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Abstract

This paper is devoted to the proof of the surprising fact that almost all trees
have an even number of independent vertex subsets (in the sense that the proportion
of those trees with an odd number of independent sets tends to 0 as the number of
vertices approaches ∞) and to its generalisation to other moduli: for fixed m, the
probability that a randomly chosen tree on n vertices has a number of independent
subsets that is divisible by m tends to 1 as n → ∞.

1 Introduction

The number of independent vertex subsets is one of many interesting graph parameters
that have been studied in the past. It was introduced to the mathematical literature
in a paper by Prodinger and Tichy in 1982 [21], where it was shown — amongst other
things such as explicit formulæ for various classes of graphs — that the star and the
path maximize resp. minimize the number of independent sets among all trees of given
size. In subsequent works, Kirschenhofer, Prodinger and Tichy [11, 12] investigated the
average number of independent sets in certain classes of rooted trees (such as binary
trees), providing some nice combinatorial results.

Generally, the number of independent sets is a parameter that is particularly well-
studied for trees and tree-like structures (forests, unicyclic graphs, etc.): a paper of Lin
and Lin [15] extends the aforementioned results, and in recent years a wealth of literature
on the so-called extremal problem (given a class of graphs, determine those members of
the class that maximize or minimize the number of independent sets) has developed; see
for instance [9, 14, 19, 20, 23] for some nice results in this direction. Part of the interest
is due to the fact that this parameter plays a role in mathematical chemistry, where it is
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known as the Merrifield-Simmons index [14, 17, 23]. A problem that arises in this context
is the inverse problem: determine a graph within a given class (such as the class of all
trees) with a given number of independent sets. It is an open conjecture [13] that all but
finitely many positive integers can be represented as the number of independent sets of
some tree. A partial result in this direction is due to Linek [16] who was able to show by
means of a clever yet elementary construction that every positive integer is the number
of independent sets of some bipartite graph.

While there are interesting distribution results for the sizes of independent sets in
graphs (see [3]), there is no distribution result known for the number of independent sets
itself yet. Considering the number of independent sets of a randomly chosen tree on n

vertices as a random variable, does it (suitably normalized) tend to a limiting distribution
as n → ∞? Results in this direction are known for many other tree parameters, such as
the height or the Wiener index (the sum of all the distances between pairs of vertices; see
[5, 10]).

The present paper provides some explanation why the inverse problem for trees is
harder than it might seem to be and why it is not so easy to obtain distribution results of
the aforementioned type either. Suprisingly, it turns out the number of independent sets
of a randomly selected tree is more likely to be even than to be odd; indeed, the probability
that the number is even tends to 1 as the number of vertices approaches ∞. Even more
generally, for any fixed modulus m, the probability that the number of independent sets
of a randomly selected tree is divisible by m tends to 1 as the number of vertices increases.
There seems to be no obvious intuitive explanation for this phenomenon, considering that
it was shown for other parameters (e.g. the number of leaves [1, 4] or again the Wiener
index [22]) that the number of trees with even parameter value is asymptotically the same
as the number of trees with odd parameter value. There is also no particular evidence
if one considers small trees or special cases only: for instance, a star on n vertices has
exactly 2n−1 + 1 independent vertex sets, which is odd for n > 1. The result is only
asymptotic in nature.

More precisely speaking, we will prove the following:

Theorem 1 Let m > 1 be a fixed integer, let Tn denote the set of all trees on n vertices,
and let T (m)

n be the set of all trees with the property that the number of independent sets
is divisible by m. There exists a constant c < 1 that only depends on m such that

|Tn \ T (m)
n |

|Tn|
= O(cn).

