
Defective choosability of graphs without small minors

Rupert G. Wood and Douglas R. Woodall
School of Mathematical Sciences,

University of Nottingham,
Nottingham NG7 2RD, UK

rupert.wood@gmail.com, douglas.woodall@nottingham.ac.uk

Submitted: Jan 9, 2008; Accepted: Jul 22, 2009; Published: Jul 31, 2009

Mathematics Subject Classification: 05C15

Abstract

For each proper subgraph H of K5, we determine all pairs (k, d) such that every
H-minor-free graph is (k, d)∗-choosable or (k, d)−-choosable. The main structural
lemma is that the only 3-connected (K5 − e)-minor-free graphs are wheels, the
triangular prism, and K3,3; this is used to prove that every (K5 − e)-minor-free
graph is 4-choosable and (3, 1)-choosable.
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1 Introduction

Throughout this paper, all graphs are simple. A subgraph of a vertex-coloured graph
is monochromatic if all its vertices have the same colour. A (possibly improper) vertex
k-colouring of a graph G is a (k, d)∗-colouring if no vertex has more than d neighbours
with the same colour as itself, i.e., there is no monochromatic subgraph isomorphic to
K1,d+1; and it is a (k, d)−-colouring if there is no monochromatic path Pd+2 with d + 1
edges and d + 2 vertices. The superscripts ∗ and − are to remind us that the forbidden
monochromatic subgraphs are stars and paths, respectively. However, we may omit the
superscript if d 6 1, since (k, 0)∗-colourings and (k, 0)−-colourings are both the same as
(proper) k-colourings, and (k, 1)∗-colourings are also the same as (k, 1)−-colourings.

A list-assignment L to (the vertices of) G is an assignment of a ‘list’ (set) L(v) of
colours to every vertex v of G; and a k-list-assignment is a list-assignment such that
|L(v)| > k for every vertex v. If L is a list-assignment to G, then an L-colouring of
G is a colouring (not necessarily proper) in which each vertex receives a colour from its
own list. An (L, d)∗-colouring or (L, d)−-colouring is an L-colouring in which there is
no monochromatic star K1,d+1 or path Pd+2, respectively. A graph G is (k, d)∗-choosable
or (k, d)−-choosable if it has an (L, d)∗-colouring or an (L, d)−-colouring, respectively,
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whenever L is a k-list-assignment to G. Then (k, 0)∗-choosable and (k, 0)−-choosable both
mean the same as k-choosable, and (k, 1)∗-choosable means the same as (k, 1)−-choosable

and may be called simply (k, 1)-choosable.
We write (a, b) > (c, d) if a > c and b > d. It is easy to see that if (k′, d′) > (k, d)

and a graph G is (k, d)∗-choosable or (k, d)−-choosable, then G is (k′, d′)∗-choosable or
(k′, d′)−-choosable, respectively. Thus to specify all pairs (k, d) for which a graph has one
of these properties, it suffices to specify all the minimal such pairs. In [11], the second
author determined and tabulated, for every graph H with at most five vertices, all the
pairs (k, d) such that every H-minor-free graph is (k, d)∗-colourable or (k, d)−-colourable.
The purpose of the present paper is to do the same for (k, d)∗-choosability and (k, d)−-
choosability, and this purpose is achieved except that we have not been able to determine
whether all K5-minor-free graphs are (4, 1)-choosable, or even whether there is any d for
which they are all (4, d)−-choosable. Our results can be summarized as follows.

Theorem 1.1. (Summary Theorem.) Let H(i) (1 6 i 6 30) be any one of the 30
connected graphs with between 2 and 5 vertices, as listed in column 1 of Table 1. Then the

statements ‘Every H(i)-minor-free graph is (k, d)∗-choosable’ and ‘Every H(i)-minor-free

graph is (k, d)−-choosable’ are true if and only if (k, d) is greater than or equal to one of

the values listed in the appropriate row and column of Table 1.

If Table 1 is compared with the analogous table in [11], it will be seen that there are
two main differences. Firstly, H(17)-minor-free graphs and H(18)-minor-free graphs are
all (2, 1)-colourable, but they are not all (2, 1)-choosable, and indeed are not all (2, d)∗-
choosable for any fixed value of the so-called ‘defect’ d. They have thus dropped down
one category in Table 1 compared with [11]. (In view of this, the graphs H(13)–H(18)
have been renumbered here compared with [11].)

