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Abstract

Collins and Trenk define the distinguishing chromatic number χD(G) of a graph
G to be the minimum number of colors needed to properly color the vertices of G so
that the only automorphism of G that preserves colors is the identity. They prove
results about χD(G) based on the underlying graph G. In this paper we prove results
that relate χD(G) to the automorphism group of G. We prove two upper bounds for
χD(G) in terms of the chromatic number χ(G) and show that each result is tight: (1)
if Aut(G) is any finite group of order pi1

1 pi2
2 · · · pik

k then χD(G) ≤ χ(G)+i1+i2 · · ·+ik,
and (2) if Aut(G) is a finite and abelian group written Aut(G) = Z

p
i1

1

× · · · × Z
p

ik

k

then we get the improved bound χD(G) ≤ χ(G) + k. In addition, we characterize
automorphism groups of graphs with χD(G) = 2 and discuss similar results for
graphs with χD(G) = 3.

1 Introduction

The distinguishing number D(G) of a graph was first defined by Albertson and Collins
[1] as the minimum number of colors needed to color the vertices of G so that the only
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automorphism of G that preserves colors is the identity. The distinguishing number of
the cycle Cn is the answer to the following question which inspired the definition of D(G):
given a ring of seemingly identical keys that open different doors, how many colors are
needed to distinguish them? The subject has received considerable attention since then
(e.g., see [1, 2, 9, 14]).

In the definition of the distinguishing number, there is no requirement that the coloring
be proper. Indeed, in labeling keys on a key ring, there is no reason why adjacent keys
must receive different colors. However, in other graph theory questions where edges in a
graph represent conflicts (scheduling meetings, storing chemicals, etc.) a proper coloring
is needed, and one with a small number of colors is desirable. If this coloring is also
distinguishing we can identify the objects represented by the vertices just by looking at
the graph and its coloring.

Collins and Trenk [4] define the distinguishing chromatic number which incorporates
the additional requirement that the labeling be proper.

Definition 1.1 A labeling of the vertices of a graph G, h : V (G) → {1, . . . , r}, is said
to be proper r-distinguishing (or just proper distinguishing) if it is a proper labeling (i.e.,
coloring) of the graph and no automorphism of the graph preserves all of the vertex labels.
The distinguishing chromatic number of a graph G, denoted by χD(G), is the minimum
r such that G has a proper r-distinguishing labeling.

For example, the graph H in Figure 2 at the end of Section 3 has D(H) = 2 (labeling
vertex w1 red and the remaining vertices blue) and χ(H) = χD(H) = 3 (using three
different colors for w1, w2, and w3, and coloring v1 with w1’s color).

Since a proper distinguishing coloring of a graph is both a proper coloring and a
distinguishing labeling, we get the lower bounds χD(G) ≥ χ(G) and χD(G) ≥ D(G). We
also have the following simple upper bound.

Proposition 1.1 For any graph G we have χD(G) ≤ χ(G)D(G).

Proof. Let G be a graph and fix a proper coloring of G using χ(G) colors f : V (G) →
{1, 2, 3, . . . , χ(G)} and a distinguishing labeling of G using D(G) labels g : V (G) →
{1, 2, 3, . . . , D(G)}. Then the labeling that assigns the ordered pair (f(v), g(v)) to vertex
v is a proper distinguishing coloring and uses χ(G)D(G) labels. 2

The bound in Proposition 1.1 is sharp. For example, the graph C6 has χ(C6) = 2,
D(C6) = 2 and χD(C6) = 4. Also, any graph G with either χ(G) = 1 or D(G) = 1 will
have χ(G)D(G) = χD(G).

In [4], the first and third authors define the distinguishing chromatic number χD(G) of
a graph G and prove results about χD(G) based on the underlying graph G. In particular,
they find χD(G) for various families of graphs and prove analogues of Brooks’ Theorem for
both the distinguishing number and the chromatic distinguishing number. In this paper
we approach the subject from the perspective of group theory and prove results about
χD(G) based on the automorphism group of G. Since the publication of [4], the topic of
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the distinguishing chromatic number has been studied by other authors, for example, see
[3, 15, 16].