By no means this implies that there are “few” trees with e.g. an odd number of
independent sets. Their number still increases exponentially, and we will show in Section 3
that the constant c is not too far away from 1 in the case m = 2.
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2 Proof of the main result

We will make use of a recursive formula for the number i(T ) of independent sets of a
rooted tree T . To this end, we have to introduce an auxiliary parameter i0(T ), which
denotes the number of independent sets of a rooted tree T that do not contain the root of
T . If T1, T2, . . . , Tk are the subtrees of T (see Figure 1), we have the following formulæ,
which are easy to verify:

i(T ) =

k
∏

j=1

i(Tj) +

k
∏

j=1

i0(Tj), i0(T ) =

k
∏

j=1

i(Tj). (1)

Now we define subsets R(m)
n (r, s) of the set Rn of all rooted trees on n vertices as follows:

R(m)
n (r, s) = {T ∈ Rn : i(T ) ≡ r mod m, i0(T ) ≡ s mod m}.

Furthermore, we write R =
⋃

n∈N
Rn and R(m)(r, s) =

⋃

n∈N
R(m)

n (r, s) for all r, s. If T

is now a rooted tree with subtrees T1, T2, . . . , Tk, and Tj ∈ T (m)(rj , sj) for certain rj and
sj, then it is possible to determine i(T ) and i0(T ) (modulo m) from the values of the rj

and sj only. In particular, it should be noted that if one of the subtrees is an element of
R(m)(0, 0), then so is T .

r

T1 T2 Tk
. . .

Figure 1: A rooted tree and its subtrees.

Next we need the following lemma:

Lemma 2 For any integer m > 1, the set R(m)(0, 0) is nonempty.

Proof: We make use of the simple fact (see [21]) that i(Pn) = Fn+2, where Pn is the path on
n vertices and Fk denotes the k-th Fibonacci number (F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2).
It is well known that for any positive integer m, there exists a Fibonacci number (other
than 0) that is divisible by m (since the sequence of Fibonacci numbers is periodic modulo
m and contains the element F0 = 0). Furthermore, if we consider a path Pn as a rooted
tree, where the root is one of its ends, then we have i0(Pn) = i(Pn−1) = Fn+1. Now
consider the rooted tree T whose subtrees are a path Pn and a path Pn−1, both rooted at
one of the ends (the tree T is thus again a path), where n is chosen in such a way that
Fn+1 is divisible by m. Then we obtain immediately that

i(T ) = Fn+2Fn+1 + Fn+1Fn = Fn+1(Fn+2 + Fn) ≡ 0 mod m
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and
i0(T ) = Fn+2Fn+1 ≡ 0 mod m.

Hence, T ∈ R(m)(0, 0), which completes the proof. �

The rest of the proof of Theorem 1 makes use of generating functions. Let T (z) denote
the generating function of R, i.e.

T (z) =
∑

n≥1

|Rn|zn,

and let U(z) = U (m)(z) be the generating function of R\R(m)(0, 0) (in the following, we
always drop the superscript for convenience). It is well known [7] that T (z) satisfies the
functional equation

T (z) = z exp

(

∞
∑

k=1

1

k
T (zk)

)

.

The second factor is the generating function for multisets of rooted trees (see [6]): the
subtrees of a rooted tree form such a multiset. Since all subtrees of a rooted tree T ∈
R \ R(m)(0, 0) are again elements of R \R(m)(0, 0), we have

U(z) E z exp

(

∞
∑

k=1

1

k
U(zk)

)

.

Here and in the following, we use the notation A(z) E B(z) if [zn]A(z) ≤ [zn]B(z) for all
n, i.e. if the coefficients of A are less than or equal to the respective coefficients of B.

Let us now define the power series Ũ(z) by the functional equation

Ũ(z) = z exp

(

Ũ(z) +
∞
∑

k=2

1

k
U(zk)

)

.

Then U(z) E Ũ(z) holds, which is easily proved by induction:

• [z1]U(z) ≤ 1 = [z1]Ũ(z) holds trivially.