Secondly, as a consequence of the 4-colour theorem, every K5-minor-free graph is
4-colourable. However, it is known [4, 5, 9] that not every planar graph, and hence not
every K5-minor-free graph, is 4-choosable. Thomassen [8] proved that every planar graph
is 5-choosable, and Škrekovski [6] deduced from this that every K5-minor-free graph is
5-choosable. It is not known whether or not every planar graph (or every K5-minor-free
graph) is (4, 1)-choosable, but the (3, 2)∗-choosability of planar graphs was proved by
Škrekovski [7]; see ([12], section 4) for further information about planar, K5-minor-free
and K3,3-minor-free graphs.

The rest of this paper is devoted to a proof of Theorem 1.1. For each row of Table 1
labelled H(i) (1 6 i 6 30), and for each value (k, d) in column 2 or 3 of that row, it suffices
to provide an argument showing that every H(i)-minor-free graph is (k, d)∗-choosable or
(k, d)−-choosable, respectively, as well as examples to show that this would not follow if
(k, d) were replaced by (k − 1, d) or (k, d − 1). The arguments are indexed in column 4
of the table and explained in sections 3 and 4. The examples are indexed in column 5 of
the table and explained in section 2.

An argument or example labelled X∗

k,d proves or disproves, respectively, the assertion
that every graph in the given class is (k, d)∗-choosable. Arguments and examples labelled
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forbidden minimal (k, d)s for which: proofs:
minors (k, d)∗-choosable (k, d)−-choosable arguments examples

K4 and K2,3 (3, 0) (2, 2) (3, 0) H3,0 [7] E∗

2,1 G−

2,d G∗

1,d

K5 and K3,3 (5, 0) (4, 1)? (3, 2) (5, 0) (4, d)? [8] [7] V4,0 E∗

3,1 G∗

2,d G−

3,d

H(1) . . (1, 0) (1, 0) O1,0

H(2) . . . (2, 0) (1, 1) (2, 0) (1, 1) H2,0 O1,1 F1,0

H(3) . .. (2, 0) (2, 0) H2,0 G∗

1,d G−

1,d

H(4) . . . . (3, 0) (2, 1) (3, 0) (2, 1) (1, 2) H3,0 A2,1 O−

1,2 F2,0 G∗

1,d G−

1,1

H(5) . ... (3, 0) (2, 1) (1, 2) (3, 0) (2, 1) H3,0 A2,1 O∗

1,2 F2,0 G∗

1,1 G−

1,d

H(6)
.. . .

H(7) .. ..
H(8) .. ..















(3, 0) (2, 1) (3, 0) (2, 1) H3,0 A2,1 F2,0 G∗

1,d G−

1,d

H(9) .. .. (3, 0) (3, 0) H3,0 G∗

2,d G−

2,d

H(10) . . . . . (4, 0) (2, 1) (4, 0) (2, 1) (1, 3) B4,0 A2,1 O−

1,3 F3,0 G∗

1,d G−

1,2

H(11) . .... (4, 0) (2, 1) (1, 3) (4, 0) (2, 1) B4,0 A2,1 O∗

1,3 F3,0 G∗

1,2 G−

1,d

H(12)
.. . . .

H(13)
.. . ..

H(14) . .. ..
H(15) .... .
H(16) .... .







































(4, 0) (2, 1) (4, 0) (2, 1) B4,0 A2,1 F3,0 G∗

1,d G−

1,d

H(17)
.. . . .

H(18)
.. . ..

H(19) .... .
H(20)

. ....
H(21)

. ....
H(22)

. ....



















































(4, 0) (3, 1) (4, 0) (3, 1) (2, 2) B4,0 B3,1 C−

2,2 F3,0 G∗

2,d E−

2,1 G−

1,d

H(23) .. ...
H(24)

.. ...

}

(4, 0) (3, 1) (2, 2) (4, 0) (3, 1) B4,0 B3,1 C∗

2,2 F3,0 E∗

2,1 G∗

1,d G−

2,d

H(25) .... .
H(26)

. ....
H(27)

. ....
H(28)

. ....
H(29)

. ....







































(4, 0) (3, 1) (4, 0) (3, 1) B4,0 B3,1 F3,0 G∗

2,d G−

2,d

H(30)
. .... (5, 0) (4, 2) (4, 1)? (5, 0) (4, d)? [6] D∗

4,2 V4,0 G∗

3,d G−

3,d

Table 1
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X−

k,d do the same for (k, d)−-choosability, while those labelled Xk,d do the same for both
(k, d)∗-choosability and (k, d)−-choosability.