We end this section with a few definitions. If G and H are isomorphic graphs we write
G ≈ H . An r-coloring of a graph is a coloring of the vertices using r colors. A p-group
is a group whose order is a power of p, where p is prime. The automorphism group of the

colored graph G (or just of the coloring of G) is the subgroup of Aut(G) that preserves
vertex colors. If σ is an automorphism of graph G = (V, E) and X ⊆ V then we define
σ(X) = {σ(x) : x ∈ X}.

2 Graphs with χD(G) ≤ 2

The main result of this section, Theorem 2.6, characterizes the automorphism groups of
graphs with χD = 2. We begin with two elementary remarks.

Remark 2.1 χD(G) = 1 if and only if G = K1. In this case, Aut(G) = {id}.

Remark 2.2 A connected bipartite graph can be properly 2-colored in exactly 2 ways:
the coloring is forced once any one vertex’s color is fixed.

Lemma 2.3 Suppose G is a connected graph with χD(G) = 2. Then there is a unique
proper red/blue coloring of the vertices of G (up to reversing all vertex colors) and it
is distinguishing. Furthermore, any nontrivial automorphism of G must interchange red
with blue vertices.

Proof. We know that G is bipartite since χ(G) ≤ χD(G) = 2. By Remark 2.2, there is a
unique proper 2-coloring of the vertices of G (up to reversing all vertex colors). Therefore,
this coloring must be distinguishing.

To justify the final sentence of the lemma, let σ be a nontrivial automorphism of G.
Since our coloring is distinguishing, without loss of generality, σ maps a red vertex x to
a blue vertex y. However, automorphisms preserve distance, so once one red vertex is
mapped to a blue one, all red vertices must be mapped to blue ones and vice versa. Thus
σ interchanges red and blue vertices. 2

Theorem 2.4 If G is connected and χD(G) = 2 then the automorphism group of G is
either the identity or Z2.

Proof. Suppose Aut(G) is not the identity. Let σ and τ be non-trivial automorphisms
of G, not necessarily distinct. By Lemma 2.3, σ and τ both interchange red and blue
vertices. But then στ takes red vertices to red vertices, so must be the identity. Hence
τ = σ−1, so Aut(G) has at most 3 elements: id, σ, σ−1. When τ = σ, we see that σ = σ−1.
Hence Aut(G) is Z2, as required. 2

Note that if we only assume that χ(G) = 2, then the automorphism group of G can
be any group, see [12].
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Lemma 2.5 If G is a graph with χD(G) = 2 then the following are true:

1. There can not be three isomorphic components of G.

2. In any proper 2-distinguishing coloring of G, pairs of isomorphic components must
be colored oppositely and the automorphism group of each of these components is
trivial.

Proof. If G has 3 isomorphic components, then by Remark 2.2, two of these compo-
nents must be colored the same. Thus, there is a non-trivial automorphism of G that
interchanges these two components and preserves colors, a contradiction. This proves (1).

Next we prove (2). Fix a proper 2-distinguishing coloring of G. Let J1 and J2 be
two isomorphic components of G. If J1 and J2 are colored identically then there is a
non-trivial automorphism of G that interchanges J1 and J2 and preserves the colors, a
contradiction. Otherwise, by Remark 2.2, J1 and J2 are colored oppositely, as desired.

Finally, we prove the second part of (2). For a contradiction, suppose there is a non-
trivial automorphism σ1 of J1 and let σ2 be the corresponding automorphism of J2. Let σ
be the automorphism of G which acts on J1 by σ1 and on J2 by σ2 and fixes the remaining
vertices of G. By Lemma 2.3, σ interchanges red and blue vertices of J1 and of J2. Now
let τ be the automorphism that interchanges J1 and J2 and fixes the rest of G. Hence τ
interchanges red and blue vertices in J1 and J2. Then σ ◦ τ is an automorphism of G that
preserves colors. However, σ ◦ τ 6= id because it interchanges vertices of J1 with vertices
of J2. This is a contradiction. 2

Thus graphs with χD = 2 consist of unique components and pairs of isomorphic
components. We can now extend Theorem 2.4 to the case where G is not necessarily
connected.

Theorem 2.6 If χD(G) = 2, then the automorphism group of G is Z2×Z2×· · ·×Z2 = Zk
2

where k is the number of pairs of isomorphic components plus the number of unique
components in G that have a non-trivial automorphism.

