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Abstract

We consider the problem to decompose a binary matrix into a small number of

binary matrices whose 1-entries form a rectangle. We show that the linear relaxation

of this problem has an optimal integral solution corresponding to a well known

geometric result on the decomposition of rectilinear polygons.

1 Introduction

In the context of intensity modulated radiation therapy several decomposition problems
for nonnegative integer matrices have been considered. One of these is the decomposition
into a small number of binary matrices whose 1-entries form a rectangle. There is an
example showing that in general the linear relaxation of this problem has no optimal
integral solution [1]. On the other hand, the same paper contains an algorithm based
on the revised simplex method that uses only very few Gomory cuts. In computational
experiments, this algorithm provided exact solutions for matrices of reasonable size in
short time.

In the present paper we consider the special case that the input matrix is already
binary: A ∈ {0, 1}m×n. In this case the integer optimization problem is equivalent to
a well studied geometric problem: the decomposition of a rectilinear polygon into the
minimal number of rectangles. Our main result is that the minimal number of rectangles
in such a decomposition equals the optimal objective in the relaxed matrix decomposition
problem. In other words, the integrality gap vanishes, provided the input matrix is binary.
This solves problem 1 of [1].

2 Notation and problem formulation

Let A be a binary matrix of size m×n. A rectangle matrix is an m×n−matrix S = (sij)
such that for some integers k1, k2, l1 and l2 with 1 ≤ k1 ≤ k2 ≤ m and 1 ≤ l1 ≤ l2 ≤ n,
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we have

sij =

{

1 if k1 ≤ i ≤ k2 and l1 ≤ j ≤ l2,

0 otherwise.

The rectangle segmentation problem is the following:

RSP. Find a decomposition A = S1 + · · · + St with rectangle matrices S1, . . . , St such
that t is minimal.

A linear relaxation of this problem is the following.

RSP-Relax. Find a linear combination A = x1S1 + · · · + xtSt with rectangle matrices
S1, . . . , St and 0 ≤ xi ≤ 1 for i = 1, . . . , t such that x1 + · · ·+ xt is minimal.

The integral problem RSP can be formulated in a geometric setup as follows. We associate
A with a rectangular m×n-array of unit squares in the plane. The set P = {(i, j) : aij =
1} corresponds to a rectilinear polygon whose boundary consists of line segments with
integer coordinates. Clearly, a solution of the problem RSP is precisely the decomposition
of P into the minimal number of rectangles. In order to state the solution to the polygon
decomposition problem we need some notation. Let N , c and k be the number of vertices,
connected components and holes of P , respectively. This notation has to be clarified by
two remarks (see Fig. 1 for illustrations).

1. If P can be decomposed into two or more polygons which intersect pairwise in iso-
lated vertices these vertices are counted twice and we consider the parts as different
connected components.

2. Similarly, if the boundary of a hole intersects the outer boundary or another hole
only in isolated vertices these vertices are counted twice.

P1 P2

Figure 1: Two polygons. The parameters are N = 8, c = 2 and k = 0 for P1, and N = 10,
c = 1, k = 1 for P2.

We call a vertex of P convex if the interior angle at this vertex is 90◦ and concave if it is
270◦. A chord of P is a line segment that lies completely inside P , connects two concave
vertices and is parallel to one of the coordinate axes. The chords parallel to the x-axis
and the y-axis are called horizontal and vertical, respectively. We associate a bipartite
graph G = (H ∪ V, E) with P . The vertex sets H and V are the sets of horizontal and
vertical chords, respectively, and two chords are connected by an edge if they intersect
(Fig. 2). Let α be the maximal cardinality of an independent set in the graph associated
to P . The following theorem of Lipski et al. (which was reproved by several authors),
characterizes the minimal number of rectangles in a decomposition of P .
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Figure 2: The graph associated to a polygon.

Theorem 1 ([2, 3, 4]). The minimal number of rectangles in a decomposition of P equals

N

2
− c + k − α.