2 Examples

In this section we present examples to show that the results listed in Table 1 are sharp.
Note that if H(i) is a minor of H(j), then every H(i)-minor-free graph is also H(j)-
minor-free, and so an example Xk,d that is H(i)-minor-free will work for the class of
H(j)-minor-free graphs as well.

Examples E∗

k,1
and E

−

k,1: We use these names when no new examples are required,

since E∗

k,1 is covered by G−

k,d and E−

k,1 is covered by G∗

k,d. We could formally define

E∗

k,1 := G−

k,1 and E−

k,1 := G∗

k,1. For example, to satisfy the requirements of Table 1, E∗

2,1

must be a graph that does not have H(23) or H(24) as a minor and is not (2, 1)∗-choosable,
while G−

2,1 must be a graph that does not have any of H(23), . . . , H(29) as a minor and
is not (2, 1)−-choosable; so whatever graph we choose for G−

2,1 will do for E∗

2,1 as well.
Alternatively, we can get simpler examples for E∗

k,1 by defining E∗

2,1 := K1 +2K1,2 and
E∗

3,1 := K1 + 2(K1 + 2K1,2), where + denotes ‘join’. The former is outerplanar, and so
does not have H(23) (K2,3) or H(24) as a minor, and the latter is therefore planar. The
former is not (2, 1)∗-colourable, since whichever colour was given to the K1, at least one
of the two copies of K1,2 would have to have all its vertices coloured with the other colour;
thus it is not (2, 1)∗-choosable either. By the same reasoning, K1 + 2(K1 + 2K1,2) is not
(3, 1)∗-colourable and so not (3, 1)∗-choosable.

Example Fk,0: This is defined to be Kk+1, which is not k-colourable, and so not
k-choosable, and has no minor with k + 2 vertices.

Example G∗

1,d
: This is defined to be K1,d+1, which is not (1, d)∗-colourable, and so

not (1, d)∗-choosable. It cannot have as a minor any graph containing either a circuit or
a path with more than 2 edges, which includes H(i) for i ∈ {3, 4, 6, . . . , 10, 12, . . . , 24}.
Also, G∗

1,1 (K1,2) does not have H(5) (K1,3) as a minor, and G∗

1,2 (K1,3) does not have
H(11) (K1,4) as a minor.

Example G∗

k,d
(k > 2): Unlike in [11], the graphs that G∗

2,d must not have as a minor
now include H(17) and H(18). This means that we cannot use the same example as was
used for a non-(2, d)∗-colourable graph in [11], namely K1 + (d + 1)K1,d+1, since it has
both H(17) and H(18) as minors when d > 1. Indeed all H(17)-minor-free graphs and
H(18)-minor-free graphs are (2, 1)-colourable, and hence (2, d)∗-colourable when d > 1.
We thus need a new example, which does not have either H(17) or H(18) as a minor, and
is therefore (2, d)∗-colourable, but not (2, d)∗-choosable.

So define G∗

k,d := Kk,kk(kd+1), so that G∗

2,d = K2,8d+4 and G∗

3,d = K3,81d+27. Let

G := G∗

k,d and let the partite sets of G be X and Y , where |X| = k and |Y | = kk(kd + 1).
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To show that G is not (k, d)∗-choosable, assign disjoint lists of size k to the k vertices in
X, and for each of the kk transversals of these k lists, assign that transversal as list to
kd + 1 vertices of Y . Then in whatever way the vertices of X are coloured from their
lists, there will be kd + 1 vertices of Y that have no colour in their list that has not
already been used on X; at least d + 1 of these vertices must use the same colour, giving
a monochromatic K1,d+1 in G.

To show that G is Kk+2-minor-free, we show that every minor of G is (k+1)-colourable.
Consider the (proper) (k + 1)-colouring of G in which the vertices of X are coloured
1, . . . , k, and all vertices of Y are coloured k + 1. Whenever an edge of G is contracted,
give the new vertex the smaller of the colours of the two vertices that were merged into
it. Since there is never more than one vertex with each of the colours 1, . . . , k, and no
new vertex ever gets colour k + 1, the resulting colouring is proper.

