diedge d = (i → j). However DJ has only one diedge emanating from each vertex, so
there is a unique path which begins at the vertex i. Since c1 and c2 are both cycles
containing the diedge d, we can consider them both as paths begining at the vertex i, and
thus conclude c2 = c1.

Let AJ denote the set of all permutations σ ∈ Sn such that σ is a product of a subset
of cyclic permutations in CJ . By the above lemma, AJ is equal to the power set of CJ .
Now we are ready to understand the structure of SJ through the digraph DJ .

Lemma 9. For any J , SJ = AJ .

Proof. SJ is contained in AJ .

Take any σ ∈ SJ . We will show for the cycle decomposition σ = c1...cr, each ci is in
CJ . Take any such ci = (i1...ir). Then

y1,σ(1)...yn,σ(n) = yi1,i2...yir ,i1yir+1σ(ir+1)...yinσ(in)

= xi1,i2...xir ,i1yir+1σ(ir+1)...yinσ(in),

where the last equality holds because yik,ik+1
are off diagonal terms of Y and hence equal

to xik ,ik+1
.
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By definition, PJ appears in the expansion of y1,σ(1)...yn,σ(n). Hence xi1,i2 ...xir ,i1 is a
subfactor of PJ and ci = (i1...ir) is a cycle in DJ , as desired.

SJ contains AJ .

Take any σ ∈ AJ . We will show that PJ appears as a term in the expansion of
yσ = y1,σ(1)...yn,σ(n). Again we decompose σ as σ = c1...cr where now we assume ci ∈ CJ .
Consider any factor xk,jk

of PJ .
Case 1. σ does not fix k.
Then k is permuted by exactly one of the cycles ci. Since xk,jk

is a subfactor of PJ ,
there is a diedge in DJ from k → jk. On the other hand, because ci is in the cycle set of
DJ , there is a diedge in DJ from k → ci(k). By construction, there is only one diedge in
DJ from vertex k to any other vertex, and thus ci(k) must equal jk.

Returning to σ, yσ contains the subfactor yk,σ(k) = yk,ci(k) = yk,jk
. Since this is an off

diagonal entry, it equals xk,jk
. So xk,jk

appears in every term of the expansion of yσ.
Case 2. σ(k) = k.
Then yk,σ(k) = xk,1 + ... + xk,n, so xk,jk

arises from this factor.
Therefore, PJ =

∏

k xk,jk
is a term in the expansion of yσ, and we’ve shown that

SJ ⊃ AJ .

On the basis of Lemma 9, we can prove the following two propositions.

Proposition 10. If CJ contains only odd cycles, then wJ is strictly greater than zero.

Proof. Recall that wJ =
∑

σ∈SJ
sgn(σ). The coefficient wJ is positive if there are no even

cycles (n-cycle with n even) in DJ , because sgn(σ) will be positive for each σ ∈ SJ . Hence
if CJ contains only odd cycles, then the sign of any permutation in SJ is positive, and wJ

is positive.

Proposition 11. If CJ contains any even cycle, then wJ is equal to zero.

However, if there is an even cycle in DJ , then wJ = 0 as there are the same number
of permutations in SJ of each sign. Hence

Proof. Let QJ be the set of permutations whose cyclic decomposition consists exclusively
of odd cycles in CJ , and RJ be the set of permutations whose cyclic decomposition consists
exclusively of even cycles in CJ .

Then
wJ =

∑

σ∈SJ

sgn(σ) =
∑

q∈QJ

∑

r∈RJ

sgn(qr) =
∑

q∈QJ

∑

r∈RJ

sgn(r). (9)

where the last equality holds because sgn(qr) = sgn(q)sgn(r) (as sgn is a homomorphism
from Sn to Z/2) and sgn(q) is guaranteed to be 1.

Consider just the inner sum. Suppose there are n even cycles in CJ . Then there are
(

n

k

)

products of k of these cycles, and each of these products of k cycles has sign (−1)k.
Thus

∑

r∈RJ

sgn(r) =
n

∑

k=0

(−1)k

(

n

k

)

= (1 − 1)n = 0, (10)
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where the second to last equality can be seen by taking the binomial expansion of (1+x)n,
and setting x = −1. Therefore,

wJ =
∑

q∈QJ

∑

r∈RJ

sgn(qr) = 0.

Meanwhile, the map ϕ from the indeterminates xij to the adjacency matrix entries aij

defined in equation (6) sends Y to I+A+Q, and gives that det(I+A+Q) =
∑

J(wJ)ϕ(PJ).
Since wJ and ϕ(PJ) are both nonnegative integers, det(I + A + Q) is positive if and only
if for some J, both wJ and ϕ(PJ) are nonzero.

The key reason for introducing the digraphs DJ is now apparent - PJ is nonzero if and
only if DJ is inscribed in G, and wJ is nonzero if and only if DJ contains no even cycle.
Hence the product wJPJ is nonzero for some J if and only if a primitive digraph with no
even cycles can be inscribed in G. The fact that this can be done when G is nonbipartite
is the content of Lemma 12.

