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Abstract

We describe an operation on dimer configurations on the hexagon lattice, called
“squishing”, and use this operation to explain some of the properties of the Donald-
son-Thomas partition function for the orbifold C3/Z2 × Z2 (a certain four-variable
generating function for plane partitions which comes from algebraic geometry).

1 Introduction

In this paper, we will describe and use a novel technique called “squishing”, which one
applies to the dimer model on the regular honeycomb lattice. We developed this technique
as an attempt to verify a conjectured generating function which arises in algebraic geom-
etry (specifically, in the Donaldson-Thomas theory of the orbifold C3/Z2 × Z2 [1]). Our
attempt was only partially successful, and we were later able to compute the generating
function by other means. However, the technique is interesting in of itself, being one of
relatively few dimer model techniques which exploits the self-similarity of the lattice at
different scales.

We begin by describing the original motivation for this work.

Definition 1 A 3D Young diagram (or 3D diagram) π is a subset of (Z≥0)
3 such that if

(x, y, z) ∈ π, then (x′, y′, z′) ∈ π whenever x′ ≤ x, y′ ≤ y, and z′ ≤ z.

3D Young diagrams are called boxed plane partitions or 3D partitions elsewhere in the
literature. We refer to the points in π as boxes – the point (i, j, k) corresponds to the unit
cube with vertices {(i± 1

2
, j ± 1

2
, k ± 1

2
)}.

We will be discussing the following generating functions:

Definition 2 A weighting of (Z≥0)
3 is a map

w : (Z≥0)
3 → {p, q, r, s},
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where p, q, r, s are formal indeterminates. We say that w(P ) is the weight of the lattice
point P ; the weight of a 3D diagram is the product of the weights of the lattice points at
the centers of all of its boxes. The w-partition function is then defined to be the formal
sum

Zw =
∑

π 3D diagram

w(π).

The weightings we will be concerned with are the monochromatic weighting w{1},

(i, j, k) 7→ p

and the Z2 × Z2 weighting wZ2×Z2 ,

(i, j, k) 7→


p if i− k ≡ 0, j − k ≡ 0 (mod 2),

q if i− k ≡ 1, j − k ≡ 0 (mod 2),

r if i− k ≡ 0, j − k ≡ 1 (mod 2),

s if i− k ≡ 1, j − k ≡ 1 (mod 2),

along with various specializations of these weightings; we shall denote their partition
functions Z{1}(p) and ZZ2×Z2(p, q, r, s), respectively.

It is a classical result [4] that ∑
π

w{1}(π) = M(1, p) (1)

where we define

M(a, z) =
∞∏

n=1

(
1

1− azn

)n

.

Equation (1) also arises in algebraic geometry, essentially because 3D Young diagrams
are the same as monomial ideals I ⊂ C3[x, y, z] (simply read off the exponents of the
elements of the coordinate ring C3/I; these are the boxes of π). As a result, (1) is,
in a certain sense, an invariant of C3; specifically, it is the Donaldson-Thomas partition
function for the space C3, up to a sign on p. [5].

It is possible [1] to develop Donaldson-Thomas theory for orbifolds of C3 under the
actions of certain finite abelian groups. It turns out that for the group Z2 × Z2, the
partition function is given by

ZZ2×Z2 =
M(1, Q)4M̃(qr,Q)M̃(qs,Q)M̃(rs,Q)

M̃(−q,Q)M̃(−r,Q)M̃(−s,Q)M̃(−qrs,Q)
(2)

where Q = pqrs and M̃(a, z) = M(a, z)M(a−1, z).
The curious identity (2) was proven in [1] using vertex operators; it was conjectured

earlier by Bryan (based on the behaviour of related Donaldson-Thomas partition func-
tions) and independently by Kenyon (in an equivalent form, based on empirical computer
work).
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Figure 1: A matching of H5,4,3.

It is possible to check some of the properties of 2 in an elementary manner. For
example, it should be the case that specializing p = q = r = s should give

ZZ2×Z2(p, p, p, p) = Z{1},

and indeed (2) does satisfy this relation. Another striking relation suggested by (2) is:

ZZ2×Z2(p,−1,−1,−1) = M(1, Q)2; (3)

however, the combinatorial reason for this is far less clear. This paper demonstrates (3)
in an elementary manner, without relying on the theorems of [1].

2 Matchings, and Weightings

Our attack on (3) immediately requires us to to encode the “surface” of a 3D Young
diagram with dimers on the hexagon lattice. Let us fix some terminology.