It remains to show that G∗

2,d has neither H(17) nor H(20) as a minor, since every graph
H(i) (i ∈ {17, . . . , 22, 25, . . . , 29}) where G∗

2,d is used (apart from K4, which we have just
dealt with) has one of these as a minor. It is clear that H(20) (C5) is not a minor of G∗

2,d,
since the longest circuit in K2,8d+4 has length 4. To see that H(17) is not a minor either,
it suffices to note that every minor of K2,8d+4 is a subgraph of K2 +(8d+4)K1, but H(17)
is not a subgraph of K2 + (8d + 4)K1.

Example G
−

1,d: This is defined to be Pd+2 (the path with d + 2 vertices), which is

not (1, d)−-colourable, and so not (1, d)−-choosable. It cannot have as a minor any
graph containing either a circuit or a vertex of degree > 3, which includes H(i) for
i ∈ {3, 5, . . . , 9, 11, . . . , 22}. Also, G−

1,1 (P3) does not have H(4) (P4) as a minor, and G−

1,2

(P4) does not have H(10) (P5) as a minor.

Example G
−

k,d (k = 2, 3): Chartrand, Geller and Hedetniemi [1] showed how to con-
struct, for each d, a graph that is planar, and hence K5-minor-free, but not (3, d)−-
colourable; we can take this as G−

3,d. And they [2] and Woodall [11] gave different con-
structions for a graph that is outerplanar, and hence without K4 and K2,3 minors, that
is not (2, d)−-colourable; we can take this as G−

2,d.

Example V4,0: We need a graph that is planar, and hence K5-minor-free, but not
4-choosable. Voigt [9] gave the first example of such a graph. Other examples are due to
Gutner [4] and Mirzakhani [5].

3 Arguments

We will use the following four theorems; the first is already known, and the other three
are proved in section 4. Here K5 − e denotes the graph obtained from K5 by deleting one
edge. A monochromatic H-minor is a monochromatic subgraph that contracts to H .
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Theorem 3.1. ([12], Theorem 3.5.) Let H be a connected graph with at least one edge,
and let G be a (K1 + H)-minor-free graph. Suppose that each vertex v of G is given a list

L(v) of at least 2 colours. Then G has an L-colouring with no monochromatic H-minor.

Theorem 3.2. Every (K1 + (K1 ∪ K1,2))-minor-free graph is (2, 1)-choosable.

Theorem 3.3. Every (K5 − e)-minor-free graph is 4-choosable and (3, 1)-choosable.

Theorem 3.4. Every K5-minor-free graph is (4, 2)∗-choosable.

We now summarize the arguments needed to prove the results listed in Table 1. Note
that if H(i) is a minor of H(j), then every H(i)-minor-free graph is also H(j)-minor-
free, and so an argument Xk,d that applies to H(j)-minor-free graphs will also apply to
H(i)-minor-free graphs as well.

Arguments O1,d, O∗

1,d
and O

−

1,d: We use these names when none of our other argu-
ments prove the result but the result is obvious anyway. For example, O∗

1,3 applied to
H(11) says that every K1,4-minor-free graph can be 1-coloured in such a way that there
is no monochromatic K1,4 subgraph.

Argument Hk,0: The choosability analogue of Hadwiger’s conjecture, that every Kk+1-
minor-free graph is k-choosable, is easy to prove if k 6 2, and it holds if k = 3 since
K4-minor-free graphs are 2-degenerate [3]. (As we have already seen, it does not hold if
k = 4.)

Argument A2,1: Since H(i) ⊆ H(16) = K1 + (K1 ∪ K1,2) if i ∈ {4, . . . , 8, 10, . . . , 16},
Theorem 3.2 implies that, for these values of i, every H(i)-minor-free graph is (2, 1)-
choosable.

Arguments B3,1 and B4,0: Theorem 3.3 implies that every H(i)-minor-free graph
(1 6 i 6 29) is both (3, 1)-choosable and (4, 0)-choosable.

Argument C∗

2,2
: Theorem 3.1 implies that every (K1+K1,3)-minor-free graph is (2, 2)∗-

choosable (i.e., with no monochromatic K1,3-minor), and H(23) ⊂ H(24) = K1 + K1,3.