We want to show that there is no integrality gap in the rectangle segmentation problem
for binary matrices. This can be done by proving that the optimal objective value for
RSP-Relax is at least N

2
− c + k − α. In order to do this we will present a feasible

solution for the dual problem with exactly this objective value. For a binary matrix A,
the set of variables in RSP-Relax corresponds to the set of rectangles that are completely
contained in P . Indexing these rectangles by the numbers 1, . . . , T , i.e. S(1), . . . , S(T ) are
precisely the rectangle matrices whose 1-entries are contained in P , we can reformulate
RSP-Relax as follows.

T
∑

t=1

s
(t)
ij xt = 1 for (i, j) ∈ P,

xt ≥ 0 for t = 1, . . . , T,
T
∑

t=1

xt → min .

Dualizing, we obtain the problem RSP-Dual:

k2
∑

i=k1

l2
∑

j=l1

yij ≤ 1 for [k1, k2] × [l1, l2] ⊆ P,

∑

(i,j)∈P

yij → max .

This dual problem has a nice interpretation. The polygon P is considered as a set
of unit squares and we want to fill these squares with numbers such that the sum over
every rectangle contained in P is bounded by 1, and the total sum is maximized under this
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constraint. We start with a simple observation which allows us to restrict our attention to
dual solutions of a special type. Let R be the set of rectangles into which P is decomposed
when the boundary lines at the concave vertices are extended until they meet the opposite
boundary of P . For an illustration see Fig. 3, where |R| = 16 and, for instance, the big
square in the middle is the element [2, 4] × [4, 6] ∈ R. We call the elements of R basic

rectangles. The following lemma asserts that we may assume that only in the upper left
corner of a basic rectangle the entry of y is nonzero.

1 2 3 4 5 6 7 8 9
8
7
6
5
4
3
2
1

Figure 3: Decomposition of a polygon P into basic rectangles.

Lemma 1. Suppose y
′ = (y′

ij)(i,j)∈P is feasible for RSP-Dual, and define y as follows.

For every [i1, i2] × [j1, j2] ∈ R put

yij =











i2
∑

i′=i1

j2
∑

j′=j1

y′
i′j′ for (i, j) = (i1, j1),

0 for (i, j) ∈ ([i1, i2] × [j1, j2]) \ {(i1, j1)} .

Then y is also feasible, and the objective value for y is the same as for y
′.

Proof. Let R := [k1, k2]× [l1, l2] ⊆ P , and let R0 denote the set of basic rectangles having
their upper left corner in R. More formally,

R0 = {[i1, i2] × [j1, j2] ∈ R : (i1, j1) ∈ R}.

The union of the elements of R0 is a rectangle R′ = [k′
1, k

′
2] × [l′1, l

′
2] ⊆ P with

k2
∑

i=k1

l2
∑

j=l1

yij =

k′

2
∑

i=k′

1

l′
2
∑

j=l′
1

y′

ij .

Fig. 4 illustrates the step from R to R′ for R = [2, 5]× [3, 7] and R′ = [3, 6]× [3, 8]. Now
the feasibility of y

′ implies
k2
∑

i=k1

l2
∑

j=l1

yij ≤ 1,

and consequently, the feasibility of y. The final statement about the objective values is
obvious.
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Figure 4: The transition from R to R′. The upper left corners of the elements of R0 are
shaded in the left drawing.

Clearly, a solution y of the form described in Lemma 1 can be identified with the
function

g : R → R, [k1, k2] × [l1, l2] 7→ yk1,l1.

This is illustrated in Figure 5, where all the values of g are in {0,±1}. It will turn out
that these special values are sufficient to define an optimal solution for RSP-Dual. The
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Figure 5: An example solution for RSP-Dual.

same argument as in the proof of Lemma 1 shows that for checking the feasibility of such
a function g it is sufficient to consider the constraints for rectangles that are unions of
basic rectangles. We call these rectangles essential.

3 The case α = 0

Let us assume α(G) = 0, i.e. P has no chords at all. We fix an orientation for the lines
that are used to decompose P into basic rectangles. The orientation is defined by pointing
away from the concave vertices towards the interior of P (see Fig. 6 for an illustration).

We will define the values g(R) for basic rectangles R depending on the orientation
of the boundary of R. First, we need some additional notation. The vertices of basic
rectangles that are either in the interior of P or concave vertices of P are called intersection
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Figure 6: The orientation of the bound-
aries of the basic rectangles.

Figure 7: The intersection points.

points. The set of all intersection points is denoted by I. In Fig. 7 the intersection points
are marked by dots.

