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Abstract

For an [n, k, d]3 code C with gcd(d, 3) = 1, we define a map wG from Σ =
PG(k − 1, 3) to the set of weights of codewords of C through a generator matrix
G. A t-flat Π in Σ is called an (i, j)t flat if (i, j) = (|Π ∩ F0|, |Π ∩ F1|), where
F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod 3)}, F1 = {P ∈ Σ | wG(P ) 6≡ 0, d (mod 3)}.
We give geometric characterizations of (i, j)t flats, which involve quadrics. As an
application to the optimal linear codes problem, we prove the non-existence of a
[305, 6, 202]3 code, which is a new result.

1 Introduction

Let F
n
q denote the vector space of n-tuples over Fq, the field of q elements. A linear code

C of length n, dimension k and minimum (Hamming) distance d over Fq is referred to as
an [n, k, d]q code. Linear codes over F2, F3, F4 are called binary, ternary and quaternary
linear codes, respectively. The weight of a vector x ∈ F

n
q , denoted by wt(x), is the number

of nonzero coordinate positions in x. The weight distribution of C is the list of numbers
Ai which is the number of codewords of C with weight i. The weight distribution with
(A0, Ad, ...) = (1, α, ...) is also expressed as 01dα · · · . We only consider non-degenerate

codes having no coordinate which is identically zero. An [n, k, d]q code C with a generator
matrix G is called (l, s)-extendable (to C ′) if there exist l vectors h1, . . . , hl ∈ F

k
q so that

the extended matrix [G, hT
1 , · · · , hT

l ] generates an [n + l, k, d + s]q code C ′ ([10]). Then C ′

is called an (l, s)-extension of C. C is simply called extendable if C is (1, 1)-extendable.
We denote by PG(r, q) the projective geometry of dimension r over Fq. A j-flat is

a projective subspace of dimension j in PG(r, q). 0-flats, 1-flats, 2-flats, 3-flats, (r − 2)-
flats and (r − 1)-flats are called points, lines, planes, solids, secundums and hyperplanes,
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respectively. We refer to [7], [8] and [9] for geometric terminologies. We investigate linear
codes over Fq through the projective geometry.

We assume that k ≥ 3. Let C be an [n, k, d]q code with a generator matrix G =
[g0, g1, · · · , gk−1]

T. Put Σ =PG(k− 1, q), the projective space of dimension k − 1 over Fq.
We consider the mapping wG from Σ to {i | Ai > 0}, the set of weights of codewords of
C. For P = P(p0, p1, . . . , pk−1) ∈ Σ we define the weight of P with respect to G, denoted
by wG(P ), as

wG(P ) = wt(

k−1
∑

i=0

pigi).

Our geometric method is just the dual version of that introduced first in [11] to investigate
the extendability of C. See also [14], [15], [16], [18] for the extendability of ternary linear
codes. Let

F = {P ∈ Σ | wG(P ) 6≡ d (mod q)},

Fd = {P ∈ Σ | wG(P ) = d}.

Recall that a hyperplane H of Σ is defined by a non-zero vector h = (h0, . . . , hk−1) ∈ F
k
q

as H = {P = P(p0, . . . , pk−1) ∈ Σ | h0p0 + · · · + hk−1pk−1 = 0}. h is called a defining

vector of H, which is uniquely determined up to non-zero multiple. It would be possible
to investigate the (l, 1)-extendability of linear codes from the geometrical structure of F
or Fd as follows.

Theorem 1.1 ([12]). C is (l, 1)-extendable if and only if there exist l hyperplanes H1, . . .,
Hl of Σ such that Fd ∩ H1 ∩ · · · ∩ Hl = ∅. Moreover, the extended matrix of G by adding

the defining vectors of H1, . . . , Hl as columns generates an (l, 1)-extension of C. Hence, C
is (l, 1)-extendable if there exists a (k − 1 − l)-flat contained in F .

The mapping wG is trivial if F = ∅. For example, wG is trivial if C attains the Griesmer
bound and if q divides d when q is prime [17]. When wG is trivial, there seems no clue
to investigate the extendability of C except for computer search, see [10]. To avoid such
cases we assume gcd(d, q) = 1; d and q are relatively prime. Then, F forms a blocking
set with respect to lines [12], that is, every line meets F in at least one point. The aim of
this paper is to give a geometric characterization of F for q = 3. An application to the
optimal linear codes problem is also given in Section 4.

2 Main theorems

Let C be an [n, k, d]3 code with k ≥ 3, gcd(3, d) = 1. The diversity (Φ0, Φ1) of C was
defined in [11] as the pair of integers:

Φ0 =
1

2

∑

3|i,i6=0

Ai, Φ1 =
1

2

∑

i6≡0,d (mod 3)

Ai,
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where the notation x|y means that x is a divisor of y. Let

F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod 3)},

F2 = {P ∈ Σ | wG(P ) ≡ d (mod 3)},

F1 = F \ F0, Fe = F2 \ Fd.

Then we have Φs = |Fs| for s = 0, 1.
A t-flat Π of Σ with |Π ∩ F0| = i, |Π ∩ F1| = j is called an (i, j)t flat. An (i, j)1 flat

is called an (i, j)-line. An (i, j)-plane, an (i, j)-solid and so on are defined similarly. We
denote by Fj the set of j-flats of Σ. Let Λt be the set of all possible (i, j) for which an
(i, j)t flat exists in Σ. Then we have

Λ1 = {(1, 0), (0, 2), (2, 1), (1, 3), (4, 0)},

Λ2 = {(4, 0), (1, 6), (4, 3), (4, 6), (7, 3), (4, 9), (13, 0)},

Λ3 = {(13, 0), (4, 18), (13, 9), (10, 15), (16, 12), (13, 18), (22, 9), (13, 27), (40, 0)},

Λ4 = {(40, 0), (13, 54), (40, 27), (31, 45), (40, 36), (40, 45), (49, 36), (40, 54), (67, 27),

(40, 81), (121, 0)},

Λ5 = {(121, 0), (40, 162), (121, 81), (94, 135), (121, 108), (112, 126), (130, 117),

(121, 135), (148, 108), (121, 162), (202, 81), (121, 243), (364, 0)},

see [11]. Let Πt ∈ Ft. Denote by c
(t)
i,j the number of (i, j)t−1 flats in Πt and let ϕs

(t) =

|Πt ∩Fs|, s = 0, 1. (ϕ0
(t), ϕ1

(t)) is called the diversity of Πt and the list of c
(t)
i,j ’s is called its

spectrum. Thus Λt is the set of all possible diversities of Πt. It holds that (ϕ0, ϕ1) ∈ Λt

implies (3ϕ0 + 1, 3ϕ1) ∈ Λt+1 ([15]). We call (ϕ0, ϕ1) ∈ Λt is new if ((ϕ0 − 1)/3, ϕ1/3) 6∈
Λt−1. For example, (4, 3), (4, 6) ∈ Λ2 and (10, 15), (16, 12) ∈ Λ3 are new. We define that
(0, 2), (2, 1) ∈ Λ1 are new for convenience. Let θj = |PG(j, 3)| = (3j+1 − 1)/2. We set
θj = 0 for j < 0. New diversities of Λt and the corresponding spectra for t ≥ 2 are given
as follows.

Lemma 2.1 ([15]). New diversities and the corresponding spectra for t ≥ 2 are

(1) (ϕ
(t)
0 , ϕ

(t)
1 ) = (θt−1 − 3T+1, θt−1 + θT + 1) with spectrum

(c
(t)

θt−2−3T+1,θt−2+θT +1
, c

(t)
θt−2,θt−2−θT

, c
(t)
θt−2,θt−2+θT +1)

= (θt−1 − 3T+1, θt−1 + θT + 1, θt−1 + θT + 1)
and

(ϕ
(t)
0 , ϕ

(t)
1 ) = (θt−1 + 3T+1, θt−1 − θT ) with spectrum

(c
(t)
θt−2,θt−2−θT

, c
(t)
θt−2,θt−2+θT +1, c

(t)

θt−2+3T+1,θt−2−θT

)

= (θt−1 − θT , θt−1 − θT , θt−1 + 3T+1)
when t is odd, where T = (t − 3)/2.

(2) (ϕ
(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 − θU+1) with spectrum

(c
(t)
θt−2,θt−2−θU+1

, c
(t)

θt−2−3U+1,θt−2+θU+1
, c

(t)

θt−2+3U+1,θt−2−θU

)

= (θt−1, θt−1 − θU+1, θt−1 + θU+1 + 1),
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and

(ϕ
(t)
0 , ϕ

(t)
1 ) = (θt−1, θt−1 + θU+1 + 1) with spectrum

(c
(t)

θt−2−3U+1,θt−2+θU+1
, c

(t)

θt−2+3U+1,θt−2−θU

, c
(t)
θt−2,θt−2+θU+1+1)

= (θt−1 − θU+1, θt−1 + θU+1 + 1, θt−1)
when t is even, where U = (t − 4)/2.