Definition 3 Let G = (V,E) be a graph. A matching or 1-factor of G is a subgraph
M = (V,E ′) such that the degree of every vertex v ∈ V is 1. Equivalently, a matching of
G is a partition of the vertices of G into a disjoint union of dimers, or pairs of vertices
joined by a single edge of G.

Note that elsewhere in the graph theory literature, these are called “perfect match-
ings”, and “matching” means a 1-factor of some subgraph of G.

For a general survey of results on the dimer model, see [2].
We will be considering matchings on the semiregular hexagonal mesh of side lengths

a, b, c, a, b, c, denoted Ha,b,c (see Figure 1 for a definition–by–picture). Matchings on this

the electronic journal of combinatorics 16 (2009), #R86 3



Figure 2: A 3D Young diagram viewed as a matching on H3,3,3.

graph are in bijection with 3D Young diagram which are contained within an a×b×c box.
To see why, imagine viewing a 3D Young diagram from a distance(i.e., under isometric
projection). The faces of the 3D diagram are then rhombi, each of which is composed of
two equilateral triangles (see Figure 2). The centers of these triangles fall at the vertices
of Ha,b,c, so we get a matching by replacing each rhombus with the corresponding edge.

A weighting of a graph assigns a monomial to each of the graph’s edges. Our first
example, called a monochromatic weighting, is the one depicted in figure 3, which assigns
a weight of one to all non-horizontal edges, and weight pi to horizontal edges which have i
other horizontal edges directly below them. We will adopt the convention that if an edge
has no weight written beside it, then that edge has a weight of one.

If our graph has a weighting, then the weight of a matching is the product of all of
the weights of the edges of the graph.

Now, we have defined two monochromatic weightings – one for 3D Young diagrams
and one for graphs. One might ask whether they are “the same”: is the weight of a 3D
diagram which fits inside an i×j×k box the same as the weight of the associated matching
of Hi,j,k? Strictly speaking, the answer is no, because the weight of the empty 3D Young
diagram should be one, but the weight of the associated matching (see Figure 5) is not
equal to one.

However, given a matching M , we can define its normalized weight as the weight of
M divided by the weight of the empty 3D Young diagram. Now it is easy to see that the
normalized weight of M is equal to the weight of the associated 3D diagram π. The proof
is by induction on the number n of boxes in π, the case n = 0 being trivial. One only
needs to check that the operation of adding a box to π has the effect of increasing both
weights by p, which is easy to do.
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Figure 3: A monochromatic weighting on H4,4,4
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There are many other weightings on the hexagon meshes whose normalized versions
are equivalent to the monochromatic weight. For example, one could rotate the weighted
mesh by 120 degrees. Indeed, for our purposes, the following weighting is superior (see
Figure 4): we replace p with t, and superimpose three copies of the old monochromatic
weighting: one normal, one rotated 120 degrees, and one weighted 240 degrees. This
weighting assigns each box the weight t3, so substituting p = t3 gives a new monochromatic
weighting.

Definition 4 The weighting described above is called wp.

It is cumbersome to draw diagrams with p1/3 as an edge weight, so throughout the paper,
we shall use the convention that p = t3 when it is convenient.

We would next like to define a weighting ofHa,b,c whose normalized version is equivalent
to the Z2 × Z2 weighting. There are several ways of doing this, but for our purposes,
the best way is to first define three weightings: the qt–, rt–, and st–weightings (see
Figure 6). The qt–weighting is equivalent to the Z2×Z2 weighting under the specialization
p 7→ t; r, s 7→ 1, and similarly for the other two weightings.

Having done this, we construct the Z2 ×Z2 weighting by assigning each edge in Ha,b,c

the product of its qt,rt, and st–weights. This weights boxes colored q, r, s correctly, but
each box in the p position gets the weight t3. So specializing t 7→ p1/3 gives the Z2 × Z2

weighting (see Figure 7). Observe that we have assigned weight 1 to all of the grey edges.

Definition 5 We call the weighting of Figure 7 wp,q,r,s.