Proof. By Lemma 2.5, G consists of components that are either unique or have one
isomorphic duplicate. Let A be the set of components that occur in pairs. By Theorem 2.4
the unique components either have a unique non-trivial automorphism (an involution),
or have only the identity automorphism. Let B be the set of components of G that are
unique and have a unique non-trivial involution and let C be the set of components of
G that are unique but have only the identity automorphism. Let k = |A| + |B|. For
each element of A, there is an involution of G, namely, the one which interchanges the
two duplicates. Similarly, for each element of B, there is an involution of G, namely, its
unique involution. Furthermore, these involutions act independently, and generate the
automorphism group of G. Thus, Aut(G) = Z2 × Z2 × · · · × Z2 = Zk

2 . 2

The next corollary follows directly from Theorem 2.6 and Remark 2.1.

Corollary 2.7 If G is a graph and there exists an odd prime p for which |Aut(G)| is
divisible by p then χD(G) ≥ 3.
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3 Larger values of χD(G)

We have seen above that automorphism groups of graphs G with χD(G) = 2 must be
elementary abelian 2-groups. It is then natural to ask whether there are any restrictions
on automorphism groups of graphs G with χD(G) = r. The answer given in the following
theorem is no. Given any finite group Γ and any integer r ≥ 3, the same construction used
in the proof of Theorem 3.1 yields a graph G with Aut(G) = Γ and χ(G) = r. However,
Albertson and Collins [1] show that each graph G with an abelian automorphism group
has D(G) ≤ 2. So Theorem 3.1 still holds if χD is changed to χ (and even if r = 2), but
does not hold if χD is changed to D.

Theorem 3.1 For any finite group Γ and any integer r ≥ 3, there exists a graph G with
Aut(G) = Γ and χD(G) = r.

Proof. Given Γ = {σ0 = id, σ1, σ2, ..., σn} we construct a graph G as follows: each non-
identity element σi ∈ Γ is assigned a gadget. The gadget assigned to σk consists of a path
P4, v1, v2, v3, v4 with a single vertex x joined to v3 and a path v2, y1, y2, ..., yk+2. Start
with a graph H with V (H) = Γ and place a directed edge from σi to σj for all i 6= j.
Replace the directed edge (σi, σj) with the gadget assigned to σk where σj = σiσk. In
order to ensure that χ(G) ≥ r (and thus χD(G) ≥ r) we add an extra r − 2 vertices,
z1, z2, . . . zr−2 to the σ1-gadget to form an r-clique with y1 and y2 and add a path of
length i to each zi to eliminate automorphisms that swap z’s. For an example with r = 4
and Γ = Z3 = {σ0 = id, σ1, σ2}, see Figure 1.

It has been shown [6] that Aut(G) = Γ and furthermore the action of σk 6= id on G
takes a σk gadget to a different σk gadget. It remains to show that χD(G) ≤ r. Color the
vertices of H red. For each k > 1, color the σk gadget from id to σk as folows. Color vertex
v2 blue, and then finish the coloring of the bipartite gadget with blue and green. Color
all the other σk gadgets oppositely, with the base of the long chain colored green. Color
the vertices of the σ1 gadget similarly, use r − 2 additional colors for the z vertices and
color the additional paths properly using blue and green. In Figure 1, the blue vertices
are shown with a surrounding circle.

This is a proper coloring using r colors. We must show it is distinguishing. Let τ = σk

be a non-trivial automorphism of G. Then τ maps the σk gadget between id and σk to
the one between σk and σk

2 and thus does not preserve colors. Therefore our coloring is
distinguishing. 2

Given a graph H , the difference between χD(H) and χ(H) arises from the automor-
phism group of H . We will study how large this difference can be in the next section.
We now show that, no matter how large this difference is, there exists a graph G so that
H is an induced subgraph of G and χD(H) ≥ χD(G). This means that there can be
no meaningful result that bounds the distinguishing chromatic number of a subgraph in
terms of the distinguishing chromatic number of the larger graph.

Proposition 3.2 For any connected graph H with χ(H) = k ≥ 2, there exists a graph G
with χD(G) = k and Aut(G) = {id} containing H as an induced subgraph. In particular,
χD(H) ≥ χD(G).
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Figure 1: The graph constructed in Theorem 3.1 when r = 4 and Γ = Z3 .