Definition. A vertex a of an essential rectangle A ⊆ R is called a source (with respect
to A) if the two line segments on the boundary of A that start from a are oriented away
from a. In addition, let q(A) ∈ {0, 1, 2} be the number of sources for A.

Now we can define a function g : R → {0,±1} which turns out to be an optimal
solution for RSP-Dual:

g(R) = 1 − q(R) (R ∈ R). (1)

In order to show the feasibility of this function we observe that the value extends to
essential rectangles.

Lemma 2. For any essential rectangle A ⊆ R, we have

∑

R∈A

g(R) = 1 − q(A).

In particular, g : R → {0,±1} defines a feasible solution for RSP-Dual.

d

a b

ce

f

A1 A2

Figure 8: The induction step in the proof of Lemma 2.
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Proof. We proceed by induction on |A|. For |A| = 1, the statement is precisely the
definition of g. For |A| > 1, A is the union of two rectangles A1 ∪A2 as indicated in Fig.
8. By induction, we have

∑

R∈Ai

g(R) = 1 − q(Ai) (i ∈ {1, 2}).

The vertices a, b, c and d are sources for A iff they are sources for the respective Ai. The
vertex e is not a source for any of the considered rectangles. Finally, it is easy to see that
f is a source in precisely one of the rectangles Ai, because it is an intersection point. This
yields q(A) = q(A1) + q(A2) − 1, hence

∑

R∈A

g(R) =
∑

R∈A1

g(R) +
∑

R∈A2

g(R) = (1 − q(A1)) + (1 − q(A1)) = 1 − q(A).

We observe that every intersection point a is a source for exactly one basic rectangle
with vertex a. Hence by a simple double counting argument, the objective value for the
function g is

∑

R∈R

g(R) = |R| −
∑

R∈R

q(R) = |R| − |I|.

Our next lemma shows that g is indeed an optimal solution.

Lemma 3. The objective value for g equals the upper bound from the minimal decompo-

sition of P into rectangles. In other words,

|R| − |I| =
N

2
− c + k.

Proof. Clearly, we may assume c = 1. We proceed by induction on the objective value
h := N

2
−1+k. The value h = 1 is possible only if P is a single rectangle, and in this case

|R| − |I| = 1 − 0 = 1. If h > 0, P has at least one concave vertex. Let a be a concave
vertex such that no concave vertex is right of a. Along the vertical line through a we cut
the polygon P into two polygons P1 and P2. The three possible situations are illustrated
in Fig. 9.

For i ∈ {1, 2}, let Ni and ki be the numbers of vertices and holes of the respective
polygons, Ri the sets of basic rectangles, Ii the sets of intersection points, and let hi =
Ni/2 − 1 + ki be the corresponding objective values.

Case (a). We have N = N1 + N2 − 2 and k = k1 + k2, thus h = h1 + h2. So h1 and h2

are smaller than h and we can apply the induction hypothesis to P1 and P2. Let
t be the number of intersection points for P that are not in I1 ∪ I2. Clearly, these
points lie on the horizontal or on the vertical line through a, as indicated in Fig. 10.
Let t1 be the number of new intersection points on the vertical line, except a itself,
and let t2 be the number of new intersection points on the horizontal line (including
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Figure 9: The possible cuts (dotted lines) in the proof of Lemma 3.

Figure 10: The new intersection points
in Case (a).

Figure 11: The new intersection points
in Case (c).

a), so t = t1 + t2. In P , P2 is divided into t1 + 1 basic rectangles (which gives t1
additional basic rectangles), and exactly t2 basic rectangles of P1 are cut into two
parts. We obtain

|R| = |R1| + |R2| + t, |I| = |I1| + |I2| + t,

and the claim follows by induction.

Case (b). As in case (a), h = h1 + h2, and we can apply the induction hypothesis to
P1 and P2. Again, we see that every new intersection point (all on the vertical line
through a) creates a new basic rectangle, and the argument is completed as before.

Case (c). This time we have N = N1 +N2−4 and k = k1 +k2+1, but again h = h1 +h2,
so the induction hypothesis applies. Again the t new intersection points lie on the
vertical line through a, and P2 is divided into t + 1 basic rectangles (see Fig. 11),
and this concludes the proof.
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4 The general case

In this section we show how the general case can be handled. In the first subsection we
describe the solution g in the general case, while the second subsection is devoted to the
proof of the main theorem.