Let us recall some known results on quadrics in PG(r, 3), r ≥ 2, from [9]. Let f ∈
F3[x0, . . . , xr] be a quadratic form which is non-degenerate, that is, f is not reducible to
a form in fewer than r + 1 variables by a linear transformation. We define

Vi(f) = {P = P(p0, . . . , pr−1) ∈ PG(r, 3) | f(p0, . . . , pr−1) = i}

for i = 0, 1, 2. Then, V0(f) is a non-singular quadric. Let

P i
r = Vi(x

2
0 + x1x2 + · · ·+ xr−1xr) for r even;

E i
r = Vi(x

2
0 + x2

1 + x2x3 + · · ·+ xr−1xr), H
i
r = Vi(x0x1 + x2x3 + · · ·+ xr−1xr)

for r odd.

The quadrics P0
r , H0

r and E0
r are called parabolic, hyperbolic and elliptic, respectively. It is

well known for any non-singular quadric Q in PG(r, 3) that Q ∼ P0
r for r even and that

Q ∼ H0
r or Q ∼ E0

r for r odd (see Section 5.2 in [8]), where Q1 ∼ Q2 means that Q1 and
Q2 are projectively equivalent.

Theorem 2.2. Let Πt be a t-flat in Σ with new diversity, t ≥ 2.
(1) F0 ∩ Πt ∼ P0

t when t is even.

(2) F0 ∩ Πt ∼ E0
t if ϕ

(t)
0 = θt−1 − 3T+1 and F0 ∩ Πt ∼ H0

t if ϕ
(t)
0 = θt−1 + 3T+1 when t is

odd, where T = (t − 3)/2.

We define 2Vi(f) = Vi(2f) for i = 1, 2. We prove the following theorem in the next
section.

Theorem 2.3. Let Πt be a t-flat in Σ with new diversity, t ≥ 2.
(1) Fi ∩ Πt ∼ P i

t or 2P i
t for i = 1, 2 when t is even.

(2) Fi ∩ Πt ∼ E i
t if ϕ

(t)
0 = θt−1 − 3T+1 and Fi ∩ Πt ∼ Hi

t if ϕ
(t)
0 = θt−1 + 3T+1 for i = 1, 2

when t is odd, where T = (t − 3)/2.

The geometric characterizations of t-flats whose diversities are not new are already known.
We summarize them here. For t ≥ 2 we set Λ−

t and Λ+
t as

Λ−
t = {(θt−1, 0), (θt−2, 2 · 3t−1), (θt−1, 2 · 3t−1), (θt−1 + 3t−1, 3t−1), (θt−1, 3

t), (θt, 0)}

Λ+
t = Λt \ Λ−

t .

Then Λ−
t is included in Λt for all t ≥ 2, Λ+

2 = {(4, 3)}, and C is extendable if (Φ0, Φ1) ∈
Λ−

k−1 ([11]). It is also known that Πt contains a (4,3)-plane if and only if its diversity is
in Λ+

t . Obviously, A (θt, 0)t flat is contained in F0.
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Theorem 2.4 ([11]). Let Πt be a (ϕ0, ϕ1)t flat in Σ with (ϕ0, ϕ1) ∈ Λ−
t , t ≥ 2.

(1) Πt ∩ F0 forms a hyperplane of Πt if (ϕ0, ϕ1) = (θt−1, 0) or (θt−1, 3
t).

(2) There are two (θt−2, 3
t−1)t−1 flats in Πt meeting in a (θt−2, 0)t−2 flat if (ϕ0, ϕ1) =

(θt−2, 2 · 3t−1).
(3) There are two (θt−1, 0)t−1 flats and a (θt−2, 3

t−1)t−1 flat through a fixed (θt−2, 0)t−2 flat

in Πt if (ϕ0, ϕ1) = (θt−1 + 3t−1, 3t−1).

Recall that (i, j) ∈ Λt implies (3i + 1, 3j) ∈ Λt+1, so (3νi + θν−1, 3
νj) ∈ Λt+ν for

ν = 1, 2, · · · . (ϕ0, ϕ1) ∈ Λt is ν-descendant if (ϕ0, ϕ1) = (3νi + θν−1, 3
νj) for some new

(i, j) ∈ Λt−ν. For example, (13, 9) ∈ Λ3 is 1-descendant since (4,3) is new in Λ2.
Let Πt be a (ϕ0, ϕ1)t flat with (ϕ0, ϕ1) = (θt−1, 2 · 3

t−1) or (ϕ0, ϕ1) ∈ Λ+
t . Assume that

(ϕ0, ϕ1) is not new in Λt. Then (ϕ0, ϕ1) is ν-descendant for some positive integer ν. A
t-flat whose diversity is ν-descendant can be characterized with axis.

An s-flat S in Πt is called the axis of Πt of type (a, b) if every hyperplane of Πt not
containing S has the same diversity (a, b) and if there is no hyperplane of Πt through S

whose diversity is (a, b). Then the spectrum of Πt satisfies c
(t)
a,b = θt − θt−1−s and the axis

is unique if it exists ([14]).

Theorem 2.5 ([16]). Let Πt be a (ϕ0, ϕ1)t flat in Σ with (ϕ0, ϕ1) = (θt−1, 2 · 3t−1) or

(ϕ0, ϕ1) ∈ Λ+
t , t ≥ 3, and let ν be a positive integer. Then, (ϕ0, ϕ1) is ν-descendant in Λt

if and only if Πt contains a (θν−1, 0)ν−1 flat which is the axis of Πt.

If Πt has a (θν−1, 0)ν−1 flat L which is the axis of type (a, b), then for any point P in L
and a point Q of an (a, b)t−1 flat H in Πt, 〈P, Q〉 is a (4,0)-line, a (1, 3)-line or a (1,0)-line
if Q ∈ F0, Q ∈ F1, Q ∈ F2, respectively, where 〈P, Q〉 is the line through P and Q. In
this paper, 〈χ1, χ2, · · · 〉 stands for the smallest flat containing subsets χ1, χ2, · · · of Σ.

Proof of Theorem 2.2. When t = 2, Π2 is a (4,3)-plane or a (4,6)-plane, and F0 ∩
Π2 forms a 4-arc (a set of 4 points no three of which are collinear, see [11]), which is
projectively equivalent to a conic P0

2 by Theorem 8.14 in [8].
When t = 3, Π3 is a (10,15)-solid or a (16,12)-solid. If Π3 is a (10,15)-solid, then it

follows from the spectrum that F0 ∩ Π3 forms a 10-cap (a set of 10 points no three of
which are collinear), whence we have F0 ∩Π3 ∼ E0

3 by Theorem 16.1.7 in [7]. Similarly, if
Π3 is a (16,12)-solid, we obtain F0∩Π3 ∼ H0

3 from the spectrum of Π3 by Theorem 16.2.1
in [7].

Assume t ≥ 4. Since every line in Σ meets F0 in 0, 1, 2 or θ1 = 4 points, and since
every point P of F0 ∩ Πt is on a (2,1)-line when Πt has new diversity (see Section 3 for

the exact number of (2,1)-lines through P in Σ), F0 ∩ Πt forms a non-singular ϕ
(t)
0 -set of

type (0, 1, 2, θ1), see Section 22.10 in [9]. It can be easily shown by induction on t that a
maximal flat contained in F0∩Πt is a T -flat when Πt has diversity (θt−1−3T+1, θt−1+θT +1)
with t odd, T = (t − 3)/2, for Πt contains a hyperplane whose diversity is 1-descendant
to new (θt−3 − 3T , θt−3 + θT−1 + 1) ∈ Λt−2. Hence our assertion follows from Theorem
22.11.6 in [9] and Lemma 2.1.
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3 Focal points and focal hyperplanes

For i = 1, 2, a point P ∈ Fi is called a focal point of a hyperplane H (or P is focal to H)
if the following three conditions hold:

(a) 〈P, Q〉 is a (0, 2)-line for Q ∈ Fi ∩ H,
(b) 〈P, Q〉 is a (2, 1)-line for Q ∈ F3−i ∩ H,
(c) 〈P, Q〉 is a (1, 6 − 3i)-line for Q ∈ F0 ∩ H.

Such a hyperplane H is called a focal hyperplane of P (or H is focal to P ). Note that for
any point Q of H, the two points on the line 〈P, Q〉 other than P, Q are contained in the
same set Fj for some 0 ≤ j ≤ 2 with Q 6∈ Fj. Hence, a focal hyperplane of a given point
is uniquely determined if it exists. Conversely, a focal point of a given hyperplane H ′ is
uniquely determined if it exists and if every point of F0 ∩ H ′ is contained in a (2, 1)-line
in H ′. Note that every point of F0 ∩ Πt is contained in a (2, 1)-line in Πt if (ϕ0

(t), ϕ1
(t))

is new. From the one-to-one correspondence between focal points and focal hyperplanes,
we get the following.