Proof. Let H be any connected graph with χ(H) = k ≥ 2. Order the vertices of H by
writing V (H) = {v1, v2, . . . , vm, w1, w2, . . . , wn} where for each i, vertex vi is a leaf (i.e.,
deg(vi) = 1) and deg(wi) ≥ 2. For each i, add paths of length 2i − 1 and 2i to vi and a
path of length 2m + i to wi. Let G be the resulting graph (see Figure 2 for an example).
By construction, H is induced in G and χ(G) = k.

It remains to show that χD(G) = k. Let σ be any automorphism of G. In the graph
G, vertices of H have degree at least 3 while vertices in V (G) − V (H) have degree at
most 2, thus σ maps vertices of H to vertices of H and leaves to leaves. By construction,
each leaf of G has a distinct distance to the closest vertex of degree 3 or more, so each
leaf is mapped to itself, and this forces σ to be the identity. Thus Aut(G) = {id} and
χD(G) = χ(G) = k as desired.

The last sentence of the theorem follows since χD(H) ≥ χ(H) = k. 2

One might wonder if it is possible to generalize Proposition 3.2 by also specifying the
automorphism group of the graph G of which H is to be an induced subgraph. We carry
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Figure 2: The graph G constructed from H in Proposition 3.2.

this out for Aut(G) = Z2. We suspect it can be done for any value of Aut(G) as long as
we assume χ(H) > 2.

Proposition 3.3 For any connected graph H with χ(H) = k ≥ 2, there exists a graph
G′ with χD(G′) = k, Aut(G′) = Z2 and H is an induced subgraph of G′.

Proof. Let H be any connected graph with χ(H) = k ≥ 2 and let G be the graph
constructed from H in the proof of Proposition 3.2. Form G′ by taking two copies of G
and joining one pair of corresponding vertices x and x′. By construction, H is induced
in G′ and χ(G′) = k. We showed that Aut(G) = {id} in the proof of Proposition 3.2,
thus the only nontrivial automorphism σ of G′ swaps the two copies of G and switches x
and x′. There is an edge between vertices x and x′ in G′, so these vertices have different
colors and therefore σ does not preserve colors. Hence the only automorphism of G′ that
preserves colors is the identity and thus χD(G′) = χ(G′) = k as desired. 2

4 Bounds on χD(G) − χ(G)

Given a finite group Γ, one can look at the maximum value A(Γ) of the difference χD(G)−
χ(G) for graphs G with Aut(G) = Γ. In this section, we show that A(Γ) = 1 for cyclic
groups of prime power order, and give upper bounds for A(Γ) for general finite groups Γ
and also for finite abelian groups Γ. In the next section, we will prove that these bounds
are tight.

Theorem 4.1 If Aut(G) = Z2, then χD(G) ≤ χ(G) + 1.

Proof. Color G using χ(G) colors. Let σ be any non-trivial automorphism of G, which
is an involution. If σ does not preserve colors, then our coloring is distinguishing and
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χD(G) = χ(G). If σ does preserve colors, then recolor one of the vertices that is not fixed
by σ to be a new color. This gives a (χ(G) + 1)-distinguishing coloring of G. 2

By being slightly more careful with this proof, we get the following theorem.

Theorem 4.2 If Aut(G) = Zpm for some prime p and integer m > 0, then χD(G) ≤
χ(G) + 1.

Proof. Color G using χ(G) colors. Let σ be a generator of Aut(G). Then τ = σpm−1

is a
nontrivial automorphism of G, and τ generates the unique subgroup Σ of Aut(G) of order
p. Thus τ is a power of any nontrivial element of Σ. Let ω be any nontrivial automorphism
of Aut(G) with order pt for t ≥ 2. Then ωpt−1

∈ Σ, since ωpt−1

has order p. Hence τ is
a power of ω. However, τ 6= id, so there exists a vertex v that τ moves. Thus each ω
must also move v. Now recolor v with a new color. This gives a (χ(G)+1)-distinguishing
coloring of G. 2

To get a bound on A(Γ) for more general finite groups Γ, we would like to iterate this
method. Some problems arise, however, so the best we can do for a general group Γ is
the following.