4.1 Definition of the solution

In order to define the solution as in (1), we have to put an orientation on the chords. To
fix such an orientation let Q = H0 ∪ V0 be an independent set of size |Q| = α(G), where
H0 ⊆ H and V0 ⊆ V . In addition, let H1 = H \ H0 and V1 = V \ V0. By maximality of
Q and Hall’s theorem, H1 can be matched into V0, and V1 can be matched into H0. Let
M ⊆ (H0 × V1)∪(H1 × V0) be such a matching, i.e. |M | = |H1|+ |V1|. Let Q0 ⊆ Q be the
subset of vertices that are not matched in M . In particular, we have α = |Q0|+ |M |. We
call the elements of Q0 isolated chords. Now the vertical and horizontal isolated chords
are oriented from top to bottom and from left to right, respectively. For an edge xy ∈ M ,
we direct every segment of the chords x and y towards the intersection point of x and
y. Fig. 12 illustrates this for the polygon in Fig. 2 where the underlying matching is
M = {a1, b2, c3} and the isolated chords are 4 and d (see Fig. 2 for the labeling of the
chords). Now we can define g : R → {0,±1} by g(R) = 1 − q(R) as before.

Figure 12: The orientation in the general case.

4.2 Proof of the main theorem

When we try to prove the feasibility of g by induction on |A| as in Lemma 2, a problem
arises in the case that f is the endpoint of a horizontal isolated chord as indicated in the
left hand side of Fig. 13. Then f is not a source for any of the rectangles A1 and A2. The
right hand side of the same figure shows a solution for this problem: we just extend the
orientation to the first segment of the boundary immediately following the isolated chord.
Of course, we have to do this for every isolated chord. Observe that in Fig. 12 this is
done for both isolated chords (which are 4 and d in this example). After this modification
the argument for Lemma 2 proves the following general version.
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Figure 13: The problem in the induction step for the feasibility of g (and its solution).

Lemma 4. For any essential rectangle A ⊆ R, we have

∑

R∈A

g(R) = 1 − q(A).

In particular, g : R → {0,±1} defines a feasible solution for RSP-Dual.

Now it remains to prove the optimality of g. There are some special intersection
points: the points where two chords meet which are matched in M . Clearly, these are
never a source for any incident basic rectangle. But each of the remaining intersection
points is a source for precisely one basic rectangle. So we obtain the objective value

∑

R∈R

g(R) = |R| − |I| + |M |.

Lemma 5. We have

|R| − |I| + |M | =
N

2
− c + k − α.

Proof. As in the proof of Lemma 3 we may assume c = 1. We proceed by induction on α.
The case α = 0 was treated in Section 3. So assume α > 0, let Q be some independent
set of chords of size |Q| = α, and choose any chord ab ∈ Q (w.l.o.g. horizontal). Now we
cut the polygon P along the chord ab. We have to distinguish two different cases: either
the cut divides P into two polygons P1 and P2, or P stays connected, but the number of
holes decreases by 1 (see Fig. 14 and 17).

Case 1 (Fig. 14). For i ∈ {1, 2}, denote the parameters of Pi by Ni, ki and αi. Similarly,
the corresponding sets of basic rectangles and intersection points are denoted by Ri

and Ii, respectively. Observe that Pi inherits a maximum independent set Qi and
a corresponding Matching Mi from P : Qi is the set of chords in P that are also
chords in Pi, and Mi is the set of elements xy ∈ M such that x and y are both in
Qi. We have

N = N1 + N2, k = k1 + k2, α = α1 + α2 + 1.

Hence, by induction, it is sufficient to prove that

|R| − |I| + |M | = (|R1| − |I1| + |M1|) + (|R2| − |I2| + |M2|) . (2)
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Figure 14: A cut dividing P into two parts (Case 1).