Lemma 3.1. Let t ≥ 2, i = 1 or 2 and let Πt be a t-flat with ϕs
(t) = |Πt ∩ Fs| for

s = 0, 1, 2, satisfying ϕi
(t) = c

(t)
a,b and that (a, b) is new in Λt−1. Then, every point of

Πt ∩ Fi has a focal (a, b)-hyperplane in Πt if and only if every (a, b)-hyperplane of Πt has

a focal point in Πt ∩ Fi.

We note from Lemma 2.1 that the condition ϕi
(t) = c

(t)
a,b in Lemma 3.1 holds for i = 1, 2

for some new (a, b) ∈ Λt−1 if (ϕ0
(t), ϕ1

(t)) is new in Λt.

Lemma 3.2. Let δ be a (4, 3)-plane. Then, every point of δ∩F1 and of δ∩F2 has a focal

(0, 2)-line and a focal (2, 1)-line, respectively, and vice versa.

Proof. Recall from [11] that K = δ ∩ F0 forms a 4-arc in δ and that δ has spectrum

(c
(2)
1,0, c

(2)
0,2, c

(2)
2,1) = (4, 3, 6). The set of internal points of K (on no unisecant of K [8]) is

δ ∩ F1 and the set of external points of K (on two unisecants of K [8]) is δ ∩ F2. For
Q ∈ δ ∩ F1, there exists a unique (0, 2)-line ` in δ not containing Q. Then ` is the focal
line of Q. For R ∈ δ ∩ F2, there is a unique (2,1)-line `1 through R. Let Q′ be the point
of F1 in `1 and let `2 be the (2,1)-line through Q′ other than `1. Then `2 is the focal line
of R. The converses follow by Lemma 3.1.

See Fig. 1 for the configuration of a (4, 3)-plane (Q and R are focal to `1 and `2,
respectively). Replacing δ ∩ F1 and δ ∩ F2 for a (4, 3)-plane yields a (4,6)-plane with

spectrum (c
(2)
1,3, c

(2)
0,2, c

(2)
2,1) = (4, 3, 6), see Fig. 2. Hence we get the following.

Lemma 3.3. Let δ be a (4, 6)-plane. Then, every point of δ∩F2 and of δ∩F1 has a focal

(0, 2)-line and a focal (2, 1)-line, respectively, and vice versa.

For a flat S in a (ϕ0, ϕ1)t flat Πt, let r
(s)
i,j be the number of (i, j)s flats through S in

Πt. We summarize the lists of r
(s)
i,j ’s to Table 3.1 for (ϕ0, ϕ1)t = (10, 15)3, (16, 12)3.
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R Q’

Q

l1 l1’

l2’l2
R’

a point of  F

a point of  F

a point of  F

0

1

Fig. 1. (4, 3)-plane Fig. 2. (4, 6)-plane

Table 3.1.

Πt S r
(s)
i,j = # of (i, j)s flats through S in Πt

(10, 15)3 P ∈ F0 r
(1)
1,0 = r

(1)
1,3 = 2, r

(1)
2,1 = 9

(10, 15)3 Q ∈ F1 r
(1)
0,2 = 6, r

(1)
2,1 = 3, r

(1)
1,3 = 4

(10, 15)3 R ∈ F2 r
(1)
1,0 = 4, r

(1)
0,2 = 6, r

(1)
2,1 = 3

(10, 15)3 (1, 0)1 r
(2)
1,6 = 1, r

(2)
4,3 = 3

(10, 15)3 (0, 2)1 r
(2)
1,6 = 2, r

(2)
4,3 = r

(2)
4,6 = 1

(10, 15)3 (2, 1)1 r
(2)
4,3 = r

(2)
4,6 = 2

(10, 15)3 (1, 3)1 r
(2)
1,6 = 1, r

(2)
4,6 = 3

(16, 12)3 P ∈ F0 r
(1)
1,0 = r

(1)
1,3 = 1, r

(1)
2,1 = 9, r

(1)
4,0 = 2

(16, 12)3 Q ∈ F1 r
(1)
0,2 = 3, r

(1)
2,1 = 6, r

(1)
1,3 = 4

(16, 12)3 R ∈ F2 r
(1)
1,0 = 4, r

(1)
0,2 = 3, r

(1)
2,1 = 6

(16, 12)3 (1, 0)1 r
(2)
4,3 = 3, r

(2)
7,3 = 1

(16, 12)3 (0, 2)1 r
(2)
4,3 = r

(2)
4,6 = 2

(16, 12)3 (2, 1)1 r
(2)
4,3 = r

(2)
4,6 = 1, r

(2)
7,3 = 2

(16, 12)3 (1, 3)1 r
(2)
4,6 = 3, r

(2)
7,3 = 1

(16, 12)3 (4, 0)1 r
(2)
7,3 = 4

Lemma 3.4. Let ∆ be a (10, 15)-solid. Then, every point of ∆ ∩ F1 and of ∆ ∩ F2 has a

focal (4, 6)-plane and a focal (4, 3)-plane, respectively, and vice versa.

Proof. We prove that every point R ∈ ∆ ∩ F2 has a focal (4, 3)-plane. It follows from
Table 3.1 that there are exactly four (1,0)-lines through R in ∆, say `1, . . . , `4. Let Pi

be the point `i ∩ F0 for i = 1, . . . , 4 and let δ be a plane containing P1, P2, P3. Since
∆ has spectrum (c

(3)
1,6, c

(3)
4,3, c

(3)
4,6) = (10, 15, 15), δ is a (4,3)-plane or a (4,6)-plane. Let P

be the point of δ ∩ F0 other than P1, P2, P3, and put ` = 〈P, R〉. Then δi = 〈`, Pi〉 is a
(4,3)-plane for i = 1, 2, 3, since it contains a (1,0)-line `i. Thus, ` is contained in three
(4,3)-planes. Hence ` is a (1,0)-line by Table 3.1, and we have P = P4 and ` = `4. Since
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the line 〈P, Pi〉 is a (2,1)-line and since `1, . . . , `4 are (1,0)-lines, R is focal to 〈P, Pi〉 in δi

for i = 1, 2, 3. Now, let `P be the line through P in δ other than 〈P, Pi〉, i = 1, 2, 3. Then
〈`, `P 〉 is a (1,6)-plane by Table 3.1, and `P is a (1,0)-line or a (1,3)-line, for a (1,6)-plane

has spectrum (c
(2)
1,0, c

(2)
0,2, c

(2)
1,3) = (2, 9, 2) [11]. Suppose `P is a (1,3)-line. Let Q be the point

`P ∩ 〈P1, P2〉 and put m = 〈Q, R〉. Then m is a (0,2)-line since 〈`, `P 〉 is a (1,6)-plane.
On the other hand, since δ12 = 〈R, P1, P2〉 is a (4,3)-plane satisfying that R is focal to
〈P1, P2〉 in δ12, m must be a (2,1)-line, a contradiction. Hence `P is a (1,0)-line and is
focal to R in the plane 〈R, `P 〉, and our assertion follows.

The following lemma can be also proved similarly using Table 3.1.

Lemma 3.5. Let ∆ be a (16, 12)-solid. Then, every point of ∆ ∩ F1 and of ∆ ∩ F2 has a

focal (4, 3)-plane and a focal (4, 6)-plane, respectively, and vice versa.

Easy counting arguments yield the following.

Lemma 3.6. For even t ≥ 4, let Π1
t , Π

2
t be flats with parameters (θt−1, θt−1 − θU+1)t,

(θt−1, θt−1 + θU+1 + 1)t, U = (t − 4)/2. For odd t ≥ 5, let Π3
t , Π

4
t be flats with parameters

(θt−1−3T+1, θt−1 +θT +1)t, (θt−1 +3T+1, θt−1−θT )t, T = (t−3)/2. Then Table 3.2 holds.

Table 3.2.