Theorem 4.3 Suppose Γ is a group of order n, and G is a graph with Aut(G) = Γ. Let
n = pi1

1 pi2
2 · · ·pik

k where p1, . . . , pk are distinct primes. Then

χD(G) ≤ χ(G) + i1 + i2 + · · ·+ ik.

Proof. Begin with a proper coloring of G with χ(G) colors. We will recolor one vertex
at a time with a completely new color to reduce the automorphism group of the colored
graph G. For a number m, let us denote by µ(m) the sum of the exponents in the
prime decomposition of m, so in particular, µ(n) = i1 + i2 + · · · + ik. At the jth step,
we will have a proper coloring with χ(G) + j colors whose automorphism group Γj has
µ(|Γj|) ≤ µ(n)− j. By the last step, then, we will have a coloring with χ(G)+µ(n) colors
with trivial automorphism group. The base case of the induction is j = 0, which is clear.
For the induction step, choose any element σ of Γj, and a vertex x that is not fixed by σ.
Give x a completely new color. This gives a proper coloring of G with χ(G)+ j +1 colors.
Any automorphism that preserves colors must fix vertex x, thus the automorphism group
Γj+1 must be a subgroup of the stabilizer group of x. This subgroup cannot be all of Γj ,
since σ moves x. Hence Γj+1 is a proper subgroup of Γj, so its order is a proper divisor
of |Γj|. Thus µ(|Γj+1|) < µ(|Γj|), completing the induction step. 2

Theorem 5.6 shows that the bound provided in Theorem 4.3 is tight in cases where
1 = i1 = i2 = · · · ik, that is, when n is the product of distinct primes. When k = 1,
n = pr and Aut(G) = (Zp)

r, then Theorem 4.3 gives the bound χD(G) ≤ χ(G) + r, but
Theorem 4.2 gives the improved bound χD(G) ≤ χ(G) + 1. If we take advantage of the
structure of abelian groups G as products of prime-power cyclic factors (Zp)

r, we obtain
in Theorem 4.4 a bound on χD(G) − χ(G) in terms of the number of prime-power cyclic
factors. For example, if n = 180 = 223251 and |Aut(G)| = n then Theorem 4.3 gives the
bound χD(G) ≤ χ(G)+2+2+1. However, for the same n, if Aut(G) = Z(22) ×Z(32)×Z5
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then Theorem 4.4 gives the bound χD(G) ≤ χ(G)+3; if Aut(G) = Z2×Z2×Z(32)×Z5 then
Theorem 4.4 gives the bound χD(G) ≤ χ(G)+4; and if Aut(G) = Z2 ×Z2 ×Z3 ×Z3 ×Z5

then both Theorems 4.3 and 4.4 give the bound χD(G) ≤ χ(G) + 5.

Theorem 4.4 Suppose Γ is an abelian group and G is a graph with Aut(G) = Γ, so that

Γ = Aut(G) = Zp
n1

1

× · · · × Zp
nk

k

for some k where p1, . . . pk are primes, not necessarily distinct. Then χD(G) ≤ χ(G) + k,
and this bound is tight.

The proof of Theorem 4.4 relies on two technical results, Proposition 6.1 and Theo-
rem 6.2 which we present in Section 6.
Proof. We will prove the tightness of the bound in Theorem 5.6. Given G, we will
prove by induction on r that there is a coloring of G with χ(G) + r colors such that the
automorphism group Γr of the coloring has at most k− r prime-power cyclic factors. The
base case is r = 0, where it is obvious. For the induction step, write

Γr
∼= C1 × · · · × Ck−r,

where each Ci is a prime-power cyclic factor, and C1 = Zps has the maximal order of all
the Ci. Let σ denote a generator of C1. There must be a vertex x that σps−1

does not fix.
If Γx denotes the stabilizer of x, this means that Γx ∩ C1 = {id}, since σps−1

is in every
nontrivial subgroup of C1. By Theorem 6.2, we can write Γr = C1 × B where Γx ⊆ B.
Now color x with a new color. Then the automorphism group Γr+1 of the new coloring
must be a subgroup of Γx ⊆ B ∼= C2 × · · · × Ck−r. Therefore Γr+1 has at most k − r − 1
prime-power cyclic factors, completing the induction. 2

5 Tightness of bounds on χD(G) − χ(G)

The main result in this section is a set of examples constructed in Theorem 5.6. Given
any finite abelian group Γ, written as a product of k prime-power cyclic groups, we
construct a graph H whose automorphism group is Γ and for which χD(H) = χ(H) + k.
These examples show the tightness of the bounds in Theorems 4.3 and 4.4. We begin by
constructing the graphs Gn,i and later will form H by taking a join of such graphs.