• Suppose [zk]U(z) ≤ [zk]Ũ(z) holds for all k < n. Write Un(z) for the truncated
series

∑n−1
k=1([z

k]U(z))zk and analogously Ũn(z) =
∑n−1

k=1([z
k]Ũ(z))zk. Then we have

[zn]U(z) ≤ [zn]z exp

(

∞
∑

k=1

1

k
U(zk)

)

= [zn]z exp

(

U(z) +
∞
∑

k=2

1

k
U(zk)

)

= [zn]z exp

(

Un(z) +
∞
∑

k=2

1

k
U(zk)

)

≤ [zn]z exp

(

Ũn(z) +
∞
∑

k=2

1

k
U(zk)

)

= [zn]z exp

(

Ũ(z) +

∞
∑

k=2

1

k
U(zk)

)

= [zn]Ũ(z).
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Now we consider the analytic properties of T (z) and Ũ(z). Write

H1(z) =

∞
∑

k=2

1

k
T (zk) and H2(z) =

∞
∑

k=2

1

k
U(zk).

Then we have

T (z) = z exp(T (z) + H1(z)) and Ũ(z) = z exp(Ũ(z) + H2(z)),

which can be rewritten as

−T (z)e−T (z) = −z exp(H1(z)) and − Ũ(z)e−Ũ(z) = −z exp(H2(z)).

Hence the following formulas for T (z) and Ũ(z) hold:

T (z) = −W (−z exp(H1(z))) and Ũ(z) = −W (−z exp(H2(z))),

where W denotes the Lambert W function [2] which is defined implicitly by z = WeW .
W is analytic except for a branch cut along the negative real axis that ends at −1

e
.

H1 and H2 have larger radius of convergence than T and Ũ respectively (which follows
from their definitions). Therefore, the dominating singularity (which is also the radius of
convergence) of T occurs at the point z = z0 for which

z0 exp(H1(z0)) =
1

e
,

see [6]; the numerical value of z0 is 0.338321856899. Since z exp(H1(z)) is a power series
with nonnegative coefficients (of which the coefficient of z1 is strictly positive), z0 is the
unique solution on the circle of convergence of T . Similarly, the dominating singularity
z̃0 of Ũ is the solution of the equation

z̃0 exp(H2(z̃0)) =
1

e
.

Trivially, H2(z)EH1(z) (since U(z)ET (z) by definition), and by Lemma 2, the inequality
is strict for at least one coefficient. Therefore, H2(z) < H1(z) for all z > 0 for which both
series converge. This implies immediately that z̃0 > z0, i.e. Ũ has a larger radius of
convergence than T . Therefore,

[zn]U(z) ≤ [zn]Ũ(z) ≪
(

z0

z̃0
+ ǫ

)n

[zn]T (z)

for every ǫ > 0. In other words, the proportion of rooted trees in Rn \ R(m)
n (0, 0) among

all rooted trees in Rn is O
((

z0

z̃0

+ ǫ
)n)

. Since every tree on n vertices has at least one

and at most n representations as a rooted tree, the same statement holds if “rooted tree”
is replaced by “tree”. This proves Theorem 1 a fortiori (R(m)

n (0, 0) is a subset of the set
of all trees in Rn whose number of independent sets is divisible by m) with c = z0

z̃0

+ ǫ < 1
for suitable ǫ. �
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3 The special case m = 2

In this section, everything will be made explicit in the case m = 2. In this case, there are
only four different sets R(i, j) = R(2)(i, j) (0 ≤ i, j ≤ 1; in the following, we will always
drop the superscript for convenience), so that four different auxiliary generating functions
(one for each of the sets) will be necessary. Let us denote these generating functions by
Tij(z), 0 ≤ i, j ≤ 1. It follows easily from (1) that

• a tree belongs to R(0, 0) if and only if at least one of its subtrees belongs to R(0, 0)
or if one of its subtrees belongs to R(0, 1) and another subtree to R(1, 0),

• a tree belongs to R(0, 1) if and only if all its subtrees belong to R(1, 1),

• a tree belongs to R(1, 0) if and only if all its subtrees belong to R(0, 1) ∪ R(1, 1),
but not all of them to R(1, 1),

• a tree belongs to R(1, 1) if and only if all its subtrees belong to R(1, 0) ∪ R(1, 1),
but not all of them to R(1, 1).