Lemma 12. If G is a connected nonbipartite graph, there exists a primitive digraph of G
which contains exactly one odd cycle.

Proof. By assumption, G contains some cycle C of odd length. Take such a cycle and
remove an edge to obtain an acyclic subgraph of G. Extend this acyclic subgraph of G to
a spanning tree of G, then add back the removed edge of the cycle C to obtain a subgraph
H of G. We can obtain a primitive digraph from H by giving each edge of H a direction
in such a way that each vertex of G has exactly one diedge pointing from it.

First, consider the subgraph F of H obtained by removing the edges in the cycle C.
This leaves a spanning forest of G, (allowing single vertices to be counted as trees). Each
of the trees contains exactly one vertex of the cycle C - label this vertex as the root, and
to every other vertex of the tree, assign it the diedge pointing to its parent vertex.

We have now assigned one diedge to each vertex in H except to those vertices in C.
For these, simply pick a direction to traverse the cycle in, and assign to each vertex the
diedge pointing to the next vertex in the cycle. Now we have a primitive digraph with
exactly one odd cycle.

Thus we have seen that

det(I + A + Q) = ϕ(det(Y )) =
∑

J

wJϕ(PJ),

that the last expression is a sum of nonnegative terms, and finally, that if G is connected
there is a strictly positive term in the sum if and only if G is not bipartite, yielding the
desired result.

5 IV. Degenerate Families

We have seen that for connected md2 graphs, many invariants of the graph can be com-
puted from the zeta function. Is the graph itself then determined? The answer is no,
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as the following infinite family of pairs of connected but non-isomorphic graphs with the
same zeta function shows.

For any two nonnegative integers l, m, let FRl,m and FLl,m, be:

F L

F R
( l ,m)

( l ,m)

m

l

l l l

m m m

m m
ll

where l is the number of loops on each vertex, and m is the number of extra edges between
the designated vertices. For example, the above graphs are FR1,1 and FL1,1, the original
pair discovered by Czarneski.

Theorem 13. The graphs FRl,m and FLl,m have the same zeta function.

Proof. The pair were shown to have the same zeta function by evaluating Bass’ formula (2)
for each graph with Mathematica, and showing that the resulting functions are equal.

A similar family is the following. For any four nonnegative integers k, l, m, n, let
SRk,l,m,n and SLk,l,m,n be:

SR

SL

(k,l,m,n)

(k,l,m,n)

k k
l l l l

m m m mn

k k

l l l l

m m m mn

where again, k and l are the number of loops on the indicated vertices, and m and n are
the number of extra edges between the indicated vertices. For example, the two graphs
above depict SR1,2,1,0 and SL1,2,1,0.

Theorem 14. The graphs SRk,l,m,n and SLk,l,m,n have the same zeta function in the
following cases:

1. k = 0, n = 0, and arbitrary natural numbers m, l.
2. m = (a−1)(b−1)

2
, l = a+b

2
, for some odd natural numbers a, b and arbitrary n, k.
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Proof. Case 1 concerns a family very similar to the pairs FRl,m and FLl,m discussed
above, and a direct calculation in mathematica shows the two graphs have equal zeta
functions.

In Case 2, again a direct check using mathematica confirms that the two graphs
have equal zeta functions. To find the given conditions on m and l, the zeta functions
for SRk,l,m,n and SLk,l,m,n were computed with k, l, m, n arbitrary, and then setting the
functions equal one can solve for the conditions on m and l.

The nature of these restrictions on k, l, m and n may give clues for further research as
to what is and is not determined by the zeta function for connected graphs. Additionally,
thus far we have obtained infinite families of pairs of graphs with the same zeta function
by adding edges, but one might consider extending the family by adding vertices.

Conjecture 1. An infinite family of pairs of graphs with the same zeta function can be
obtained from FR(1,1) and FL(1,1) by iterating the following process: connect the leftmost
vertex ℓ to a new vertex n with two edges, and on the first graph add a loop on ℓ while on
the second graph, add a loop on n.

SR(0,1,1,0) and SL(0,1,1,0) are a first step in this direction, extending vertex number
from five to six. Proving this conjecture and exploring which degrees of freedom such as
k, l, m, n can be introduced as well as the relations forced between them may give useful
insight into what the zeta function does determine for connected graphs. Computations
up to 12 vertices have shown that these graphs have the same zeta function.

Czarneski also gave an example of a pair of graphs with the same zeta function but
differing numbers of vertices and components. Here we extend that example to an infinite
family. For any odd natural number r, let Pr denote the graph on one vertex with r+1

2

loops. For any natural numbers m, n, let M(m,n) be the graph on two vertices with m
edges between the two vertices, and n loops on each vertex.

Pr
r+1

2

M
m,n

m nn

For each pair of odd integers a, b ≥ 3, the following graphs Φ(a,b) and Ψ(a,b) have the
same zeta function ZΦ(a,b)

(u) = ZΨ(a,b)
(u) = 1

(1−u2)ab−1(u−1)3(abu−1)(au−1)(bu−1)
.