The following example shows the bound in Theorem 4.2 is tight for n = pm.

Example 5.1 Given positive integers n, i, we first construct the graph Gn,i and show
χ(Gn,i) = 2, χD(Gn,i) = 3, and Aut(Gn,i) = Zn. To form the graph Gn,i, start with the
even cycle C2n with vertex set V = {x1, x2, . . . , x2n} and edges x1 ∼ x2 ∼ · · ·x2n ∼ x1.
Replace every other edge of this cycle with a gadget as follows. For each j : 1 ≤ j ≤ n
replace the edge x2j−1, x2j with the path x2j−1 ∼ y2j ∼ z2j ∼ x2j where y2j and z2j are
new vertices, add i + 1 new vertices u2j,1, u2j,2, . . . , u2j,i+1 to form the path y2j ∼ u2j,1 ∼
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Figure 3: The graphs G2,1 and G2,2 from Example 5.1.

u2j,2, · · · ∼ u2j,i+1 and one additional vertex w2j with z2j ∼ w2j. The graphs G2,1 and G2,2

are shown in Figure 3.
By construction, the graph Gn,i contains only one cycle and that cycle is even; thus

Gn,i is bipartite and χ(Gn,i) = 2. The only automorphisms of Gn,i are rotations that map
x1 to x2j−1 for some j : 1 ≤ j ≤ n, thus Aut(Gn,i) = Zn. Since these rotations preserve
any 2-coloring of Gn,i, we know χD(Gn,i) > 2. Using a new color for vertex x1 gives a
distinguishing coloring of Gn,i, and hence χD(Gn,i) = 3.

We now want to combine the graphs of the preceding example to construct a G with
Aut(G) = Zp

n1

1

× · · · × Zp
n

k

k

and χD(G) = χ(G) + k. The idea is to take the join of the
graphs above.

Definition 5.2 The join of graphs G1, G2, . . . , Gn, denoted by G1 ∨ G2 ∨ · · · ∨ Gn, has
vertex set V (G1)∪V (G2)∪· · ·∪V (Gn) and edge set E(G1)∪E(G2)∪· · ·∪E(Gn)∪{xy|x ∈
V (Gi), y ∈ V (Gj), i 6= j}.

Our next Lemma shows that the automorphism group of the join of a particular set of
graphs is the product of the automorphism groups of the individual graphs. Hemminger
[7] addressed a more general version of this question using different notation. We include
our proof for completeness.

Lemma 5.3 Suppose each of the graphs G1, G2, . . . , Gn, is triangle free, and is not a
complete bipartite graph, and also suppose Gi 6≈ Gj whenever i 6= j. Then Aut(G1∨G2∨
· · · ∨ Gn) = Aut(G1) × Aut(G2) × · · · × Aut(Gn).
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Proof. Let G = G1 ∨ G2 ∨ · · · ∨ Gn. If σi is an automorphism of Gi for 1 ≤ i ≤ n then
define an automorphism σ of G by σ(v) = σi(v) for v ∈ V (Gi). This construction makes
Aut(G1) × Aut(G2) × · · · × Aut(Gn) ⊆ Aut(G).

Now let σ be an automorphism of G. It remains to show that σ induces an automor-
phism of Gi for each i. First suppose there exist u1 ∈ V (Gi), u2 ∈ V (Gj), u3 ∈ V (Gℓ)
for distinct i, j, ℓ with σ(u1), σ(u2), σ(u3) ∈ V (Gk). Then u1, u2, u3 form a triangle in G
hence σ(u1), σ(u2), σ(u3) form a triangle in Gk, a contradiction. Thus vertices sent to Gk

by σ come from at most two distinct sets Gi, Gj.
We next show that if σ sends vertices from Gi and Gj to Gk for i 6= j then those

sets of vertices must be independent sets in Gi and in Gj. Suppose there exist vertices
x, y ∈ V (Gi) and z ∈ V (Gj) with i 6= j, and xy ∈ E(Gi) and σ(x), σ(y), σ(z) ∈ V (Gk).
Then since i 6= j, vertex z forms a triangle in G with x and y which gives the triangle
σ(x), σ(y), σ(z) ∈ Gk.

