Anti-Ramsey numbers for graphs with independent cycles

Zemin Jin

Department of Mathematics, Zhejiang Normal University Jinhua 321004, P.R. China zeminjin@hotmail.com

Xueliang Li

Center for Combinatorics and LPMC-TJKLC, Nankai University Tianjin 300071, P.R. China lxl@nankai.edu.cn

Submitted: Dec 22, 2008; Accepted: Jul 2, 2009; Published: Jul 9, 2009 Mathematics Subject Classifications: 05C15, 05C38, 05C55

Abstract

An edge-colored graph is called *rainbow* if all the colors on its edges are distinct. Let \mathcal{G} be a family of graphs. The *anti-Ramsey number* $AR(n,\mathcal{G})$ for \mathcal{G} , introduced by Erdős et al., is the maximum number of colors in an edge coloring of K_n that has no rainbow copy of any graph in \mathcal{G} . In this paper, we determine the anti-Ramsey number $AR(n,\Omega_2)$, where Ω_2 denotes the family of graphs that contain two independent cycles.

1 Introduction

An edge-colored graph is called *rainbow* if any of its two edges have distinct colors. Let \mathcal{G} be a family of graphs. The *anti-Ramsey number* $AR(n, \mathcal{G})$ for \mathcal{G} is the maximum number of colors in an edge coloring of K_n that has no rainbow copy of any graph in \mathcal{G} . The *Turán number* $ex(n, \mathcal{G})$ is the maximum number of edges of a simple graph without a copy of any graph in \mathcal{G} . Clearly, by taking one edge of each color in an edge coloring of K_n , one can show that $AR(n, \mathcal{G}) \leq ex(n, \mathcal{G})$. When \mathcal{G} consists of a single graph H, we write AR(m, H) and ex(n, H) for $AR(m, \{H\})$ and $ex(n, \{H\})$, respectively.

Anti-Ramsey numbers were introduced by Erdős et al. in [5], and showed to be connected not so much to Ramsey theory than to Turán numbers. In particular, it was proved that $AR(n, H) - ex(n, \mathcal{H}) = o(n^2)$, where $\mathcal{H} = \{H - e : e \in E(H)\}$. By the asymptotic of Turán numbers, we have $AR(n, H)/\binom{n}{2} \to 1 - (1/d)$ as $n \to \infty$, where $d + 1 = \min\{\chi(H - e) : e \in E(H)\}$. So the anti-Ramsey number AR(n, H) is determined asymptotically for graphs H with $\min\{\chi(H - e) : e \in E(H)\} \ge 3$. The case $\min\{\chi(H - e) : e \in E(H)\} = 2$ remains harder.

The anti-Ramsey numbers for some special graph classes have been determined. As conjectured by Erdős et al. [5], the anti-Ramsey number for cycles, $AR(n, C_k)$, was determined for $k \leq 6$ in [1, 5, 8], and later completely solved in [11]. The anti-Ramsey number for paths, $AR(n, P_{k+1})$, was determined in [13]. Independently, the authors of [10] and [12] considered the anti-Ramsey number for complete graphs. The anti-Ramsey numbers for other graph classes have been studied, including small bipartite graphs [2], stars [6], subdivided graphs [7], trees of order k [9], and matchings [12]. The bipartite analogue of the anti-Ramsey number was studied for even cycles [3] and for stars [6].

Denote by Ω_k the family of (multi)graphs that contain k vertex disjoint cycles. Vertex disjoint cycles are said to be *independent cycles*. The family of (multi)graphs not belonging to Ω_k is denoted by $\overline{\Omega}_k$. Clearly, $\overline{\Omega}_1$ is just the family of forests. In this paper, we consider the anti-Ramsey numbers for the family Ω_k . It was proved in [5] that $AR(n, C_3) = n - 1$. In fact, from the appendix of [5], we have $AR(n, \Omega_1) = n - 1$. Using the extremal structures theorem for graphs in $\overline{\Omega}_2$ [4], we determine the anti-Ramsey number $AR(n, \Omega_2)$ for $n \ge 6$. The bounds of $AR(n, \Omega_k), k \ge 3$, are discussed.

Let G be a graph and c be an edge coloring of G. A representing subgraph of c is a spanning subgraph of G, such that any two edges of which have distinct colors and every color of G is in the subgraph. For an edge $e \in E(G)$, denote by c(e) the color assigned to the edge e.

2 Extremal structures theorem for graphs in Ω_2

First, we present extremal structures for the graphs which do not contain two independent cycles.

Theorem 2.1 [4] Let G be a multigraph without two independent cycles. Suppose that $\delta(G) \geq 3$ and there is no vertex contained in all the cycles of G. Then one of the following six assertions holds (see Figure 1).