Πt S r
(s)
i,j = # of (i, j)s flats through S in Πt

Π1
t Π3

t−3 r
(t−2)

θt−3−3U+1,θt−3+θU+1
= 4, r

(t−2)
θt−3,θt−3−θU

= 6, r
(t−2)
θt−3,θt−3+θU+1 = 3

Π1
t Π4

t−3 r
(t−2)

θt−3−3U+1,θt−3+θU+1
= 4, r

(t−2)
θt−3,θt−3−θU

= 3, r
(t−2)
θt−3,θt−3+θU+1 = 6

Π1
t Π1

t−2 r
(t−1)
θt−2,θt−2−θU+1

= 2, r
(t−1)

θt−2−3U+1,θt−2+θU+1
= r

(t−1)

θt−2+3U+1,θt−2−θU

= 1

Π1
t Π2

t−2 r
(t−1)

θt−2−3U+1,θt−2+θU+1
= r

(t−1)

θt−2+3U+1,θt−2−θU

= 2

Π2
t Π3

t−3 r
(t−2)
θt−3,θt−3−θU

= 6, r
(t−2)
θt−3,θt−3+θU+1 = 3, r

(t−2)

θt−3+3U+1,θt−3−θU

= 4

Π2
t Π4

t−3 r
(t−2)
θt−3,θt−3−θU

= 3, r
(t−2)
θt−3,θt−3+θU+1 = 6, r

(t−2)

θt−3+3U+1,θt−3−θU

= 4

Π2
t Π1

t−2 r
(t−1)

θt−2−3U+1,θt−2+θU+1
= r

(t−1)

θt−2+3U+1,θt−2−θU

= 2

Π2
t Π2

t−2 r
(t−1)

θt−2−3U+1,θt−2+θU+1
= r

(t−1)

θt−2+3U+1,θt−2−θU

= 1, r
(t−1)
θt−2,θt−2+θU+1+1 = 2

Π3
t Π1

t−3 r
(t−2)
θt−3,θt−3−θT

= 4, r
(t−2)

θt−3−3T ,θt−3+θT−1+1
= 6, r

(t−2)

θt−3+3T ,θt−3−θT−1
= 3

Π3
t Π2

t−3 r
(t−2)

θt−3−3T ,θt−3+θT−1+1
= 6, r

(t−2)

θt−3+3T ,θt−3−θT−1
= 3, r

(t−2)
θt−3,θt−3+θT +1 = 4

Π3
t Π3

t−2 r
(t−1)

θt−2−3T+1,θt−2+θT +1
= 2, r

(t−1)
θt−2,θt−2−θT

= r
(t−1)
θt−2,θt−2+θT +1 = 1

Π3
t Π4

t−2 r
(t−1)
θt−2,θt−2−θT

= r
(t−1)
θt−2,θt−2+θT +1 = 2

Π4
t Π1

t−3 r
(t−2)
θt−3,θt−3−θT

= 4, r
(t−2)

θt−3−3T ,θt−3+θT−1+1
= 3, r

(t−2)

θt−3+3T ,θt−3−θT−1
= 6

Π4
t Π2

t−3 r
(t−2)

θt−3−3T ,θt−3+θT−1+1
= 3, r

(t−2)

θt−3+3T ,θt−3−θT−1
= 6, r

(t−2)
θt−3,θt−3+θT +1 = 4

Π4
t Π3

t−2 r
(t−1)
θt−2,θt−2−θT

= r
(t−1)
θt−2,θt−2+θT +1 = 2

Π4
t Π4

t−2 r
(t−1)
θt−2,θt−2−θT

= r
(t−1)
θt−2,θt−2+θT +1 = 1, r

(t−1)

θt−2+3T+1,θt−2−θT

= 2
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We prove the following four lemmas by induction on t. More precisely, we show Lemma
3.7 and Lemma 3.8 for even t using Lemmas 3.7 - 3.10 as the induction hypothesis for
t − 2 or t − 1, and we show Lemma 3.9 and Lemma 3.10 for odd t using Lemmas 3.7 -
3.10 as well, where Lemmas 3.2 - 3.5 give the induction basis.

Lemma 3.7. Let Πt be a (θt−1, θt−1 − θU+1)t flat for even t ≥ 4, where U = (t − 4)/2.
Then, every point of Πt ∩F1 and of Πt ∩F2 has a focal (θt−2 − 3U+1, θt−2 + θU + 1)t−1 flat

and a focal (θt−2 + 3U+1, θt−2 − θU )t−1 flat, respectively, and vice versa.

Proof. We prove that arbitrary (θt−2 + 3U+1, θt−2 − θU)t−1 flat π in Πt has a focal point
in F2 ∩Πt. Let δ be a (θt−4 − 3U , θt−4 + θU−1 +1)t−3 flat in π. Then, from Table 3.2, there
are exactly three (θt−3, θt−3 + θU + 1)t−2 flats through δ in Πt, precisely two of which are
contained in π. Let ∆ be the (θt−3, θt−3+θU +1)t−2 flat through δ not contained in π. From
Table 3.2, in Πt, there are two (θt−2−3U+1, θt−2+θU +1)t−1 flats through ∆, say π1, π2, and
two (θt−2 +3U+1, θt−2−θU )t−1 flats through ∆, say π3, π4. Let ∆i = π∩πi for i = 1, . . . , 4.
Then, ∆1, · · · , ∆4 are the (t − 2)-flats through δ in π, consisting two (θt−3, θt−3 − θU)t−2

flats and two (θt−3, θt−3 + θU + 1)t−2 flats from Table 3.2. It also follows from Table 3.2
that a (θt−2 − 3U+1, θt−2 + θU + 1)t−1 flat cannot contain two (θt−3, θt−3 + θU + 1)t−2 flats
meeting in a (θt−4 − 3U , θt−4 + θU−1 + 1)t−3 flat. Hence, ∆3, ∆4 are (θt−3, θt−3 + θU +1)t−2

flats and ∆1, ∆2 are (θt−3, θt−3 − θU)t−2 flats. From the induction hypothesis for t − 2, δ
has a focal point R ∈ F2 in ∆. To show that R is focal to π, It suffices to prove that
R is focal to ∆i in πi for i = 1, . . . , 4. Since the diversity of πi is new in Λt−1 and since
R is focal to δ, it follows from the induction hypothesis for t − 1 that R has the focal
(t−2)-flat ∆′

i through δ in πi for i = 1, . . . , 4. For i = 1, 2, ∆′
i is a (θt−3, θt−3 − θU )t−2 flat,

and ∆i is the only (θt−3, θt−3 − θU )t−2 flat through δ in πi from Table 3.2. Hence ∆′
i = ∆i.

For i = 3, 4, ∆′
i is a (θt−3, θt−3 + θU + 1)t−2 flat, and ∆i is the only (θt−3, θt−3 + θU + 1)t−2

flat through δ other than ∆ in πi from Table 3.2. Hence we have ∆′
i = ∆i as well. Thus

R is focal to ∆i in πi for i = 1, . . . , 4.
Similarly, it can be proved using Table 3.2 that every (θt−2 − 3U+1, θt−2 + θU + 1)t−1 flat
in Πt has a focal point in F1 ∩ Πt. The converses follow from Lemma 3.1.

Replacing Πt ∩ F1 and Πt ∩ F2 for a (θt−1, θt−1 − θU+1)t flat Πt yields a (θt−1, θt−1 +
θU+1 +1)t flat in which every (θt−2 + 3U+1, θt−2 − θU)t−1 flat and every (θt−2−3U+1, θt−2 +
θU + 1)t−1 flat have a focal point in F1 ∩ Πt and in F2 ∩ Πt, respectively. Hence we get
the following.

Lemma 3.8. Let Π be a (θt−1, θt−1 + θU+1 + 1)t flat for even t ≥ 4, where U = (t− 4)/2.
Then, every point of Π∩ F1 and of Π∩ F2 has a focal (θt−2 + 3U+1, θt−2 − θU)t−1 flat and

a focal (θt−2 − 3U+1, θt−2 + θU + 1)t−1 flat, respectively, and vice versa.

Lemma 3.9. Let Π be a (θt−1 − 3T+1, θt−1 + θT + 1)t flat for odd t ≥ 5, where T =

(t − 3)/2. Then, every point of Π ∩ F1 and of Π ∩ F2 has a focal (θt−2, θt−2 − θT )t−1 flat

and a focal (θt−2, θt−2 + θT + 1)t−1 flat, respectively, and vice versa.