Argument C
−

2,2: Theorem 3.1 implies that every (K1 +P4)-minor-free graph is (2, 2)−-
choosable (i.e., with no monochromatic P4-minor), and H(i) ⊆ H(22) = K1 + P4 if
17 6 i 6 22.

Argument D∗

4,2
: This is exactly Theorem 3.4.
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4 Proofs

We first prove Theorem 3.2. We start by proving a lemma. A theta graph is a graph that
is the union of three internally disjoint paths connecting the same two vertices. A bad

edge is an edge whose endvertices have the same colour.

Lemma 4.1.1. (a) Let G1 be a theta graph, let L1 be a 2-list-assignment to G1, and

let a specified vertex u of degree 2 in G1 be precoloured with a colour from its list. Then

this colouring of u can be extended to an (L1, 1)-colouring of G1 in which u is properly

coloured (that is, u has no neighbour with the same colour as itself ).
(b) Every subdivision of K4 is (2, 1)-choosable.

Proof. (a) Let G1 consist of three paths P1, P2, P3 connecting two vertices a, b, and
suppose that u is in P1. The remaining vertices of P1 (including a and b) can easily be
coloured with no bad edges. Colour the internal vertices of P2 and P3 in order from a
towards b, and from b towards a, respectively, so that there are at most two bad edges,
namely the edge of P2 incident with b and the edge of P3 incident with a. If the resulting
colouring is not an (L1, 1)-colouring then these edges are both bad and are adjacent to
each other. Thus one of P2 and P3, say P2, has length 1, and the other, P3, has length
at least three (since for the edge of P2 to be bad, a and b must have the same colour);
so changing the colour of the vertex in P3 adjacent to a will create the required (L1, 1)-
colouring. (Clearly u is properly coloured.)
(b) Let G2 be a subdivision of K4 and let L2 be a 2-list-assignment to G2. Let the vertices
of degree 3 in G2 be a, b, c, d, and let C be the circuit containing a, b and c but not d.
The vertices of C can easily be coloured so that there is at most one bad edge. Now all
remaining vertices other than d can be coloured without introducing any more bad edges,
and finally d can be coloured so as to introduce at most one more bad edge. There are
now at most two bad edges. If there are two, and they induce a monochromatic K1,2,
then change the colour of the middle vertex; since its degree is at most 3, we now have
at most one bad edge, and we have the required (L2, 1)-colouring of G2. 2

The following theorem implies Theorem 3.2, since H(16) = K1 + (K1 ∪ K1,2).

Theorem 4.1. Let G be an H(16)-minor-free graph, and let L be a 2-list-assignment

to G. Then G is (L, 1)-colourable. Moreover, if G is not a subdivision of K4, and u is a

vertex that has degree at most 2 in each block that contains it, and u is precoloured with

a colour from its list, then this colouring of u can be extended to an (L, 1)-colouring of G
in which u is properly coloured.

Proof. There is no loss of generality in assuming that G is connected. Suppose first
that G is a block (i.e., G has no cutvertex). Then it is easy to see that G has maximum
degree at most three and is K2, a circuit, a theta graph, or a subdivision of K4. Thus the
result follows from Lemma 4.1.1.

So suppose that G has a cutvertex x, and note that x has degree at most 2 in each
block that contains it, since otherwise G has an H(16) minor. For the same reason, no
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block of G is a subdivision of K4. Let G = G1 ∪ G2, where G1 ∩ G2 = {x}, u ∈ G1

(possibly u = x), and Gi is connected and has more than one vertex (i = 1, 2). Then we
may assume inductively that we can extend the given colouring of u to an (L, 1)-colouring
of G1 in which u is properly coloured (where by a slight abuse of terminology we write L
for the restriction of L to V (G1)), and we can extend the resulting colouring of x to an
(L, 1)-colouring of G2 in which x is properly coloured. The union of these two colourings
is the required (L, 1)-colouring of G in which u is properly coloured. 2

We now prove the main structural lemma needed for the proof of Theorem 3.3.

Lemma 4.2.1. Let G be a 3-connected (K5 − e)-minor-free graph. Then G is either a

wheel , or the triangular prism, or K3,3.