Thus for each k there exists an i and possibly a j so that V (Gk) can be partitioned as
V (Gk) = σ(X)∪ σ(Y ) where X ⊆ V (Gi) and Y ⊆ V (Gj). We have shown that X and Y
are independent sets in G. However, xy ∈ E(G) for each x ∈ X and each y ∈ Y by the
definition of G, so if X and Y are both non-empty then Gk is a complete bipartite graph,
a contradiction.

Hence for each destination k there exists a unique origin i so that V (Gk) = σ(X) for
some X ⊆ V (Gi). Indeed, we must have X = V (Gi) since there are exactly n origins
and n destinations and σ is an automorphism. Thus for each k there exists an i so that
σ(V (Gi)) = V (Gk). Since we are given Gi 6≈ Gk for i 6= k we must have i = k. This
completes the proof that σ ⊆ Aut(G1) × Aut(G2) × · · · × Aut(Gn). 2

Lemma 5.4 For any graphs G1, G2, . . . , Gn, we have χD(G1∨G2∨· · ·∨Gn) ≥ χD(G1)+
χD(G2) + · · ·+ χD(Gn).

Proof. Let G = G1 ∨ G2 ∨ · · · ∨ Gn. Any proper distinguishing coloring of G induces a
proper distinguishing coloring of each Gi. However, in G, each vertex of Gi is adjacent to
each vertex of Gj for i 6= j, so the set of colors used for Gi must be disjoint from the set
used for Gj. Therefore, we need at least χD(G1)+χD(G2)+ · · ·+χD(Gn) colors for G. 2

Corollary 5.5 If G1, G2, . . . , Gn are graphs with Aut(G1 ∨ G2 ∨ · · · ∨ Gn) = Aut(G1) ×
Aut(G2)×· · ·×Aut(Gn), then χD(G1∨G2∨· · ·∨Gn) = χD(G1)+χD(G2)+ · · ·+χD(Gn).

Proof. Let G = G1 ∨ G2 ∨ · · · ∨ Gn. By Lemma 5.4 we need only show χD(G) ≤
χD(G1) + χD(G2) + · · · + χD(Gn). Fix a distinguishing coloring of each Gi so that the
colors used in Gi are disjoint from those used in Gj whenever i 6= j. We claim that
this is a distinguishing coloring of G. If not, there would be a non-trivial automorphism
σ of G that preserves these colors. So σ ∈ Aut(G) = Aut(G1 ∨ G2 ∨ · · · ∨ Gn) =
Aut(G1) × Aut(G2) × · · · × Aut(Gn), and thus σ preserves the colors of Gi for each
i. Since we chose distinguishing colorings of each Gi we know that σ is the identity
automorphism on each Gi, hence σ is the identity automorphism on G. This contradicts
σ being a non-trivial automorphism. 2
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We now have all the necessary ingredients to prove the tightness of the bound in
Theorem 4.4. The same construction shows the bound in Theorem 4.3 is achieved by an
abelian group.

Theorem 5.6 Given a finite abelian group

Γ = Zp
n1

1

× · · · × Zp
nk

k

,

there is a graph H with Aut(H) = Γ and χD(H) = χ(H) + k.

Proof. Consider the graph

H = Gp
n1

1
,1 ∨ Gp

n2

2
,2 ∨ · · · ∨ Gp

nk

k
,k.

Recall from Example 5.1 that χD(Gp
ni

i
,i) = 3 for each i. Since H is the join of k

graphs each having chromatic number 2, we know χ(H) = 2k. Note that for each n and
each i the graph Gn,i is triangle-free and is not a complete bipartite graph. Furthermore,
Gn,i ≈ Gm,j only when n = m and i = j. Therefore we may apply Lemma 5.3 to the
graph H to conclude

Aut(H) = Zp
n1

1

× · · · × Zp
n

k

k

.

Now by Corollary 5.5, we have χD(H) = 3k. Therefore χD(H) = χ(H) + k. 2

6 Results about abelian groups

In this section we present two technical results about abelian groups needed in the proof
of Theorem 4.4. These results can be derived from theorems in [10] and [11].