3 Overlaying pairs of matchings

We were introduced to the ideas in this section by Kuo’s beautiful paper on graphical
condensation [3]. In the following, G will always be a bipartite graph.
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Figure 4: A “better” monochromatic weighting, wp, where p = t3.
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Figure 5: The empty 3D Young diagram and its associated wp-weighted matching
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Figure 6: The qt–, rt–, and st–weightings on H4,4,4.
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Figure 7: The Z2 × Z2 weighting.

q2t

t2s2

s

r3t2

r3t2

1

rt

t3s3

r

r

ts2

1

t2s3

q2t2

t3s4

q

q3t2

q2t2 r2t2

r4t3

q2t

q2

q2t

qt

q3

qt

1

q3t3

q4t3

1

1

t2s3

r3t2

rt

1

r2t

r3t3

r

t2s3

ts

rt

q

t2s2

1

r2t2

t2s2 qt

ts2

q3t2

1

1

ts

r2t

q

s
r2t

ts

s

ts2

r2t2

8 the electronic journal of combinatorics 16 (2009), #R86



Figure 8: Overlaying two matchings on H3,3,3.
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Suppose that we have two matchings M1,M2 of G. If we overlay these two matchings
on the vertex set V of G, we have a multigraph N in which each vertex has degree
two, called a 2-factor of G. This terminology is slightly nonstandard in graph theory –
elsewhere in the literature, a 2-factor is usually a collection of closed loops and isolated
edges (not doubled).

If the edge e occurs in both M1 and M2, then e occurs as a doubled edge in N . In
this case, since the degree of both endpoints of e is two, e is a connected component in
N . Conversely, all doubled edges in N must occur in both M1 and M2. If we disregard
the doubled edges, the rest of N decomposes into a collection of disjoint closed paths.

Conversely, one can split a 2–factor into two one-factors:

Lemma 6 A 2-factor N may be partitioned into an ordered pair of matchings (M1,M2)
in precisely 2#{closed paths in N} distinct ways.

Proof. Suppose we have a 2–factor N of a bipartite graph G. We may obtain two
matchings M1 and M2 of G as follows: If e is doubled in N , then place e into both M1

and M2. If P is a closed path in N , select one of the edges in P and place it into M1.
Place the next edge in the path into M2, and so forth. Since G is bipartite, the path P
is of even length, so each vertex in P has degree 1 in both M1 and M2.

There are 2 ways to divide P between M1 and M2, so there are 2#{closed paths in N} pairs
of matchings M1,M2 which correspond to N . �

4 Squishing

Consider the hexagonal mesh with even side lengths, H2a,2b,2c. The leftmost diagram in
Figure 9 shows a picture of H4,4,4, with some of the edges colored grey. The grey edges
come in sets of three, all of which are incident to one central vertex. I shall call these
three edges a propeller.
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Figure 9: The hexagonal mesh H4,4,4 being squished.

The other two diagrams in Figure 9 show what happens when the length of the edges
in each propeller is decreased, while the other edges remain long. We call this procedure
squishing. Of course, the length that we choose to draw the edges in the graph has no
bearing of the structure of the graph, but when the propellers are quite small, the graph
of H4,4,4 “looks like” the graph of H2,2,2 with each edge doubled.

We will denote this squishing operation by the symbol ψ :

ψ : H2a,2b,2c \ {propellers} −→ Ha,b,c

where ψ sends each edge to its image after squishing. It is ofted useful to speak of
squishing a set E of edges of H2a,2b,2c, and we shall also denote this operation by ψ:

ψ(E) =
⋃

e∈E\{propellers}

ψ(e).

Sometimes, given E ′ ⊂ Ha,b,c, we will need to look for sets of edges E for which
ψ(E) = E ′. Naturally, there are many such E, since ψ ignores the propellers and is
two-to-one on all other edges. However, for a given E ′ ⊂ Ha,b,c, there is a “most relevant”
preimage of E ′ under ψ, which we shall call ϕ(E ′) ⊂ H2a,2b,2c, defined as follows:

E0 :=
⋃

e∈E′

φ−1(e),

ϕ(E ′) := E0 ∪ {all propellers adjacent to E0}

In other words, ϕ(E ′) contains all edges which squish to edges of E ′, as well as all propellers
incident to those edges (See Figure 10). It is clear that ψ ◦ ϕ(E ′) = E ′.
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Figure 10: The “unsquishing” map ϕ

E′ ϕ(E′)

Figure 11: A matching on H4,4,4 being squished to a 2–factor on H2,2,2.