(1) G has three vertices and multiple edges joining every pair of the vertices.

(2) G is a K_4 in which one of the triangles may have multiple edges.

(3)
$$G \cong K_5$$
.

(4) G is K_5^- such that some of the edges not adjacent to the missing edge may be multiple edges.

(5) G is a wheel whose spokes may be multiple edges.

(6) G is obtained from $K_{3,p}$ by adding edges or multiple edges joining vertices in the first class.

Figure 1: The graphs G_a , G_b , G_c , G_d , G_e and G_f

In general, we have the following result.

Theorem 2.2 [4] A multigraph G does not contain two independent cycles if and only if either it contains a vertex x_0 such that $G - x_0$ is a forest, or it can be obtained from a subdivision G_0 of a graph listed in Figure 1 by adding a forest and at most one edge joining each tree of the forest to G_0 .

More precisely, from the theorem above, we have the following lemmas.

Lemma 2.3 Let G be a simple graph of order n and size m. If G contains a vertex x_0 such that $G - x_0$ is a forest, then $m \leq 2n - 3$.

Lemma 2.4 Let G be a simple graph of order n and size m. Suppose that G can be obtained from a subdivision G_0 of a graph listed in Figure 1 by adding a forest and at most one edge joining each tree of the forest to G_0 . Then

(1). if G_0 is a subdivision of G_a , $m \leq 2n - 3$.

(2). if G_0 is a subdivision of G_b , $m \leq 2n - 2$.

(3). if G_0 is a subdivision of G_c , $m \le n+5$.

(4). if G_0 is a subdivision of G_d , $m \leq 2n-1$. Furthermore, the equality holds if and only if G contains five distinct vertices u, v, w, x, y such that $G[\{u, v, w, x, y\}] = K_5^-$, $uv \notin E(G)$, and each vertex $z \in V(G) - \{u, v, w, x, y\}$ is adjacent to just two vertices of $\{w, x, y\}$.

(5). if G_0 is a subdivision of G_e , $m \leq 2n - 2$.

(6). if G_0 is a subdivision of G_f , $m \leq 2n+p-3$. Furthermore, when p = 3, the equality holds if and only if G can be obtained from $K_{3,3}$ by adding two edges joining vertices in the first class, and each vertex not in $K_{3,3}$ is adjacent to just two vertices of the first class.

3 Anti-Ramsey numbers for Ω_2

Let G be a graph of order n. An edge coloring c of K_n is *induced* by G if c assigns distinct colors to the edges of G and assigns one additional color to all the edges of \overline{G} . Clearly, an edge coloring of K_n induced by G has |E(G)| + 1 colors (unless $G = K_n$). Given two vertex disjoint graphs G and H, denote by G + H the graph obtained from $G \cup H$ by joining every vertex of G to all the vertices of H. We have the following result.

Theorem 3.1 For any $n \ge 7$, $AR(n, \Omega_2) = 2n - 2$.

Proof. Lower bound

Let $G \cong K_2 + \overline{K}_{n-2}$. Suppose c is an edge coloring of K_n induced by G. For any graph $H \in \Omega_2$ of order at most n, any copy of H in K_n must contain at least two edges not in G. Then the edge coloring c of K_n has no rainbow graph in Ω_2 . This immediately yields the lower bound $AR(n, \Omega_2) \geq 2n - 2$.

Upper bound

In order to prove the upper bound, here we only need to show that any (2n-1)-edgecoloring of K_n always contains a rainbow subgraph belonging to the family Ω_2 . Suppose that there is a (2n-1)-edge-coloring c of K_n which does not contain any rainbow subgraph belonging to the family Ω_2 . Let G be a representing graph of c. Then G does not contain two independent cycles. From Theorem 2.2 and Lemma 2.3, we have that G can be obtained from a subdivision G_0 of a graph listed in Figure 1 by adding a forest and at most one edge joining each tree of the forest to G_0 . Since |E(G)| = 2n - 1, from Lemma 2.4 we have that G_0 is a subdivision of G_d or G_f . To complete the proof, we distinguish the following cases. **Case 1.** G_0 is a subdivision of G_d .

Since |E(G)| = 2n - 1, from Lemma 2.4, we may assume that G contains five distinct vertices u, v, w, x, y such that $G[\{u, v, w, x, y\}] = K_5^-$ and $uv \notin E(G)$, and take a vertex $z \in V(G) - \{u, v, w, x, y\}$ with $N(z) = \{x, y\}$. Furthermore, since $n \ge 7$, from Lemma 2.4, there is a vertex $s \in V(G) - \{u, v, w, x, y, z\}$ adjacent to just two vertices of $\{w, x, y\}$.