Proposition 6.1 Suppose A ≤ B is an inclusion of finite abelian groups such that psx =
id for all p-torsion elements of B. Whenever r ≥ s, any homomorphism f : A −→ Zpr

extends to a homomorphism g : B −→ Zpr .

Proof. We use the Prüfer group Q/Z(p). Recall that this group is an infinite p-group with a
unique subgroup of order pr generated by 1/pr. Let j : Zpr −→ Q/Z(p) denote the inclusion
of this subgroup. Because Q/Z(p) is injective as an abelian group (see Section IV.3 of [8],
there is an extension g′ : B −→ Q/Z(p) of jf . Any element of B that is not p-torsion is of
course sent to id by this map. Any element of B that is p-torsion is killed by ps, so must
land in the image of j since r ≥ s. Thus we can write g′ = jg for some map g : B −→ Zpr ,
giving us the desired extension. 2

Theorem 6.2 Let A be a finite abelian group acting on a set X. Let C be a factor of
A that is isomorphic to Zpr , where pr is the largest p-power order of an element of A.
Suppose x ∈ X is an element with Ax ∩ C = {id}, where Ax is the stabilizer of x. Then
there is a subgroup B of A such that Ax ⊆ B and A ∼= C × B.
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Proof. By assumption, since C is a factor of A, we have a splitting A ∼= C × A/C. This
splitting is given by a retraction α : A −→ C that fixes C, the projection p : A −→ A/C,
and a section s : A/C −→ A with ps being the identity. So the splitting takes an element
a of A to (α(a), p(a)), and α(a) + sp(a) = a. If the map α : Ax −→ C were id, then Ax

would lie in s(A/C) and we would be done. In general, this will not be true, and we
need to modify s to make it be true. In general, if we replace s by s + t for some map
t : A/C −→ C, and replace α by α − tp, then we will still get a splitting A ∼= C × A/C.
Indeed, we still have (α − tp)(c) = c for c ∈ C, and p(s + t) is still the identity, and

(α − tp)(a) + (s + t)p(a) = α(a) + sp(a) = a,

as required.
Now the map p : Ax −→ A/C has to be an injection, since any element in the kernel

would have to be in both Ax and C. By Proposition 6.1, there is a map t : A/C −→ C such
that t(pa) = α(a) for all a ∈ Ax. As above, this gives us a new splitting A ∼= C ×A/C ∼=
C × (s + t)(A/C), but now if a ∈ Ax, we have

a = (α − tp)(a) + (s + t)p(a) = (s + t)p(a).

Therefore, Ax ⊆ (s + t)(A/C) as required. 2

7 Conclusion

We conclude with an open question and acknowledgements. In Section 4 we defined A(Γ)
to be the maximum value of χD(G)−χ(G) for graphs with Aut(G) = Γ. There are many
questions that one can ask about the invariant A(Γ) for finite groups Γ. We have seen
that A(Γ) is bounded by some feature of Γ: when Γ is any group, A(Γ) is bounded by
the number of prime factors of |Γ|, and when Γ is an abelian group, then A(Γ) equals
the number of prime power cyclic factors of Γ. If Γ is a solvable group, perhaps A(Γ)
could be bounded by the shortest length of the composition series of a solvable group
into prime power cyclic factors. This would fit with the bound that we have for abelian
groups. The smallest group where the bounds might be different is D4, which has order
8, so by Theorem 4.3, A(D4) ≤ 3. The shortest length of a composition series of D4 into
cyclic factors is 2, since D4 contains a cyclic group of size 4.

An anonymous referee pointed out that the work of Seress [13] implies that if a graph G
is vertex transitive and has a solvable automorphism group then D(G) ≤ 5 and χD(G)−
χ(G) ≤ 4. Indeed, because G is vertex transitive, the action of Aut(G) is primitive.
Seress proves in this case that there is a set S of size at most 4 such that any nontrivial
automorphism of G moves a vertex in S. To see that D(G) ≤ 5 we color each vertex in
S differently and the remaining vertices get one new color. Similarly, to show χD(G) ≤
4 + χ(G), start with a proper coloring of G and give each vertex of S a new color.

The authors are grateful to both referees for their helpful comments and to Constance
Leidy for suggesting Proposition 1.1 and its proof.
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