5 Three lemmas on weightings of squished graphs

When one draws a matching on the graph of H4,4,4 before squishing, we get what looks
very much like a 2-factor of H2,2,2 (See Figure 11). We will quantify precisely how this
occurs, and use the effect to prove several facts about certain specializations of the Z2×Z2

partition function.
Let us examine one of the propellers more closely, and determine what possible con-

figurations of its edges can appear in a perfect matching M , up to symmetry. (see Figure
12). We label the central vertex D, and the other vertices A,B,C. First, observe that
preciesly one of the three “short” edges must be included in M , to give the central vertex
degree one. Suppose that it is the short horizontal edge CD. In order for vertices A and
B to have degree 1 as well, they must each have one incident long edge. Up to symmetry,
there are three ways for this to occur:

1. All three edges are horizontal;

2. The edge incident to A is horizontal; the edge incident to B is diagonal; or
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Figure 12: All possible configurations of edges around a propeller in a perfect matching.
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3. The edges incident to both A and B are diagonal.

If we now identify the vertices A,B,C,D and ignore the short edges, we can see that
case 1 gives rise to a doubled edge, and cases 2 and 3 give rise to a path through the
vertex. Therefore, collapsing all propellers in H2a,2b,2c to points transforms a matching
on H2a,2b,2c into a 2-factor on Ha,b,c. In other words, the squishing operation ψ induces a
map, which we will call Ψ:

Ψ : {1-factors of H2a,2b,2c} −→ {2-factors of Ha,b,c}.

It is easy to see that Ψ is surjective but not injective. For example, H2,2,2 has 20 perfect
matchings, whereas H1,1,1 has only 3 2-factors.

It is often necessary to find the set of all matchings on ϕ(E ′). Strictly speaking, this

set is
(
Ψ|ϕ(E′)

)−1
(E ′), but for simplicity of notation we shall just write this as Ψ−1(E ′).

We will need to use the Z2 × Z2 weighting under the specialization t, q, r, s 7→ −1,
which we shall call w−1 for short (see Figure 13).

Lemma 7 Let λ be a 2-factor of Ha,b,c. Then∑
µ∈Ψ−1(λ)

w−1(µ) = (−1)ab+bc+ca · 2#{closed paths in λ}.

Proof. Let us suppose that λ decomposes as the disjoint union of doubled edges e1, . . . , en

and closed loops `1, . . . , `m. Because the unsquishings ϕ(ei) and ϕ(`j) are all pairwise non-
adjacent in H2a,2b,2c, it is clear that

∑
µ∈Ψ−1(λ)

w−1(µ) =
n∏

i=1

 ∑
µ matching on ϕ(ei)

w−1(µ)

 m∏
j=1

 ∑
µ matching on ϕ(`j)

w−1(µ)

 . (4)
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Figure 13: The Z2 × Z2 weighting, under the specialization t, q, r, s 7→ −1
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Figure 14: The unique configuration of edges which squishes to a doubled edge.
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Figure 15: Lifting a closed path `j to ϕ(`j), and completing it to a matching.
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Let us first consider Ψ−1(ei), the preimage of a doubled edge. There is only one possible
matching on φ(ei) (see Figure 14); it has weight -1.

Next, let us consider Ψ−1(`j), the preimage of a closed loop. Every term in Ψ−1(`j) is
a matching on ϕ(`j) which maps to `j under ψ. We shall “lift” `j up to ϕ(`j), so that at
each step we choose an edge e′ ∈ ϕ(`j) which maps to e under ψ. If we do this in such a
way that no two of the e′ are adjacent, then there is a unique way to complete the lifted
walk to a matching on ϕ(`j), by choosing exactly one edge of each propeller to be in the
matching (see Figure 15). Note that the w−1-weight of the lifting (second image) is the
same as the weight of the matching (third image) since all of the propellers have weight
1.

Suppose that we walk along the lifted path in ϕ(`j), in the counterclockwise (positive)
direction, and we step on the edges e′1, e

′
2, · · · , e′k, e′1, in order. We keep track of the

product of the weights of the edges we have stepped on.
At any point in our walk, there are essentially only four states that we can be in. We

can be standing on an edge weighted 1 or -1, and we can be facing one of two types of
propeller: or . Let us label the states 1 through 4, as follows:

1. Standing on a weight 1 edge, facing a propeller

2. Standing on a weight -1 edge, facing a propeller

3. Standing on a weight 1 edge, facing a propeller

4. Standing on a weight -1 edge, facing a propeller

To get from one edge to another in the path, we must turn either left or right at the
propeller we are facing, so we shall think of our walk as a sequence of Rs and Ls, read
right-to-left. For example, the walk in Figure 15, starting at the upper leftmost horizontal
edge and proceeding counterclockwise, is LRRLLLLRLLRLLL.