Proof. We first need some notation and preliminary results. Suppose that H is a wheel,
or the triangular prism, or K3,3, and that G has a subgraph H ′ that is a subdivision of
H , but G is not isomorphic to H . If ab is an edge of H , or abc is a triangle of H , then
we denote by Pab or Tabc the subgraph of H ′ corresponding to the edge ab or the triangle
abc, and refer to it as a subdivided edge or a subdivided triangle, respectively, of H ′ (even
if the edge ab or triangle abc has not in fact been subdivided). We will need the following
results.

Claim 1. If Pab is a subdivided edge of length at least two in H ′ (i.e., the edge ab has

really been subdivided), then there is a path P in G such that one endvertex of P is an

internal vertex of Pab, the other endvertex is a vertex of H ′ that is not in Pab, and no

other vertex of P is in H ′.

Proof. If there were no such path P , then {a, b} would be a cutset of two vertices in
G, which is impossible since G is 3-connected. 2

Claim 2. G has a minor that is isomorphic to a graph that can be obtained from H in

one of the following two ways :

(a) by adding a new edge e1 that joins a vertex of a triangle in H to a new vertex v1

subdividing the opposite edge of the triangle;

(b) by adding a new edge e1 that joins two nonadjacent vertices of H.

Proof. We consider three cases.

Case 1: H ′ 6∼= H . Then there is a subdivided edge Pab of length at least two in H ′, and
hence a path P as in Claim 1. Then G has a minor formed as in (a) if P joins two vertices
that are both in the same subdivided triangle of H ′, and formed as in (b) otherwise.

Case 2: H ′ ∼= H and |V (G)| = |V (H ′)|. Since G 6∼= H by the first paragraph in the proof
of Lemma 4.2.1, there is an edge of G joining two nonadjacent vertices of H ′, and so G
has a minor formed as in (b).

Case 3: H ′ ∼= H and there is a vertex v ∈ V (G)\V (H ′). Since G is 3-connected, there are
three internally disjoint paths from v to three vertices a, b, c ∈ V (H ′). It is not possible

the electronic journal of combinatorics 16 (2009), #R92 8



• •

•

•

•

a b

c

u

v=d

• •

•

•

•

a b

c

u

•

d
v

• •

•

•

•

a b

c

u

•

d

v

(a) (b) (c)

Fig. 1. Possible ways of adding a path to a subdivision of K4.

that a, b, c form a triangle in H ′, since this would imply that H is a wheel or the triangular
prism and hence that G has K5 − e as a minor. Thus some two of a, b, c are nonadjacent
and G has a minor formed as in (b). This proves Claim 2. 2

We can now proceed with the proof of Lemma 4.2.1. Since G is 3-connected, it has
minimum degree at least 3, and so contains a subgraph H ′ that is a subdivision of K4 [3].
If G ∼= K4, which is the wheel W3, then we are finished; so suppose G 6∼= K4. If H ′ ∼= K4

then there is a vertex v ∈ V (G) \ V (H ′) and, since G is 3-connected, G contains three
internally disjoint paths that connect v to three vertices of H ′; but then G has a K5 − e
minor, contrary to hypothesis. Thus we may assume that H ′ 6∼= K4.

Let the vertices of degree 3 in H ′ be a, b, c, d, and assume that Pab has length at least 2.
Let P be a path, as in Claim 1, joining an internal vertex u of Pab to a vertex v of H ′

outside Pab. If v ∈ {c, d} then H ′∪P is a subdivision of W4 (Fig. 1(a)). If v is an internal
vertex of any of the subdivided edges Pac, Pad, Pbc and Pbd then H ′ ∪ P is a subdivision
of the triangular prism (Fig. 1(b)). And if v is an internal vertex of Pcd then H ′ ∪ P is
a subdivision of K3,3 (Fig. 1(c)). Assuming that the result of the lemma is false, we will
obtain a contradiction by considering three cases.

Case 1: G contains a subdivision of W4. Choose n maximal such that G has a subgraph
W ′

n that is a subdivision of Wn. Let the vertices of degree 3 in W ′

n be a1, . . . , an, and let
the vertex of degree n be b. If G ∼= Wn then we are finished; so suppose this is not the
case. We want to obtain a contradiction.