Proof. We prove that arbitrary (θt−2, θt−2 − θT )t−1 flat π in Πt has a focal point in F2∩Πt.
Let δ be a (θt−4, θt−4 + θT−1 + 1)t−3 flat in π. Then, from Table 3.2, there are exactly
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three (θt−3 +3T , θt−3−θT−1)t−2 flats through δ in Πt, precisely two of which are contained
in π. Let ∆ be the (θt−3 + 3T , θt−3 − θT−1)t−2 flat through δ not contained in π. From
Table 3.2, in Πt, there are two (θt−2, θt−2 − θT )t−1 flats through ∆, say π1, π2, and two
(θt−2, θt−2 + θT + 1)t−1 flats through ∆, say π3, π4. Let ∆i = π ∩ πi for i = 1, . . . , 4. Then,
∆1, · · · , ∆4 are the (t−2)-flats through δ in π, consisting two (θt−3−3T , θt−3+θT−1+1)t−2

flats and two (θt−3 +3T , θt−3−θT−1)t−2 flats from Table 3.2. It also follows from Table 3.2
that a (θt−2, θt−2+θT +1)t−1 flat cannot contain two (θt−3+3T , θt−3−θT−1)t−2 flats meeting
in a (θt−4, θt−4 + θT−1 + 1)t−3 flat. Hence, ∆3, ∆4 are (θt−3 − 3T , θt−3 + θT−1 + 1)t−2 flats
and ∆1, ∆2 are (θt−3 + 3T , θt−3 − θT−1)t−2 flats. From the induction hypothesis for t − 2,
δ has a focal point R ∈ F2 in ∆. To show that R is focal to π, It suffices to prove that R
is focal to ∆i in πi for i = 1, . . . , 4. Since the diversity of πi is new in Λt−1 and since R is
focal to δ, it follows from the induction hypothesis for t − 1 that R has the focal (t−2)-flat
∆′

i through δ in πi for i = 1, . . . , 4. For i = 1, 2, ∆′
i is a (θt−3 + 3T , θt−3 − θT−1)t−2 flat,

and ∆i is the only (θt−3 +3T , θt−3 − θT−1)t−2 flat through δ other than ∆ in πi from Table
3.2. Hence we have ∆′

i = ∆i. For i = 3, 4, ∆′
i is a (θt−3 − 3T , θt−3 + θT−1 + 1)t−2 flat, and

∆i is the only (θt−3 − 3T , θt−3 + θT−1 + 1)t−2 flat through δ in πi from Table 3.2. Hence
∆′

i = ∆i as well. Thus R is focal to ∆i in πi for i = 1, . . . , 4.
Similarly, it can be proved using Table 3.2 that every (θt−2, θt−2 + θT + 1)t−1 flat in Πt

has a focal point in F1 ∩ Πt. The converses follow from Lemma 3.1.

The following lemma can be also proved similarly using Table 3.2.

Lemma 3.10. Let Π be a (θt−1 +3T+1, θt−1−θT )t flat for odd t ≥ 5, where T = (t−3)/2.
Then, every point of Π ∩ F1 and of Π ∩ F2 has a focal (θt−2, θt−2 + θT + 1)t−1 flat and a

focal (θt−2, θt−2 − θT )t−1 flat, respectively, and vice versa.

Recall that (2, 1) and (0, 2) are new in Λ1. We have shown the following theorem by
Lemmas 3.2 - 3.10.

Theorem 3.11. Let Π be a t-flat with new diversity in Λt, t ≥ 2. Then, every point of

Π∩F1 or Π∩F2 has a unique focal hyperplane whose diversity is new in Λt−1. Conversely,

every hyperplane with new diversity in Λt−1 has a unique focal point in Π∩F1 or in Π∩F2.

Table 3.3. The focal line of R ∈ F2 ∩ δ
plane δ (4,0) (1,6) (4,3) (4,6) (7,3)

focal line (4,0) (1,0) (2,1) (0,2) (1,3)

Table 3.4. The focal line of Q ∈ F1 ∩ δ
plane δ (1,6) (4,3) (4,6) (7,3) (4,9)

focal line (1,3) (0,2) (2,1) (1,0) (4,0)
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Let δ be an (i, j)-plane with i + j < θ2 and take R ∈ δ ∩F2. Then, it follows from the
geometric configurations of F0 ∩ δ, F1 ∩ δ, F2 ∩ δ that R has the unique focal line in δ as
in Table 3.3. This can be proved for t-flats as follows for t ≥ 3.

Let Πt be a (ϕ0, ϕ1)t flat with t ≥ 3. By Theorem 3.11, every point of F2 ∩ Πt or
F1 ∩ Πt has the unique focal hyperplane of Πt provided (ϕ0, ϕ1) is new in Λt−1.
Assume that (ϕ0, ϕ1) is not new in Λt−1. Then, there is a ((ϕ0 − 1)/3, ϕ1/3)t−1 flat π in
Πt. Let L be the axis of Πt and let P be a point of L out of π. Then, for a point Q ∈ π,
the line 〈P, Q〉 is a (4, 0)-line, a (1, 3)-line or a (1, 0)-line if Q ∈ F0, Q ∈ F1 or Q ∈ F2,
respectively. Assume that F2 ∩ Πt 6= ∅ and that R ∈ F2 ∩ π is focal to a (t − 2)-flat ∆ in
π. Then, it is easy to see that R is focal to 〈P, ∆〉. Thus, every point of F2 ∩ Πt has the
unique focal hyperplane of Πt.

Theorem 3.12. Let Πt be a (ϕ0, ϕ1)t flat with ϕ0 + ϕ1 < θt, t ≥ 2. Then, for any point

R of F2 ∩ Πt,

(1) R has the unique focal (a, b)t−1 flat in Πt with

a = (4θt−1 − ϕ0 − 2ϕ1)/3, b = (2ϕ0 + ϕ1 − 2θt−1)/3.

(2) The numbers of (i, j)-lines through R in Πt are

r
(1)
1,0 = a, r

(1)
2,1 = b, r

(1)
0,2 = θt−1 − a − b.

We also get the following similarly (see Table 3.4 for t = 2).

Theorem 3.13. Let Πt be a (ϕ0, ϕ1)t flat with ϕ1 > 0, t ≥ 2. Then, for any point Q of

F1 ∩ Πt,

(1) Q has the unique focal (a, b)t−1 flat in Πt with

a = (ϕ0 + 2ϕ1 − 2θt−1 − 2)/3, b = (4θt−1 − 2ϕ0 − ϕ1 + 1)/3.

(2) The numbers of (i, j)-lines through Q in Πt are

r
(1)
1,3 = a, r

(1)
0,2 = b, r

(1)
2,1 = θt−1 − a − b.

Now, assume P ∈ F0. To count r
(1)
i,j for P when (ϕ0, ϕ1) is new, we employ the

following lemmas.

Lemma 3.14 ([16]). Let Π be a t-flat in Σ with even t ≥ 4, U = (t − 4)/2.
(1) If Π is a (θt−1, θt−1 − θU+1)t flat, then Π contains four (θt−2, θt−2 − θU+1)t−1 flats

π1, · · · , π4 through a fixed (θt−3, θt−3 − θU+1)t−2 flat ∆ such that ∆ contains a (4, 0)-line

` = {P1, P2, P3, P4} which is the axis of ∆ of type (θt−4, θt−4 − θU ) and that Pi is the axis

of πi of type (θt−3, θt−3 − θU) for 1 ≤ i ≤ 4.
(2) If Π is a (θt−1, θt−1 + θU+1 + 1)t flat, then Π contains four (θt−2, θt−2 + θU+1 + 1)t−1

flats π1, · · · , π4 through a fixed (θt−3, θt−3 + θU+1 + 1)t−2 flat ∆ such that ∆ contains a

(4, 0)-line ` = {P1, P2, P3, P4} which is the axis of ∆ of type (θt−4, θt−4 + θU + 1) and that

Pi is the axis of πi of type (θt−3, θt−3 + θU + 1) for 1 ≤ i ≤ 4.
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Lemma 3.15 ([16]). Let Π be a t-flat in Σ with odd t ≥ 5, T = (t − 3)/2.
(1) If Π is a (θt−1 + 3T+1, θt−1 − θT )t flat, then Π contains four (θt−2 + 3T+1, θt−2 − θT )t−1

flats π1 · · ·π4 through a fixed (θt−3 + 3T+1, θt−3 − θT )t−2 flat ∆ such that ∆ contains a

(4, 0)-line ` = {P1, P2, P3, P4} which is the axis of ∆ of type (θt−4 + 3T , θt−4 − θT−1) and

that Pi is the axis of πi of type (θt−3 + 3T , θt−3 − θT−1) for 1 ≤ i ≤ 4.
(2) If Π is a (θt−1−3T+1, θt−1 +θT +1)t flat, then Π contains four (θt−3−3T , θt−3 +θT−1 +
1)t−1 flats π1, · · · , π4 through a fixed (θt−3 − 3T+1, θt−3 + θT + 1)t−2 flat ∆ such that ∆
contains a (4, 0)-line ` = {P1, P2, P3, P4} which is the axis of ∆ of type (θt−4 − 3T , θt−4 +
θT−1 + 1) and that Pi is the axis of πi of type (θt−3 − 3T , θt−3 + θT−1 + 1) for 1 ≤ i ≤ 4.

Since F0 is projectively equivalent to a non-singular quadric Q by Theorem 2.2 and
since G(Q), the group of projectivities fixing Q, acts transitively on Q (see Theorem
22.6.4 of [9]), we may assume that P = P1 in Lemmas 3.14 or 3.15. Since P is the axis of
π1 but not of π2, π3, π4, we get the following.