Our trick is to interpret R and L as the following state–transition matrices :

L =


0 0 1 1
0 0 0 −1
1 0 0 0
−1 −1 0 0

 R =


0 0 1 0
0 0 −1 −1
1 1 0 0
0 −1 0 0


14 the electronic journal of combinatorics 16 (2009), #R86



These matrices encode which states can be reached from which, and keep track of the
total weight of all paths leading from one state to another. For example, at the upper-left
most horizontal edge in Figure 15, we are in state 4, and we are about to turn to the left.
We could go into state 1, picking up a weight of 1 (as in the diagram); alternately, we
could go into state 2, picking up a weight of -1. This is modeled by our state-transition
matrices, since

L ·


1
0
0
0

 =


0 0 1 1
0 0 0 −1
1 0 0 0
−1 −1 0 0

 ·


1
0
0
0

 =


0
0
1
−1


By the same token, the coefficients of the matrix LR are the sums of the weights of all
paths which start in state i , turn first right and then left, and end in state j. If we want
to know the sum of the weights of the lifts of the closed loop in Figure 15, we should
compute the matrix product LRRLLLLRLLRLLL. We must end in the same state as
we start since our path is closed. Furthermore, our starting state must be either 3 or 4,
otherwise we would be walking clockwise rather than counterclockwise. It follows that
the total number of paths is the sum of the (3,3) and (4,4) entries of this matrix product.

Now, here is the punchline: It is easy to check that L = R−1. In any closed loop on
the hexagonal lattice, there must be 6 more left turns than right turns, so the combined
weights of all lifts of any closed loop is the sum of the (3, 3) and (4, 4) entries of L6. Now,
it is also easy to check that L6 = −I, so this combined weight is -2, regardless of the
shape or orientation of the loop `j.

Going back to Equation 4, and recalling that there are i doubled edges and j closed
loops in the 2-factor λ, we can now state that∑

µ∈Ψ1(λ)

w−1(µ) = (−1)i · (−2j) = (−1)i+j · 2j

Observe that i + j is the total number of connected components in λ, so the proof is
complete modulo the following lemma. �

Lemma 8 Let λ be a 2-factor of Ha,b,c. Let C(λ) denote the number of connected com-
ponents of λ. Then C(λ) ≡ ab+ bc+ ca (mod 2).

Proof. Decompose λ into two matchings, λ1 and λ2. Let us consider λ1 for the moment.
When one removes (or adds) a cube to the 3D diagram corresponding to λ1, one

obtains a new matching. Graph-theoretically, this is equivalent to performing the change
depicted in Figure 16. Let us call such an operation a τ -transformation. Since it is
possible to change any 3D diagram into any other by adding and removing boxes one at
a time, repeated τ -transformations will allow us to change any matching into any other
matching.

Let us alter the matchings λ1 and λ2 in this fashion, so that after finitely many steps, we
have obtained two copies of the empty 3D Young diagram. At each stage, superimposing
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Figure 16: A τ -transformaion
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Figure 17: Changing one 2-factor into another with τ -transformations
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the two matchings gives a 2-factor, so we may think of τ -transformations as acting on the
set of 2-factors as well (see Figure 17).

Next, we show that τ -transformations leave C(λ) invariant mod 2. Suppose we are
applying the τ transformation to λ1, and we are affecting the edges around a particular
hexagon H. Remove all edges of H from λ1 to obtain a new subgraph λ◦1 of Ha,b,c. Now
superimpose λ◦1 and λ2. The resulting graph has degree 2 everywhere except at vertices
of H, all of which have degree 1. As a result, every vertex of H is connected to precisely
one other vertex of H by some path (possibly of length one). Up to symmetry, there are
two possible ways in which this may occur (see Figure 18). When we add the edges of
λ1 ∩H back into the graph and perform the τ -transformation, it is easy to see that the
parity of the number of connected components is preserved. In the upper case, there are
an odd number of path components; in the lower case, there are an even number.

Up to this point, we have shown that C(λ) is an invariant of Ha,b,c. To calculate it,
we compute the number of edges in the matching corresponding to the empty 3D Young
diagram. This is easy: there are ab horizontal edges, ac edges of slope

√
3, and bc edges

of slope −
√

3, and so there are ab+ bc+ ca edges in all. �

Lemma 9 If λ is a 2-factor on Ha,b,c and µ ∈ Ψ−1(λ), then wp,1,1,1(λ) = wp(µ).