• •

••

•

a1 a2

a3an

•

b

c

• •

•

•

•

a1 a2=a3

b

c

an

• •

••

•

a1 a2

a3an •

ai

b

• •

•

•

•

a1 a2

ai=a3

b
an

(a) (b)

Fig. 2. Adding an edge to Wn gives a K5 − e minor.
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Suppose first that G contains a path P , as in Claim 1, that joins two vertices in a
subdivided triangle, say Ta1a2b, of W ′

n. If P joins b to a point on Pa1a2
then G contains a

subdivision of Wn+1, which contradicts the maximality of n. If not, then by contracting
edges we form a subgraph isomorphic to Wn + e1, where e1 joins a1 to a new vertex c
subdividing the edge a2b (Fig 2(a)); then by contracting all edges of the path a2a3 . . . an−1

we obtain K5 − e as a minor, which is again a contradiction.
So suppose that G does not contain such a path P . Then, applying Claim 2 with

H = Wn, G has no minor formed as in Claim 2(a), and so it must have a minor formed
as in Claim 2(b), by adding an edge joining two nonadjacent vertices of Wn; let these
be a1 and ai, where 3 6 i 6 n − 1 (Fig 2(b)). Then by contracting all edges of the
paths a3, . . . , ai and ai+1, . . . , an we again obtain K5 − e as a minor. This contradiction
completes the discussion of Case 1.

Case 2: G has a subgraph H ′ that is a subdivision of the triangular prism H . Then G
has a minor isomorphic to a graph that is formed from H as in Claim 2(a) or (b). In view
of the symmetry of H , there are only two nonisomorphic graphs of this form, and Fig. 3
shows that both of them have K5 − e as a minor, which is a contradiction.

• •

••

•

•

a1 a2

a3a4

b1

b2

•
c

• •

•

•

•

a1 a2=a3

b

c

a4

• •

••

•

•

a1 a2

a3a4

b1

b2

• •

•

•

•

a1 a2=a3

a4

b1

b2

(a) (b)

Fig. 3. Adding an edge to the triangular prism gives a K5 − e minor.

Case 3: G contains a subdivision of K3,3. By Claim 2, G has a minor isomorphic to a
graph of the form K3,3 + e1, where e1 joins two nonadjacent vertices of K3,3. If e2 is any
edge of K3,3 not incident with either of these vertices, then contracting e2 in K3,3 + e1

gives K5 − e, again contradicting the fact that G is (K5 − e)-minor-free. In every case we
have a contradiction, and so the proof of Lemma 4.2.1 is complete. 2

If U is a set of vertices of a graph G, we say that a colouring of G is U-proper if no
vertex in U has any neighbour outside U with the same colour as itself; this does not rule
out the possibility that two adjacent vertices of U (or two adjacent vertices outside U)
may have the same colour as each other. If u and v are two adjacent vertices of G that
are precoloured, and every other vertex x of G is assigned a list L(x) of colours, then by
an (L, d, {u, v})-proper colouring of G we mean a {u, v}-proper colouring in which each
vertex x /∈ {u, v} receives a colour from its own list and has at most d neighbours with
the same colour as itself. (Even if d = 0, this still allows u and v to have the same colour.)

The following theorem implies Theorem 3.3.
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Fig. 4. Possible 3-connected (K5 − e)-minor-free graphs with two adjacent
vertices u, v precoloured.

Theorem 4.2. Let (k, d) ∈ {(4, 0), (3, 1)}, and let G be a (K5 − e)-minor-free graph in

which two adjacent vertices u and v are precoloured, and every other vertex x is assigned a

list L(x) of k colours. Then G has an (L, d, {u, v})-proper colouring. (In other words, the

remaining vertices can be coloured from their lists in such a way that each has at most d
neighbours with the same colour as itself, and the resulting colouring of G is {u, v}-proper.)

Proof. There is no loss of generality in assuming that G is connected. There are three
cases to consider.

Case 1: G is 3-connected. By Lemma 4.2.1, G is either a wheel or the triangular prism
or K3,3. Taking account of the different possibilities for the vertices u and v, we have one
of the five cases in Fig. 4. In each case, with the vertex w chosen as illustrated, G − w
is 2-degenerate, and indeed we can properly colour the uncoloured vertices of G − w
from their lists by ensuring that each has at most two coloured neighbours at the time
it is coloured. If k = 4 we can now colour w properly. If k = 3 then we can colour w
differently from any two of its neighbours, leaving at most one bad edge incident with w,
which we can choose not to be the edge vw or (if it exists) uw. This gives the required
(L, d, {u, v})-proper colouring of G.