Now, considering the possible neighborhood of the vertex s, we distinguish the following subcases.

Subcase 1.1 The vertex s is not adjacent to both x and y.

By the symmetry of x and y, without loss of generality, we assume that s is adjacent to just the vertices x and w.

Since the cycle xyzx is rainbow, we have

$$c(uv) \in \{c(uw), c(wv), c(xy), c(yz), c(xz)\},\$$

otherwise the union of the cycles uvwu and xyzx is a rainbow graph belonging to the family Ω_2 . So the cycle uvyu is rainbow, and the union of the cycles uvyu and xswx is a rainbow graph belonging to the family Ω_2 . A contradiction.

Subcase 1.2 The vertex s is adjacent to both x and y.

Since the cycle ywvy is rainbow, we have

$$c(sz) \in \{c(sx), c(xz), c(wv), c(yw), c(yv)\},\$$

otherwise the union of the cycles ywvy and xszx is a rainbow graph belonging to the family Ω_2 .

Since the cycle xwux is rainbow, we have

$$c(sz) \in \{c(sy), c(yz), c(wu), c(wx)\},\$$

otherwise the union of the cycles xwux and yszy is a rainbow graph belonging to the family Ω_2 , a contradiction, since the two sets $\{c(sx), c(xz), c(wv), c(yw), c(yv)\}$ and $\{c(sy), c(yz), c(wu), c(wx), c(wx)\}$ have no common elements.

Case 2. G_0 is a subdivision of G_f .

From Lemma 2.4, $p \ge 2$. If p = 2, since |E(G)| = 2n - 1, G_0 must be a subdivision of G_d , and we only need to go back to the previous case. So we may assume that $p \ge 3$. Denote by u, v, w all the vertices in the first class of G_f . Note that for each edge x_1x_2 of G_f , it may be subdivided to a path connecting the vertices x_1 and x_2 in G. For convenience, we still use the notation x_1x_2 to denote the corresponding path in G.

Suppose $p \ge 4$. Let x, y, z, s be four distinct vertices in the second class of G_f . If $c(zs) \notin \{c(wz), c(ws), c(ux), c(uy), c(vx), c(vy)\}$, then the union of the cycles wzsw and uxvyu is a rainbow graph belonging to the family Ω_2 . So $c(zs) \in \{c(wz), c(ws), c(ux), c($

c(uy), c(vx), c(vy). Then either the union of the cycles uzsu and vxwyv or the union of the cycles vzsv and uxwyu is a rainbow graph belonging to the family Ω_2 .

So, let p = 3 and denote by x, y, z all the vertices in the second class of G_f . Since |E(G)| = 2n - 1, from Lemma 2.4, there are at least two edges joining vertices of u, v and w. Without loss of generality, assume that $uv, vw \in E(G)$. Since $n \ge 7$, from Lemma 2.4, there is a vertex $s \in V(G) - \{x, y, z, u, v, w\}$ that is adjacent to just two vertices of $\{u, v, w\}$.

If $c(yz) \notin \{c(wz), c(wy), c(ux), c(vx)\}$, then the union of the cycles wyzw and uxvu is a rainbow graph belonging to the family Ω_2 . So we have $c(yz) \in \{c(wz), c(wy), c(ux), c(uv), c(vx)\}$. Then the cycle yzuy is rainbow. Since the cycle xwvx is rainbow, we have c(yz) = c(xv), otherwise the union of the cycles yzuy and xwvx is a rainbow graph belonging to the family Ω_2 . By the analog analysis, we have c(xy) = c(vz).

Now, considering the possible neighborhood of the vertex s, we only need to distinguish the following subcases.

Subcase 2.1 The vertex s is adjacent to just the vertices v and w.

Since c(yz) = c(xv), we have that the union of the cycles yzuy and swvs is a rainbow graph belonging to the family Ω_2 , a contradiction.

Subcase 2.2 The vertex s is adjacent to just the vertices u and w.

Since c(yz) = c(xv), we have

$$c(sv) \in \{c(ws), c(wv), c(uy), c(uz), c(yz)\},\$$

otherwise the union of the cycles swvs and yzuy is a rainbow graph belonging to the family Ω_2 . By the analog analysis, from c(xy) = c(vz), we have

 $c(sv) \in \{c(us), c(uv), c(xy), c(xw), c(yw)\},\$

a contradiction, since the two sets $\{c(ws), c(wv), c(uz), c(yz)\}$ and $\{c(us), c(uv), c(xy), c(xw), c(yw)\}$ have no common elements.

This completes the proof.