Theorem 3.16. Let Πt be a t-flat with new diversity, t ≥ 4, and let P1 and π1 be as in

Lemma 3.14 or Lemma 3.15. Assume that P1 is the axis of π1 of type (a, b). Then, for

any point P of F0 ∩ Πt, the numbers of (i, j)-lines through P in Πt are

r
(1)
4,0 = a, r

(1)
1,3 = b, r

(1)
1,0 = θt−2 − a − b, r

(1)
2,1 = 3t−1.

Proof of Theorem 2.3. We first prove for t = 2 as the induction basis. Let Π2 be a
(4, 3)-plane. Recall that F0 ∩Π2 forms a 4-arc, say K, and the set of internal points of K
in Π2 is F1 ∩ Π2. On the other hand, P2

2 = {P(0, 1, 2),P(1, 1, 1),P(1, 2, 2)} is the set of
internal points of the conic P0

2 = V0(x
2
0 + x1x2) in PG(2, 3). Hence, taking a projectivity

τ from Π2 to PG(2, 3) with τ(F1 ∩ Π2) = P2
2 = 2P1

2 , we get Fi ∩ Π2 ∼ 2P i
2 for i = 0, 1, 2.

When Π2 is a (4, 6)-plane, we have Fi ∩ Π2 ∼ P i
2 for i = 0, 1, 2 since F2 ∩ Π2 is the set of

internal points of a 4-arc F0 ∩ Π2 in this case.
Now, let t be odd ≥ 3 and T = (t−3)/2. Let Πt be a (θt−1−3T+1, θt−1+θT +1)t flat and

π be a (θt−2, θt−2+θT +1)t−1 flat in Πt which is focal to Q ∈ F1∩Πt. We prove Fi∩Πt ∼ E i
t

for i = 0, 1, 2. We have Fi ∩ π ∼ P i
t−1 for i = 0, 1, 2 by the induction hypothesis for t− 1.

Let π′ be the hyperplane V0(x0) in PG(t, 3) and take f = x2
1 + x2x3 + · · · + xt−1xt. We

consider Vi(f)∩π′ (∼ P i
t−1) and E i

t = Vi(x
2
0+x2

1+x2x3+· · ·+xt−1xt) for i = 1, 2. Note that
Q′ = P(1, 0, · · · , 0) ∈ E1

t \ π′ and E i
t ∩ π′ = Vi(f)∩ π′. Since Fi ∩ π ∼ P i

t−1 for i = 1, 2, we
can take a projectivity τ from Πt to PG(t, 3) satisfying τ(Fi ∩ π) = Vi(f) ∩ π′ for i = 1, 2
and τ(Q) = Q′. For P ′ = P(0, p1, · · · , pt) ∈ E i

t ∩ π′, the two points P(1, p1, · · · , pt)
and P(2, p1, · · · , pt) on the line 〈P ′, Q′〉 other than P ′, Q′ belong to E i+1

t , where i + 1 is
calculated modulo 3. Thus, we have τ(Fi ∩ Πt) = E i

t for i = 0, 1, 2.
Next, let Πt be a (θt−1 +3T+1, θt−1 − θT )t flat for odd t ≥ 3, T = (t− 3)/2. Let R be a

point of F2 and π be a (θt−2, θt−2+θT +1)t−1 flat which is focal to R. We prove Fi∩Πt ∼ Hi
t

for i = 1, 2. We have Fi ∩ π ∼ P i
t−1 for i = 0, 1, 2 by the induction hypothesis for t − 1.

Let π′ be the hyperplane V0(x0 − x1) in PG(t, 3) and take f = x2
1 + x2x3 + · · · + xt−1xt

as above. We consider Vi(f) ∩ π′ (∼ P i
t−1) and Hi

t = Vi(x0x1 + x2x3 + · · · + xt−1xt) for
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i = 1, 2. Note that R′ = P(1, 2, 0, · · · , 0) ∈ H2
t \ π′ and Hi

t ∩ π′ = Vi(f) ∩ π′. Since
Fi ∩ π ∼ P i

t−1 for i = 1, 2, we can take a projectivity τ from Πt to PG(t, 3) satisfying
τ(Fi ∩π) = Vi(f)∩π′ for i = 1, 2 and τ(R) = R′. For P ′ = P(p1, p1, p2, · · · , pt) ∈ Hi

t ∩π′,
the two points P(p1 + 1, p1 − 1, p2, · · · , pt) and P(p1 − 1, p1 + 1, p2, · · · , pt) on the line
〈P ′, R′〉 other than P ′, R′ belong to Hi+2

t , where i + 2 is calculated modulo 3. Hence, we
have τ(Fi ∩ Πt) = Hi

t for i = 0, 1, 2.
For even t ≥ 4, we first assume Πt is a (θt−1, θt−1 +θU+1 +1)t flat, where U = (t−4)/2.

Let Q be a point of F1 and π be a (θt−2 + 3U+1, θt−2 − θU)t−1 flat which is focal to Q. We
prove Fi ∩ Πt ∼ P i

t for i = 1, 2. We have Fi ∩ π ∼ P i
t−1 for i = 0, 1, 2 by the induction

hypothesis for t − 1. Let π′ be the hyperplane V0(x0) in PG(t, 3) and take f = x1x2 +
x3x4 + · · ·+xt−1xt. We consider Vi(f)∩π′(∼ Hi

t−1) and P i
t = Vi(x

2
0 +x1x2 + · · ·+xt−1xt)

for i = 1, 2. Note that Q′ = P(1, 0, · · · , 0) ∈ P1
t \ π′ and P i

t ∩ π′ = Vi(f) ∩ π′. Since
Fi ∩ π ∼ Hi

t−1 for i = 1, 2, we can take a projectivity τ from Πt to PG(t, 3) satisfying
τ(Fi ∩ π) = Vi(f) ∩ π′ for i = 1, 2 and τ(Q) = Q′. For P ′ = P(0, p1, p2, · · · , pt) ∈ P i

t ∩ π′,
the two points P(1, p1, p2, · · · , pt) and P(2, p1, p2, · · · , pt) on the line 〈P ′, Q′〉 other than
P ′, Q′ belong to P i+1

t , where i+1 is calculated modulo 3. Hence, we have τ(Fi ∩Πt) = P i
t

for i = 0, 1, 2.
Next, let Πt be a (θt−1, θt−1 + θU+1 + 1)t flat for even t ≥ 4, U = (t − 4)/2. Let

R be a point of F2 and π be a (θt−2 − 3U+1, θt−2 + θU + 1)t−1 flat which is focal to R.
We prove Fi ∩ Πt ∼ P i

t for i = 1, 2. We have Fi ∩ π ∼ P i
t−1 for i = 0, 1, 2 by the

induction hypothesis for t − 1. Let π′ be the hyperplane V0(x0 − x1 − x2) in PG(t, 3)
and take f = x2

1 + x2
2 + x3x4 + · · · + xt−1xt. We consider Vi(f) ∩ π′(∼ E i

t−1) and P i
t =

Vi(x
2
0 + x1x2 + · · · + xt−1xt) for i = 1, 2. Note that R′ = P(1, 1, 1, 0, · · · , 0) ∈ P1

t \ π′

and P i
t ∩ π′ = Vi(f) ∩ π′. Since Fi ∩ π ∼ E i

t−1 for i = 1, 2, we can take a projectivity τ
from Πt to PG(t, 3) satisfying τ(Fi ∩ π) = Vi(f) ∩ π′ for i = 1, 2 and τ(R) = R′. For
P ′ = P(p1+p2, p1, p2, · · · , pt) ∈ P i

t∩π′, the two points P(p1+p2+1, p1+1, p2+1, p3 · · · , pt)
and P(p1 + p2 +2, p1 +2, p2 +2, p3 · · · , pt) on the line 〈P ′, R′〉 other than P ′, R′ belong to
P i+2

t , where i + 2 is calculated modulo 3. Hence, we have τ(Fi ∩ Πt) = P i
t for i = 0, 1, 2.

4 An application to optimal linear codes problem

One of the fundamental problems in coding theory is the optimal linear codes problem,
which is the problem to optimize one of the parameters n, k, d for given the other two over
a given field Fq, see [4], [5]. Here, we consider one version of the problem to determine
nq(k, d), the minimum value of n for which an [n, k, d]q code exists. [nq(k, d), k, d]q codes
are called optimal. n3(k, d) has been determined for all d for k ≤ 5, but not for many
values of d for the case k ≥ 6. For example, n3(6, 202) is not determined yet so far since
Hamada [3] proved the following in 1993.

Lemma 4.1 ([3]). (1) n3(6, 203) = 307. (2) n3(6, 202) = 305 or 306.

In this section, we show how our investigations in the previous section can be applied
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to consider such problems by proving the non-existence of a [305, 6, 202]3 code, which is
a new result.