Case 2: G is 2-connected but not 3-connected. Let X = {x, y} be a cutset of two
vertices and let G1 and G2 be subgraphs of G, each with at least three vertices, such that
G = G1 ∪G2 and G1 ∩G2 is the subgraph induced by X. Since u, v are adjacent, we may
assume that they both lie in G1.

If x, y are nonadjacent let G′

i := Gi + xy, otherwise let G′

i := Gi (i = 1, 2). Since G is
2-connected, there is a path in G2 from x to y, as otherwise x or y would be a cutvertex
of G. Thus G′

1 is a minor of G, and so it is (K5 − e)-minor-free, and similarly so is
G′

2. We may assume inductively that the given colouring of {u, v} can be extended to
an (L, d, {u, v})-proper colouring of G′

1, and that the resulting colouring of {x, y} can be
extended to an (L, d, {x, y})-proper colouring of G′

2. The union of these two colourings is
the required (L, d, {u, v})-proper colouring of G.

Case 3: G is connected but not 2-connected. Let x be a cutvertex of G and let G1

and G2 be subgraphs of G, each with at least two vertices, such that G = G1 ∪ G2 and
G1 ∩ G2 = {x}. Since u, v are adjacent, we may assume that they both lie in G1. First
inductively extend the given colouring of {u, v} to an (L, d, {u, v})-proper colouring of G1.
Then colour an arbitrary neighbour y of x in G2 with a colour from its list different from
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the colour of x. Finally, extend the resulting colouring of {x, y} to an (L, d, {x, y})-proper
colouring of G2. The union of these two colourings is the required (L, d, {u, v})-proper
colouring of G. This completes the proof of Theorem 4.2 2

Our final theorem implies Theorem 3.4.

Theorem 4.3. Let G be a K5-minor-free graph, let L be a 4-list-assignment to G, let U
be a set of at most three mutually adjacent vertices in G, and suppose that the vertices

of U are all precoloured from their lists. Then this colouring of U can be extended to a

U-proper (L, 2)∗-colouring of G.

Proof. There is no loss of generality in assuming that G is edge-maximal, that is, that
the addition of any further edge to G would create a K5 minor. Wagner [10] proved that
such a graph either is a maximal planar graph, or is a certain 3-regular triangle-free graph
V8, or has a cutset of at most three mutually adjacent vertices. (V8, a Möbius ladder , is
obtained from a circuit of length eight by joining each pair of diagonally opposite vertices
by a new edge.)

Suppose first that G is a maximal planar graph (a triangulation). There is no loss of
generality in assuming that |U | = 3, say U = {u, v, w}. Let L′ be obtained from L by
removing the given colour of w from every other vertex; then L′ is a 3-list-assignment to
G − w. By ([12], Lemma 4.2), which says that a planar graph is (3, 2)∗-choosable even if
two adjacent vertices are precoloured, the given colouring of u and v can be extended to
a (u, v)-proper (L′, 2)∗-colouring of G − w, and this gives the required U -proper (L, 2)∗-
colouring of G.

Suppose next that G ∼= V8. Since G has maximum degree three, each uncoloured
vertex can be coloured in turn to give a U -proper (L, 2)∗-colouring of G. (Indeed, this
can be chosen to be an (L, 1)-colouring, or even an (L, 0)-colouring unless |U | = 2 and
the two vertices of U have the same colour.)

Suppose finally that G has a cutset X consisting of at most three mutually adjacent
vertices. Let G1 and G2 be subgraphs of G, each with at least |X|+ 1 vertices, such that
G = G1 ∪ G2 and G1 ∩ G2 is the subgraph induced by X. Since all vertices in U are
mutually adjacent, we may assume that U ⊆ V (G1). We may assume inductively that
the given colouring of U can be extended to a U -proper (L, 2)∗-colouring of G1, and that
the resulting colouring of X can be extended to an X-proper (L, 2)∗-colouring of G2, and
the union of these two colourings is the required U -proper (L, 2)∗-colouring of G. 2
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[7] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput.
8 (1999) 293–299.

[8] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62
(1994) 180-181.

[9] M. Voigt, List colourings of planar graphs, Discrete Math. 120 (1993) 215–219.
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