This can be translated to the world of generating functions as follows:

T01(z) = z exp

(

∑

n≥1

1

n
T11(z

n)

)

,

T10(z) = z exp

(

∑

n≥1

1

n
(T01(z

n) + T11(z
n))

)

− T01(z),

T11(z) = z exp

(

∑

n≥1

1

n
(T10(z

n) + T11(z
n))

)

− T01(z),

T00(z) = T (z) − T01(z) − T10(z) − T11(z),

where T (z) is the generating function for all rooted trees. From these equations, we can
determine the first few coefficients of the generating functions for rooted trees with an
even resp. odd number of independent sets:

T00(z) + T01(z) = z + 2z4 + 4z5 + 10z6 + 29z7 + 74z8 + 191z9 + 519z10 + . . .

T10(z) + T11(z) = z2 + 2z3 + 2z4 + 5z5 + 10z6 + 19z7 + 41z8 + 95z9 + 200z10 + . . .

We focus on the first three equations, which we rewrite as

T01(z) = z exp (T11(z) + H1(z)) ,

T10(z) = z exp (T01(z) + T11(z) + H2(z)) − T01(z),

T11(z) = z exp (T10(z) + T11(z) + H3(z)) − T01(z)

for suitable auxiliary functions H1, H2, H3. It is clear from these equations that T01,
T10 and T11 have the same dominating singularity ρ. By their definitions, the radius of
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convergence of H1, H2, H3 is larger than ρ. At the dominating singularity, the Jacobian
determinant of this system of functional equations has to vanish (otherwise, T01, T10, T11

would have analytic continuations by the implicit function theorem). In other words,

∣

∣

∣

∣

∣

∣

1 0 −zeT11(z)+H1(z)

1 − zeT01(z)+T11(z)+H2(z) 1 −zeT01(z)+T11(z)+H2(z)

1 −zeT10(z)+T11(z)+H3(z) 1 − zeT10(z)+T11(z)+H3(z)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 −T01(z)
1 − T10(z) − T01(z) 1 −T10(z) − T01(z)

1 −T01(z) − T11(z) 1 − T01(z) − T11(z)

∣

∣

∣

∣

∣

∣

= 1 − T01(z)3 − T01(z)T10(z) − T01(z)2T10(z) − T11(z) − T01(z)2T11(z)

− T10(z)T11(z) − T01(z)T10(z)T11(z) = 0

at z = ρ. Together with the three functional equations, this yields a system of three
equations for ρ, T01(ρ), T10(ρ) and T11(ρ) that can be solved numerically (the coefficients
of the auxiliary functions H1, H2, H3 are determined up to z100, say, which provides an
excellent approximation, since the radius of convergence of H1, H2, H3 is larger than that
of T01, T10, T11). This yields a numerical value of ρ = 0.383108019849 for the singularity.

Now T01, T10, T11 can be expanded around z = ρ (cf. [6, 7]):

T01(z) = a1 − b1

√
ρ − z + c1(ρ − z) + . . . ,

T10(z) = a2 − b2

√
ρ − z + c2(ρ − z) + . . . ,

T11(z) = a3 − b3

√
ρ − z + c3(ρ − z) + . . . ,

which leads to an asymptotic formula for the number of rooted trees on n vertices whose
number of independent sets is odd by means of singularity analysis (see for instance [6]):
this number is asymptotically equal to

b2 + b3

2
√

π
· n−3/2 · ρ−n+1/2 = (0.421841735367) · n−3/2 · (2.610229878230)n.