Theorem 4.2. A [305, 6, 202]3 code does not exist.

Corollary 4.3. n3(6, 202) = 306.

We first introduce the usual geometric method. Let C be an [n, k, d]q code with a
generator matrix G attaining the Griesmer bound:

n ≥ gq(k, d) :=
k−1
∑

i=0

⌈

d

qi

⌉

,

where dxe denotes the smallest integer greater than or equal to x, and assume that C
satisfies d ≤ qk−1. We mainly deal with such codes in this section. Then, any two
columns of G are linearly independent, see, e.g., Theorem 5.1 of [4]. Hence the set of
n columns of G can be considered as an n-set C1 in Σ = PG(k − 1, q) such that every
hyperplane meets C1 in at most n−d points and that some hyperplane meets C1 in exactly
n−d points, see Theorem 2.3 of [5]. On the other hand, each column of G was considered
as a defining vector of a hyperplane of Σ in Section 1. So, the geometric structures found
in the previous sections can be applied to the dual space Σ∗ of Σ.

A line l with t = |l ∩ C1| is called a t-line. A t-plane, a t-solid and so on are defined
similarly. Let Fj be the set of j-flats in Σ. For an m-flat Π in Σ we define

γj(Π) = max{|∆ ∩ C1| | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ m.

We denote simply by γj instead of γj(Σ). It holds that γk−2 = n − d, γk−1 = n.
Denote by ai the number of i-hyperplanes Π in Σ. Note that ai = An−i/2 for 0 ≤

i ≤ n − d and that an−d > 0. The list of ai’s is called the spectrum of C (or C1). We
usually use τj’s for the spectrum of a hyperplane of Σ to distinguish from the spectrum
of C. Simple counting arguments yield the following.

Lemma 4.4. Let (a0, a1, . . . , an−d) be the spectrum of C. Then

(1)

n−d
∑

i=0

ai = θk−1. (2)

n−d
∑

i=1

iai = nθk−2. (3)

n−d
∑

i=2

(

i

2

)

ai =

(

n

2

)

θk−3.

One can get the following from the three equalities of Lemma 4.4:

n−d−2
∑

i=0

(

n − d − i

2

)

ai =

(

n − d

2

)

θk−1 − n(n − d − 1)θk−2 +

(

n

2

)

θk−3. (4.1)
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Lemma 4.5. Let Π be an i-hyperplane through a t-secundum ∆ with t = γk−3(Π). Then

(1) t ≤ γk−2 −
n − i

q
=

i + qγk−2 − n

q
.

(2) ai = 0 if an [i, k− 1, d0]q code with d0 ≥ i−

⌊

i + qγk−2 − n

q

⌋

does not exist, where bxc

denotes the largest integer less than or equal to x.

(3) t =

⌊

i + qγk−2 − n

q

⌋

if an [i, k − 1, d1]q code with d1 ≥ i −

⌊

i + qγk−2 − n

q

⌋

+ 1 does

not exist.

(4) Let cj be the number of j-hyperplanes through ∆ other than Π. Then the following

equality holds:
∑

j

(γk−2 − j)cj = i + qγk−2 − n − qt. (4.2)

(5) For a γk−2-hyperplane Π0 with spectrum (τ0, · · · , τγk−3
), τt > 0 holds if i + qγk−2 −

n − qt < q.

Proof. (1) Counting the points of C1 on the hyperplanes through ∆, we get n ≤
q(γk−2 − t) + i.

(2) Π gives an [i, k − 1, d0]q code with d0 ≥ i −
⌊

i+qγk−2−n

q

⌋

by (1).

(3) If t ≤
⌊

i+qγk−2−n

q

⌋

−1, then Π gives an [i, k−1, d1]q code with d1 ≥ i−
⌊

i+qγk−2−n

q

⌋

+1.

Hence our assertion follows from (1).
(4) (4.2) follows from

∑

j cj = q and
∑

j(j − t)cj = n − i.
(5) It holds that cγk−2

> 0 when the right hand side of (4.2) is at most q − 1.

An f -set F in PG(k − 1, q) satisfying

m = min{|F ∩ π| | π ∈ Fk−2}

is called an {f, m; k − 1, q}-minihyper. Put C0 = Σ \ C1. Note that C0 forms a {θk−1 −
n, θk−2 − (n − d); k − 1, q}-minihyper.

Lemma 4.6. Let F be a {18 = θ2 + θ1 + θ0, 5 = θ1 + θ0; 4, 3}-minihyper corresponding to

a [103, 5, 68]3 code C103. Then

(1) there exist a plane δ, a line ` and a point P which are mutually disjoint such that

F = δ ∪ ` ∪ {P}.

(2) The spectrum of C103 is (a25, a26, a31, a32, a34, a35) = (1, 3, 4, 9, 35, 69).

Proof. (1) follows from Theorem 3.1 of [2]. (2) can be easily calculated from the fact
that δ, ` and P are mutually disjoint.

The following lemma can also be obtained from Theorem 3.1 of [2].
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Lemma 4.7. (1) The spectrum of a [81, 5, 54]3 code is (a0, a27) = (1, 120).
(2) The spectrum of a [80, 5, 53]3 code is (a0, a26, a27) = (1, 40, 80).

Lemma 4.8. Let F be a {21 = θ2 + 2θ1, 6 = θ1 + 2θ0; 4, 3}-minihyper corresponding to a

[100, 5, 66]3 code C100. Then, either

(a) there exist a plane δ and two lines `1, `2 all of which are skew such that

F = δ ∪ `1 ∪ `2,

and C100 has spectrum (a25, a28, a31, a34) = (4, 1, 24, 92), or

(b) there exist two skew lines `1 = {Q0, Q1, Q2, Q3} and `2 = {R0, R1, R2, R3} and a plane

δ containing `1 with `2 ∩ δ = R0 such that

F = (δ \ Q0) ∪ 〈Q1, R1〉 ∪ 〈Q2, R2〉 ∪ 〈Q3, R3〉,

and C100 has spectrum (a19, a28, a31, a34) = (1, 3, 27, 90).

Proof. See Theorem 5.10(2) of [2]. Each spectrum can be calculated by hand from the
geometrical structure.

Lemma 4.9. Let F be a {30 = 2θ2 + θ1, 9 = 2θ1 + θ0; 4, 3}-minihyper corresponding to a

[91, 5, 60]3 code C91. Then

(1) There exist two skew lines `1 = {P1, P2, P3, P4} and `2 = {Q1, Q2, R, S} such that

F = (δ1 \ Q1) ∪ (δ2 \ Q2) ∪ 〈P1, R〉 ∪ 〈P2, R〉 ∪ 〈P3, S〉 ∪ 〈P4, S〉, where δ1 = 〈`1, Q1〉,
δ2 = 〈`1, Q2〉.
(2) The spectrum of C91 is (a10, a28, a31) = (1, 30, 90).

Proof. (1) follows from Theorem 5.13(1) of [2].
(2) F is contained in a solid, say ∆, and there are ten 1-planes and thirty 4-planes in ∆.
Hence (2) follows.

Lemma 4.10 ([1]). (1) The spectrum of a [26, 4, 17]3 code is (a0, a8, a9) = (1, 13, 26).
(2) The spectrum of a [31, 4, 20]3 code is

(a) (a4, a9, a10, a11) = (1, 9, 12, 18) or (b) (a7, a8, a10, a11) = (2, 6, 11, 21).

As an application of Theorem 3.13, we prove the following.

Lemma 4.11. A [90, 5, 59]3 code is extendable.

Proof. Let C is a [90, 5, 59]3 code and let ∆ be a γ3-solid, which gives a [31, 4, 20]3 code
by Lemma 4.5. Then ∆ has no j-planes for j 6∈ {4, 7, 8, 9, 10, 11} by Lemma 4.10(2), so
we have

ai = 0 for all i 6∈ {9, 10, 18, 19, 24, 25, 26, 27, 28, 30, 31}
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by Lemma 4.5 and the n3(4, d) table (see [6]). Now, it holds that F0 = {i-solids | i ≡ 0
(mod 3)}, F1 = {26-solids}. Suppose that C is not extendable. Then the diversity (Φ0, Φ1)
of C satisfies

(Φ0, Φ1) ∈ {(40, 27), (31, 45), (40, 36), (40, 45), (49, 36)}

by Theorem 2.7 of [11]. Let ∆0 be a 26-solid in Σ = PG(4, 3) and let Q be the corre-
sponding point of F1 in Σ∗. Then there are at most 18 (2, 1)-lines through Q in Σ∗ by
Theorem 3.13(2). On the other hand, setting (i, t) = (26, 9) in Lemma 4.5, the equation
(4.2) has the unique solution (c30, c31) = (2, 1) corresponding to a (2, 1)-line through Q.
Hence, by Lemma 4.10(1), there are at least 26 (2, 1)-lines through Q, a contradiction.