Proof. Comparing the weightings wp,1,1,1 and wp in Figure 19, it is clear that if e is an
edge of Ha,b,c and e′ is either of the two edges in ψ−1(e), then wp,1,1,1(e

′) = wp(e). The
statement of the lemma follows immediately. �.
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Figure 18: The two possible connectivities of λ◦1 ∪ λ2, and their behaviour under τ -
transformations

τ

τ

Figure 19: The weightings wp,1,1,1 on H2a,2b,2c, compared with the weighting wp on Ha,b,c,
where t = p3.
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6 A specialization of the Z2 × Z2 partition function

As before, wp,q,r,s denotes the Z2×Z2 weighting, and wp = wp,p,p,p denotes the monochro-
matic weighting. We will be working with various specializations of these weightings, and
it will be convenient to write, for example, w−p,−1,−1,−1 for the specialization p 7→ −p,
q, r, s 7→ −1. /usr/X11R6/bin/gvim

Although our tool of choice is weighted matchings on hexagon meshes, our object of
study is the Z2 ×Z2 weighting for 3D Young diagrams. We shall use wp,q,r,s(π) to denote
the Z2 × Z2–weight of the 3D diagram π, and wp to denote its monochromatic weight.
Recall that if λ is the matching corresponding to π, then

wp,q,r,s(π) =
wp,q,r,s(λ)

wp,q,r,s(empty 3D diagram)
.

and we can normalize the monochromatic weight in the same fashion.

Definition 10 The Z2 × Z2 partition function for Ha,b,c is

Za,b,c(p, q, r, s) =
∑

π 3d diagram
inside a×b×c box

wp,q,r,s(π).

The monochromatic partition function for Ha,b,c is

Za,b,c(p) =
∑

π 3d diagram
inside a×b×c box

wp(π)

Note that lima,b,c→∞ Z
a,b,c = lima,b,c→∞ Z

2a,2b,2c = ZZ2×Z2 . Thus the following implies
(3):

Theorem 11
Z2a,2b,2c(p,−1,−1,−1) =

(
Za,b,c(−p)

)2
.

Proof. To begin with, let us work with matchings. Observe that for any matching µ, we
have wp,−1,−1,−1(µ) = w−p,1,1,1(µ) · w−1,−1,−1,−1(µ). Therefore,

18 the electronic journal of combinatorics 16 (2009), #R86



∑
µ matching
on H2a,2b,2c

wp,−1,−1,−1(µ) =
∑

λ 2-factor
on Ha,b,c

∑
µ∈Ψ−1(λ)

w−p,1,1,1(µ)w−1,−1,−1,−1(µ)

=
∑

λ 2-factor
on Ha,b,c

w−p(λ)
∑

µ∈Ψ−1(λ)

w−1,−1,−1,−1(µ) (5)

= (−1)ab+bc+ca
∑

λ 2-factor
on Ha,b,c

2#{closed loops in λ}w−p(λ) (6)

= (−1)ab+bc+ca
∑

λ,η 1-factors
onHa,b,c

w−p(λ)w−p(η) (7)

= (−1)ab+bc+ca

 ∑
µ matching
on Ha,b,c

w−p(µ)


2

In the above sequence of steps, Equation (5) uses Lemma 9 and Equation (6) uses
Lemma 7.

Now, let us normalize both sides by dividing by the wp,−1,−1,−1 weight of the matching
associated to the (2a, 2b, 2c) empty 3D diagram. Let us call this matching M . Call the
(a, b, c) empty 3D diagram N .

On the left side, we get Za,b,c(p, q, r, s). For the right side, we observe that

wp,−1,−1,−1(M) = w−1,−1,−1,−1(M) · w−p,1,1,1(M)

= (−1)ab+bc+ca · (w−p(N))2,

again using Lemma 9. Therefore, the right-hand side normalizes to(
Za,b,c(−p)

)2
.

and we are done. �

7 Conclusions

It is obvious to ask whether this method might be used for its intended purpose, namely
to prove Equation 2. Unfortunately, the answer is no. Our method is clearly agnostic
as to the large-scale shape of the graph; it works on any suitable subset of the hexagon
lattice. However, computer calculations show that the analogue of (2) on H2a,2b,2c does
not admit a product formula; rather, if one counts 3D Young diagrams fitting inside
a 2a × 2b × 2c box, according to the Z2 × Z2 weighting, one typically gets (1 − p) ×
(a large irreducible polynomial); the product formula only appears as a, b, c→∞.
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It should be possible to apply this method to other graphs and other weights. We
have not investigated this possibility in any great depth, but in order for the method to
work without serious modification, it seems that the graph ought to have propeller-like
vertices, at which several hexagonal faces meet; furthermore, one might expect the graph
to have some degree of self-similarity at different scales.
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