Let T be the set of intersection points on the chord ab. This set splits into three
subsets. For i ∈ {1, 2}, we put

Ti := {u ∈ T : u is a vertex of an element of Ri,

but not of an element of R3−i.},

and in addition T3 = T \ (T1 ∪ T2). Observe that T3 is the set of points where the
chord ab meets other chords. For instance, in Fig. 15, we have

T1 = {a1, a3}, T2 = {a2, a4}, T3 = {a5, a6}.

a1 a2 a3 a4

a5 a6

Figure 15: The intersection points on
the cutting chord.

a1 a2 a3 a4

a5 a6

Figure 16: The additional intersection
points.

Next we define a function φ : T1 ∪ T2 → N. For u in T1, let φ(u) be the number
of intersection points for P on the vertical line through u lying below u. Similarly,
for u in T2, let φ(u) be the number of intersection points for P on the vertical line
through u lying above u. In both cases, the point u itself is included. In the example
from Fig. 15, we have φ(a1) = 4, φ(a2) = 2 and φ(a3) = φ(a4) = 3 (see Fig. 16).
The function φ counts the intersection points of P that are not intersection points
of P1 or P2:

|I| = |I1| + |I2| +
∑

c∈T1∪T2

φ(c) + |T3|. (3)
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On the other hand, φ can be used to count the additional basic rectangles. The
vertical line through u ∈ T1 divides φ(u) basic rectangles of P2 into two parts, and
the vertical line through u ∈ T2 divides φ(u) basic rectangles of P1 into two parts,
hence

|R| = |R1| + |R2| +
∑

u∈T1∪T2

φ(u). (4)

The matching M can be written as a disjoint union M = M1 ∪M2 ∪M3 as follows.
For i ∈ {1, 2}, Mi is the set of edges xy ∈ M such that x ∈ H , y ∈ V , the chord
y does not intersect ab, and both vertices of y are in Pi. This is consistent with
the above description of the matchings M1 and M2. The remaining matching edges
xy ∈ M such that x ∈ H , y ∈ V , and the chord y intersects ab, are collected in M3.
Clearly, for every such matching edge xy ∈ M3, the vertical chord y intersects the
chord ab in some point from T3. On the other hand, for every point a′ ∈ T3, the
chord y that intersects ab in a′ does not belong to our maximal independent set Q,
so it is matched in M . Consequently, there is a one-to-one correspondence between
M3 and T3, and we obtain

|M | = |M1| + |M2| + |T3|. (5)

Putting together equations (3), (4) and (5), we obtain

|R| − |I| + |M | =

(

|R1| + |R2| +
∑

u∈T1∪T2

φ(u)

)

−

(

|I1| + |I2| +
∑

u∈T1∪T2

φ(u) + |T3|

)

+ (|M1| + |M2| + |T3|) .

This is (2), and thus concludes the proof in this case.

Case 2 (Fig. 17). Essentially the proof is the same as in Case 1. For the parameters of
P ′, we obtain

N ′ = N, k′ = k − 1, α′ = α − 1.

So induction applies to P ′, and we have to show that

|R| − |I| + |M | = |R′| − |I ′| + |M ′|. (6)

As before, T is the set of intersection points on the chord ab. In analogy to Case 1, T1 is
the set of u ∈ T such that u sees a concave vertex when it looks upwards, but u does not
see a concave vertex when it looks downwards. Similarly, T2 is the set of u ∈ T such that
u sees a concave vertex when it looks downwards, but u does not see a concave vertex
when it looks upwards, and finally T3 = T \ (T1 ∪ T2), the set of points where ab meets
other chords. For u ∈ T1, let φ(u) be the number of intersection points on the vertical line
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Figure 17: A cut that kills a hole (Case 2).

through u lying below u, and for u ∈ T2, let φ(u) be the number of intersection points on
the vertical line through u lying above u (in both cases we include u itself). By the same
counting arguments as in Case 1 we obtain

|I| = |I ′| +
∑

u∈T1∪T2

φ(u) + |T3|,

|R| = |R′| +
∑

u∈T1∪T2

φ(u),

|M | = |M ′| − |T3|.

These equations imply (6), and this concludes the proof.

As a consequence of Lemmas 4 and 5, we obtain that g solves RSP-Dual.

Theorem 2. The function g : R → {0,±1} with g(A) = 1 − q(A) defines an optimal

solution for RSP-Dual.

Corollary 1. There is no integrality gap in the rectangle segmentation problem for binary

input matrices.
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