4 The value of $AR(6, \Omega_2)$

In this section, we present an 11-edge-coloring of K_6 which does not contain any graphs in Ω_2 . Let $V(K_6) = \{u, v, w, x, y, z\}$. Define an 11-edge-coloring ϕ of K_6 as follows. Let $G = K_6 - uv - uz - vz - wz$. Clearly, the size of G is just 11. Color the edges of G with distinct colors. Then color the edges uv and wz with the same color in $\{\phi(xy), \phi(uw), \phi(wv), \text{ color}$ the edge uz with the color $\phi(wv)$, and color the edge vz with the color $\phi(uw)$. It is easy to verify that the edge coloring ϕ of K_6 does not contain any graph in the family Ω_2 . This implies the lower bound $AR(6, \Omega_2) \geq 11$. In fact, using the same analysis as in the

previous section, we can show that any 12-edge-coloring of K_6 contains a rainbow graph belonging to the family Ω_2 . To complete the section, we have the following result.

Theorem 4.1 $AR(6, \Omega_2) = 11.$

5 Bounds of anti-Ramsey numbers for Ω_k

Unlike graphs in the family $\overline{\Omega}_2$, we have no more information about graphs in the family $\overline{\Omega}_k$ for $k \geq 3$. So we cannot treat the family Ω_k $(k \geq 3)$ as we did for the case Ω_2 . Fortunately, the bound of $ex(n, \overline{\Omega}_k)$ presents an upper bound of $AR(n, \overline{\Omega}_k)$ for $k \geq 3$. Let f(n, k) = (2k - 1)(n - k) and

$$g(n,k) = \begin{cases} f(n,k) + (24k - n)(k - 1), & \text{if } n \le 24k; \\ f(n,k), & \text{if } n \ge 24k. \end{cases}$$

Lemma 5.1 [4] Every graph G of order $n \ge 3k$, $k \ge 2$, and size at least g(n,k) contains k independent cycles except when $n \ge 24k$ and $G \cong K_{2k-1} + \overline{K}_{n-2k+1}$.

This easily yields $AR(n, \Omega_k) < g(n, k)$. Let $G \cong K_{2k-2} + \overline{K}_{n-2k+2}$. Clearly, the edge coloring of K_n induced by G has no rainbow graph in Ω_k . Then we have the following result.

Theorem 5.2 For any integer n and k, $n \ge 3k$, $k \ge 2$,

$$\binom{2k-2}{2} + (2k-2)(n-2k+2) + 1 \le AR(n,\Omega_k) \le g(n,k) - 1.$$

When n is large enough, i.e., $n \ge 24k$, the gap between the upper bound and the lower bound is just n - 2k - 1. From Theorem 3.1, we know the left equality holds for $n \ge 7$ and k = 2. In fact, though we cannot prove it, we feel that the value of $AR(n, \Omega_k)$ would be very near to the lower bound rather than the upper bound.

Conjecture 5.3 For any integer n and k, $n \ge 3k$, $k \ge 2$,

$$AR(n,\Omega_k) = \binom{2k-2}{2} + (2k-2)(n-2k+2) + 1.$$

Acknowledgement Z. Jin was supported by the National Natural Science Foundation of China (10701065) and the Natural Science Foundation of Department of Education of Zhejiang Province of China (20070441). X. Li was supported by the National Natural Science Foundation of China (10671102), PCSIRT, and the "973" program.

The electronic journal of combinatorics 16 (2009), #R85

References

- N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 1 (1983), 91-94.
- [2] M. Axenovich and T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, Ars Combin. 73 (2004), 311-318.
- M. Axenovich, T. Jiang, and A. Kündgen, *Bipartite anti-Ramsey numbers of cycles*, J. Graph Theory 47 (2004), 9-28.
- [4] B. Bollobás, *Extremal Graph Theory*, Academic Press, New York, 1978.
- [5] P. Erdős, M. Simonovits, and V.T. Sós, Anti-Ramsey theorems, Colloq. Math. Soc. Janos Bolyai. Vol.10, Infinite and Finite Sets, Keszthely (Hungary), 1973, pp. 657-665.
- [6] T. Jiang, *Edge-colorings with no large polychromatic stars*, Graphs Combin. 18 (2002), 303-308.
- [7] T. Jiang, Anti-Ramsey numbers of subdivided graphs, J. Combin. Theory, Ser.B, 85 (2002), 361-366.
- [8] T. Jiang and D.B. West, On the Erdős-Simonovits-Sós conjecture on the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12 (2003), 585–598.
- T. Jiang and D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004), 137-145.
- [10] J.J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem, Combinatorica 22 (2002), 445-449.
- [11] J.J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs Combin. 21 (2005), 343-354.
- [12] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004), 157-162.
- [13] M. Simonovits and V.T. Sós, On restricting colorings of K_n , Combinatorica 4 (1984), 101-110.