Φ(a,b) = M
( (a−1)(b−1)

2
,
(a+1)(b+1)

4
)

∐

P1

Ψ(a,b) = ( (a−1)(b−1)
4

× M2,0)
∐

Pab

∐

Pa

∐

Pb.

Czarneski’s original example was the smallest pair in this family, Φ(3,3), Ψ(3,3). This
family of nonconnected graphs shows that connectedness is an essential hypothesis for the
result that the vertex number of G can be computed from ZG(u). We can see how the
zeta function fails to capture the vertex number. Recall Theorem 7 stated that 1 − u2

the electronic journal of combinatorics 16 (2009), #R84 12



divides det(I−Au+Qu2) once for each bipartite noncyclic component, and twice for each
n-cycle where n is even. In this example, Φa,b and Ψa,b are both nonbipartite, but have
different numbers of bipartite components of the two types, which is why they are able
to have the same zeta function but different component numbers and values for n − e.

In fact, this family shows that even c − n, where c is the number of components and
n the number of vertices, is not preserved by the zeta function.

6 The T matrix

As noted in the introduction, for an md2 graph G, ZG(u) is closely related to the spectrum
of the T matrix. Thus recovering G from the T matrix is related to recovering G from
ZG(u). The first step toward proving Theorem 4 is the following lemma, which recovers
G locally from T.

Lemma 15. If a diedge d points to ≥ 2 diedges, then d̄ can be determined from T .

Proof. Take a diedge a which d points to. By hypothesis d points to ≥ 2 diedges, so there
are ≥ 2 diedges which point to a. Specifically, there is a second diedge b which also points
to a. Furthermore, the only diedge which b points to that d does not is d̄. By comparing
T (b) to T (d), d̄ can be determined.

d

b a

A similar argument shows that if d is pointed to by ≥ 2 diedges, then d̄ can be
determined from T . Let A denote the set of diedges d in ~G such that d points to two or
more diedges, or is pointed to by two or more diedges. For all diedges d in A, we have
seen that we can recover d̄, and we will see below that this allows us to reconstruct the
graph near these diedges.

To recover the rest of G, we introduce the concept of a 2-path.

Definition. A 2-path is a sequence of diedges d1...dr such that for each i, T (di) = di+1.

Note that a 2-path is defined only for diedges which point to or are pointed to by a
single other diedge. Let B denote the set of diedges d in ~G such that the maximal 2-path
d1 → ... → dr containing d terminates at least on one side in a vertex of degree ≥ 3.
Let C denote the remaining diedges in ~G not in either A or B - for d ∈ C, either the
maximal 2-path containing d is cyclic and T (dr) = d1, or the maximal 2-path containing
d terminates in each direction.

No diedge in A
⋃

B is connected to any in C, so any component of ~G contains diedges
entirely from A

⋃

B or entirely from C. Let GA
S

B denote the components of G which gave

rise to components of ~G which contain only diedges from A
⋃

B. Let GC be analogous.
Clearly if G has no isolated vertices, G = GA

S

B

⋃

GC .
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Lemma 16. From the T matrix, GA
S

B can be reconstructed.

Proof. For any diedge di in B, d̄i can be determined from T . Specifically, let d1...dr be
the maximal 2-path containing di. Either d1 is pointed to by ≥ 2 diedges, and d̄1 can be
determined by lemma 15, or dr points to ≥ 2 diedges, meaning that d̄r can be determined.
In the former case, T i−1(d̄1) = d̄i, and the latter case is similar. We saw above that for
any diedge d in A, d̄ could be recovered.

Now we recover the vertex set of GA
S

B by introducing the following partition of
A

⋃

B: for each diedge di, di together with all diedges which point to d̄i form a class - and
we consider this class to be a vertex. The reader can check that this gives a well defined
partition of the set A

⋃

B. Clearly, two vertices [di] and [dj] are adjacent if and only if
there are representatives ei of the class [di] and ej of the class [dj ] such that ēi = ej. Hence
we have recovered the vertex adjacency matrix of GA

S

B, and thus GA
S

B itself.

Lemma 17. From the T matrix, GC can be reconstructed.

Proof. Consider the set M of all maximal 2-paths in C. Each maximal 2-path will be
either a cycle, or a line that terminates on each end. Thus M will be a set of cycles and
lines.

Now, if we start with an n-cycle and replace each edge by one diedge in each direction
to get a directed graph, we will obtain two disjoint directed n-cycles. Similarly for lines of
length n. Hence, for any natural number n, GC will contain exactly half as many n-cycles
and half as many n-lines as there are in M .

Hence, we have reconstructed GC .

These results prove Theorem 4.

Proof of Theorem 4. Because G has no isolated vertices, G = GA
S

B

⋃

GC . Hence by
Lemmas 16 and 17, G can be reconstructed from T .
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