If one is interested in the number of trees rather than the number of rooted trees, one has
to apply Otter’s theorem [7, 18] that states that the number of representations of a tree
as a rooted tree equals one plus the number of representations as an edge-rooted tree (an
edge-rooted tree can be regarded as two rooted trees, joined at their roots by an edge).
In the case of trees without restrictions, this yields the generating function

T (z) − 1

2

(

T (z)2 − T (z2)
)

for the number of trees on a given number of vertices, where T (z) is again the generating
function for rooted trees. For our problem, we only have to determine when a tree that is
constructed by joining two rooted trees at their roots has an odd number of independent
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sets (given the parities of i and i0 for both trees), which is not difficult. The result is the
following generating function for trees with an odd number of independent sets:

S(z) = T10(z) + T11(z) − T01(z)T10(z) − T10(z)T11(z)

− 1

2

(

T01(z)2 + T11(z)2 − T01(z
2) − T11(z

2)
)

= z2 + z3 + z4 + 2z5 + 3z6 + 5z7 + 9z8 + 17z9 + 32z10 + . . .

The expansion of S(z) around the dominating singularity is given by

a4 + c4(ρ − z) + d4(ρ − z)3/2 + . . . ;

it can be deduced from the equations above that the coefficient of
√

ρ − z vanishes. This
is a general phenomenon, see [8]. It follows that the number of trees on n vertices and an
odd number of independent sets is asymptotically

3d4

4
√

π
· n−5/2 · ρ−n+3/2 = (0.524015437477) · n−5/2 · (2.610229878230)n.

Therefore, one can finally deduce that the proportion of trees with an odd number of
independent sets is ∼ (0.958896816978) · (0.883097819337)n among rooted trees on n

vertices and ∼ (0.979560376268)·(0.883097819337)n among (unrooted) trees on n vertices.
Here we make use of the known asymptotic formulæ for the number of rooted trees resp.
trees on n vertices. Table 1 compares the numbers for n ≤ 20.

4 Conclusion

Similar results can be obtained for related parameters as well; for instance, if one considers
the number of independent edge subsets (matchings) rather than that of independent
vertex subsets, one obtains the following recursive relations in place of (1):

e(T ) =

k
∑

i=1

e0(Ti)

k
∏

j=1
j 6=i

e(Tj) +

k
∏

j=1

e(Tj), e0(T ) =

k
∏

j=1

e(Tj).

Here, e(T ) denotes the number of independent edge subsets of a rooted tree T , and e0(T )
the number of those independent edge subsets that do not cover the root. It is not
difficult to see that the entire proof can be carried out along the same lines to show that
the proportion of those trees for which the number of independent edge subsets is divisible
by m tends to 1 for any fixed m as the number of vertices increases.

As mentioned in the introduction, an open conjecture states that all but finitely many
positive integers are the number of independent sets of some tree. At this stage, it is not
even clear that all residue classes modulo m are covered for some fixed modulus m. We
state this as a somewhat weaker conjecture:
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number of Rooted trees Trees
vertices even odd even odd

1 1 0 1 0
2 0 1 0 1
3 0 2 0 1
4 2 2 1 1
5 4 5 1 2
6 10 10 3 3
7 29 19 6 5
8 74 41 14 9
9 191 95 30 17
10 519 200 74 32
11 1387 455 172 63
12 3711 1055 421 130
13 10078 2408 1033 268
14 27371 5602 2589 570
15 74560 13251 6510 1231
16 204167 31214 16626 2694
17 560606 74241 42671 5958
18 1543188 177971 110492 13375
19 4261175 427501 287745 30210
20 11794516 1031712 754192 68873

Table 1: Number of rooted trees/trees with an even/odd number of independent sets

Conjecture 1 For all positive integers m and k, there exists a tree T such that

i(T ) ≡ k mod m.

As also mentioned in the introduction, it would be interesting to know whether the number
of independent sets of a tree has a limiting distribution. While a local limit theorem (see
[6, Chapter 9] for an extensive treatment of various central and local limit laws) is clearly
out of the question in view of the result of this paper, it is still conceivable that there
might be a central limit theorem for this parameter.
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