Now, we are ready to prove Theorem 4.4. Let C be a putative [305, 6, 202]3 code and
let π0 be a γ4-hyperlane which gives a [103, 5, 68]3 code by Lemma 4.5. Then π0 has no
j-solid for j 6∈ {25, 26, 31, 32, 34, 35} by Lemma 4.6, so we have

ai = 0 for all i 6∈ {74, 80, 81, 89, 90, 91, 92, 98, 99, 100, 101, 102, 103}

by Lemma 4.5 and the n3(5, d) table (see [13]). For s = 0, 1, 2, it holds that

Fs = {i-hyperlanes | i + 1 ≡ s (mod 3)}. (4.3)

Let π be an i-hyperlane of Σ = PG(5, 3). If i = 81, C1 ∩ π gives a [81, 5, 54]3 code by
Lemma 4.5 and π has no solid contained in π0 by Lemma 4.7(1), a contradiction. Hence
a81 = 0. We obtain a80 = 0 by Lemma 4.7(2) similarly.

If i = 91, C1 ∩ π gives a [91, 5, 60]3 code by Lemma 4.5 and π has a 10-solid by
Lemma 4.9. Setting (i, t) = (91, 10) in Lemma 4.5, the equation (4.2) has no solution, a
contradiction. Hence a91 = 0. If i = 90, π corresponds to a [90, 5, 59]3 code by Lemma
4.5 and π has a 9-solid or a 10-solid by Lemmas 4.9 and 4.11. Setting i = 90 and t = 9
or 10 in Lemma 4.5, the equation (4.2) has no solution. Thus a90 = 0.

Hence, from (4.1), we have

406a74 + 91a89 + 55a92 + 10a98 + 6a99 + 3a100 + a101 = 2182. (4.4)

It follows from Lemma 4.1(1) that C is not extendable. Hence the diversity of C (Φ0, Φ1)
is one of the following:

(121, 81), (94, 135), (121, 108), (112, 126), (130, 117), (121, 135), (148, 108).

Hence, if r
(1)
1,0 + r

(1)
0,2 ≥ 90, then it holds that

r
(1)
1,0 + r

(1)
0,2 = 94 (4.5)

for a fixed point of R ∈ F2 by Theorem 3.12, where r
(1)
i,j denotes the number of (i, j)-lines

through R in Σ∗.
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If i = 100, C1∩π gives a [100, 5, 66]3 code by Lemma 4.5 and C0∩π forms a minihyper
of type (a) or (b) in Lemma 4.8. Let Rπ be the point of F2 in Σ∗ corresponding to π.
Setting i = 100 in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.1, where
‘line’ stands for the corresponding line through Rπ in Σ∗. For example, (4.2) has the
unique solution (c74, c89, c99) = (1, 1, 1) when t = 19. Equivalently, by (4.3), a 19-solid in
π corresponds to a (2, 1)-line through Rπ in Σ∗. Now, (4.5) holds from Table 4.1 since
the spectrum of a 100-hyperplane satisfies τ34 ≥ 90 by Lemma 4.8. If C0 ∩ π forms a
minihyper of type (a) in Lemma 4.8, we have τ34 = 92. Hence there are at most two
(1, 0)-lines through Rπ in Σ∗ which correspond to the solutions of (4.2) with t 6= 34. Let
δ be the plane contained in C0 ∩π. Since all of the solids in π through δ are 25-solids and
since there are at most two (1, 0)-lines through Rπ in Σ∗ corresponding to the solution
(c74, c103) = (1, 2) in Table 4.1 for t = 25, δ corresponds to a (7, 3)-plane δ∗ through Rπ

in Σ∗ by Theorem 3.12. In δ∗, there are one (1, 0)-line and three (2, 1)-lines through Rπ.
Hence, estimating the left hand side of (4.4), we get

2182 ≤ 406 + 182 · 3 + 101 + 55 + 20 · 23 + 92 + 3 = 1663,

from the spectrum of C1 ∩ π of type (a), a contradiction. If C0 ∩ π forms a minihyper
of type (b) in Lemma 4.8, we have τ34 = 90. Hence there are at most four (1, 0)-lines
through Rπ in Σ∗ which correspond to the solutions of (4.2) with t 6= 34. Let δ be the
plane given in (b) of Lemma 4.8. Since the solids in π through δ consist of one 19-solid and
three 28-solids and since the solution in Table 4.1 for t = 19 corresponds to a (2, 1)-line,
δ corresponds to a (7, 3)-plane δ∗ through Rπ in Σ∗ by Theorem 3.12. Hence, estimating
the left hand side of (4.4), we get

2182 ≤ 503 + 101 · 2 + 97 + 55 · 3 + 20 · 24 + 90 + 3 = 1540,

from the spectrum of C1 ∩ π of type (b), a contradiction. Hence a100 = 0.

Table 4.1. Solutions of (4.2) for i = 100
t c74 c89 c92 c98 c99 c100 c101 c102 c103 line
19 1 1 1 (2, 1)
25 1 2 (1, 0)

2 1 (2, 1)
1 1 1 (2, 1)

28 1 1 1 (2, 1)
1 1 1 (2, 1)
1 2 (1, 0)

1 1 1 (2, 1)
31 1 2 (1, 0)

2 1 (2, 1)
1 1 1 (2, 1)
1 2 (1, 0)

2 1 (0, 2)
34 1 2 (1, 0)

2 1 (0, 2)
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Table 4.2. Solutions of (4.2) for i = 103
t c74 c89 c92 c98 c99 c101 c102 c103 line
25 1 1 1 (2, 1)

2 1 (2, 1)
26 1 2 (1, 0)

2 1 (2, 1)
1 1 1 (2, 1)

31 1 2 (1, 0)
1 1 1 (2, 1)

2 1 (2, 1)
32 1 2 (1, 0)

2 1 (2, 1)
1 1 1 (2, 1)

34 1 2 (1, 0)
1 1 1 (0, 2)

2 1 (2, 1)
35 1 2 (1, 0)

2 1 (0, 2)

Next, we prove the non-existence of a (13, 0)-plane in Σ∗ which consists of collinear four
points corresponding to 89-hyperplanes and nine points corresponding to 92-hyperplanes.
Let δ∗ be such a plane containing a (4, 0)-line l0 consisting the points corresponding to
89-hyperplanes of Σ. Take a point P of l0 which corresponds to a 89-hyperplane πP and
let l1, l2, l3 be the other lines on δ∗ through P . Setting i = 89 in Lemma 4.5, l0 corresponds
to the solution c89 = 3 for t = 17 in (4.2) and l1, l2, l3 correspond to the solution c92 = 3
for t = 20 in (4.2). It follows that there exists a u-plane δ0 in πP such that there are one
17-solid and three 20-solids in πP through δ0, so (20−u)3+17 = 89, giving a contradiction.

Finally, assume i = 103. Then, C1 ∩ π gives a [103, 5, 68]3 code by Lemma 4.5 and
C0 ∩ π forms a minihyper consisting of a plane δ, a line ` and a point P which are
mutually disjoint by Lemma 4.6. Let Rπ be the point of F2 in Σ∗ corresponding to
π. Setting i = 103 in Lemma 4.5, the equation (4.2) has the solutions as in Table 4.2,
where ‘line’ stands for the corresponding line through Rπ in Σ∗. Since there are one
25-solid (corresponding to a (2, 1)-line) and three 26-solids (corresponding to a (2, 1)-line
or a (1, 0)-line) through δ in π, δ corresponds to a (7, 3)-plane, say δ∗, through Rπ by
Theorem 3.12. Hence, there are one (1, 0)-line and three (2, 1)-lines through Rπ in δ∗.
Furthermore, the solids in π through ` are four 31-solids containing 〈`, P 〉 and nine 32-
solids, all of which correspond to (1, 0)-lines or (2, 1)-lines through Rπ. If all of the lines
are (1, 0)-lines, then ` corresponds to a (13, 0)-solid in Σ∗ containing the (13, 0)-plane
which consists of collinear four points corresponding to 89-hyperplanes and nine points
corresponding to 92-hyperplanes, a contradiction. Hence, by Theorem 3.12, ` corresponds
to a (22, 9)-solid containing four (1, 0)-lines and nine (2, 1)-lines through Rπ. Recall that
the spectrum of π is (τ25, τ26, τ31, τ32, τ34, τ35) = (1, 3, 4, 9, 35, 69). Estimating the left hand
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side of (4.4) we get

2182 ≤ 407 + 406 + 182 · 2 + 91 · 4 + 20 · 9 + 10 · 35 + 1 · 69 = 2140,

a contradiction. This completes the proof of Theorem 4.2.
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