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Abstract

In this paper, chromatic polynomials of (non-uniform) hypercycles, unicyclic hy-
pergraphs, hypercacti and sunflower hypergraphs are presented. The formulae gen-
eralize known results for r-uniform hypergraphs due to Allagan, Borowiecki/ Lazuka,
Dohmen and Tomescu.

Furthermore, it is shown that the class of (non-uniform) hypertrees with m edges,
where mr edges have size r, r ≥ 2, is chromatically closed if and only if m ≤ 4,
m2 ≥ m− 1.

1 Notation and preliminaries

Most of the notation concerning graphs and hypergraphs is based on Berge [4].
A hypergraph H = (V , E) consists of a finite non-empty set V of vertices and a family

E of edges which are non-empty subsets of V of cardinality at least 2. An edge e of
cardinality r(e) is called an r-edge. H is r-uniform if each edge e ∈ E is an r-edge. The
degree dH(v) is the number of edges containing the vertex v. A vertex v is called pendant
if dH(v) = 1.

H is said to be simple if all edges are distinct. H is is said to be Sperner if no edge
is a subset of another edge. Uniform simple hypergraphs are Sperner. Simple 2-uniform
hypergraphs are graphs.

A hypergraph H′ = (W ,F) with W ⊆ V and F ⊆ E is called a subhypergraph of H.
If W =

⋃
e∈F e, then the subhypergraph is said to be induced by F , abbreviated by HF .

The 2-section of a hypergraph H = (V , E) is the graph [H]2 = (V , [E ]2) such that
{u, v} ∈ [E ]2 , u 6= v, u, v ∈ V if and only if u, v are contained in a hyperedge of H.

In a hypergraph H = (V , E) an alternating sequence v1, e1, v2, e2, . . . , em, vm+1, where
vi 6= vj, 1 ≤ i < j < m, vi, vi+1 ∈ ei is called a chain. Note that repeated edges are

the electronic journal of combinatorics 16 (2009), #R94 1



allowed in a chain. If also ei 6= ej, 1 ≤ i < j ≤ m, we call it a path of length m. If
v1 = vm+1, a chain is called cyclic chain, and a path is called cycle. The subhypergraph C
induced by the edge set of a cycle of length m is called a hypercycle, short m-hypercycle.
Observe that in case of graphs the notion chain and path, cyclic chain and cycle coincide
whereas this is not the case for hypergraphs in general.

A hypergraph H is said to be connected if for every v, w ∈ V there exists a sequence
of edges e1, . . . , ek, k ≥ 1 such that v ∈ e1, w ∈ ek and ei ∩ ei+1 6= ∅, for 1 ≤ i < k. The
maximal subhypergraphs which are connected are called components. If a single vertex v
or single edge e is a component then v or e is called isolated. We use the abbreviation ∪·
for the disjoint union operation, especially of connected components.

According Acharya [1], the relation ∼ in E is an equivalence relation, where e1 ∼ e2 if
and only if e1 = e2 or there exists a cyclic chain containing e1, e2. A block of H is either
an isolated vertex/edge or a subhypergraph induced by the edge set of an equivalence
class. A block consisting of only one non-isolated edge is called a bridge-block.

Lemma 1.1 ( [1, Theorem 1.1]). Two distinct blocks of a hypergraph have at most one
vertex in common.

The block-graph bc(H) of a hypergraph H = (V , E) is the bipartite graph created as
follows. Take as vertices the blocks of H and the vertices in V which are common vertices
of two blocks. Two vertices of bc(H) are adjacent if and only if one vertex corresponds to
a block B of H and the other vertex is a common vertex c ∈ B. Observe that in case of
graphs we get the block-cutpoint-tree introduced by Harary and Prins [10].

Lemma 1.2 ( [10, Theorem 1]). If G is a connected graph, then bc(G) is a tree

A hypercycle C is said to be elementary if dC(vi) = 2 for each i ∈ {1, 2, . . . ,m} and
each other vertex u ∈

⋃m
i=1 ei is pendant. This is equivalent to the fact that C contains

only a unique cycle (sequence) up to permutation. A 2-uniform m-hypercycle (which is
elementary per se) is called m-gon. A hypergraph is linear if any two of its edges do
not intersect in more than one vertex. Elementary 2-hypercycles are not linear, whereas
elementary m-hypercycles, m ≥ 3, are linear.

A hypertree is a connected hypergraph without cycles. Obviously, a hypertree is linear.
A hyperstar is a hypertree where all edges intersect in one vertex. A hyperforest consists
of components each of which is a hypertree. A unicyclic hypergraph is a connected
hypergraph containing exactly one cycle, i.e. one hypercycle which is elementary.

A hypercactus is a connected hypergraph, where each block is an elementary hypercycle
or a bridge-block. Note that this is another approach to generalize the notion of cactus
from graphs to hypergraphs as chosen by Sonntag [14,15].

A hypergraph H = (V , E) of order n is called a sunflower hypergraph if there exist
X ⊂ V , |X | = q, 1 ≤ q < n and a partition V \X =

⋃
· m

i=1Yi such that E =
⋃m

i=1(X ∪· Yi).
Each set Yi is called a petal, the vertices in X are called seeds. Observe, if |X | = 1 then
H is a hyperstar and if |X | = 2 then H is a 2-hypercycle.
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A λ-coloring of H is a function f : V → {1, . . . , λ}, λ ∈ N, such that for each edge
e ∈ E there exist u, v ∈ e, u 6= v, f(u) 6= f(v). The number of λ-colorings of H is given
by a polynomial P(H, λ) of degree n in λ, called the chromatic polynomial of H.

Two hypergraphs H and H′ are said to be chromatically equivalent, written H ≈ H′,
if and only if P(H, λ)=P(H′, λ). The equivalence class of H is abbreviated by 〈H〉.

Extending a definition based on Dong, Koh and Teo [8, Chapter 3] from graphs to
hypergraphs, a class H of hypergraphs is called chromatically closed if for any H ∈ H

the condition 〈H〉 ⊆ H is satisfied. Let H, K be two classes of hypergraphs, then H

is said to be chromatically closed within the class K, if for every H ∈ H ∩ K we have
〈H〉 ∩K ⊆ H ∩K.

We use the following abbreviations throughout this paper. If H is isomorphic to H′,
we write H ∼= H′. If H = H1 ∪ H2, H1 ∩ H2

∼= Kn, we write H = H1 ∪n H2. Kn

denotes the complete graph of order n, especially K1 is an isolated vertex. Kn denotes
the hypergraph consisting of n ≥ 2 isolated vertices. S(k1)r1,...,(km)rm denotes a hyperstar
with ki ri-edges, i = 1, . . . ,m. Cr1,...,rm denotes the elementary m-hypercycle, where ei

has size ri, i = 1, . . . ,m. If ki consecutive edges of the hypercycle have the same size ri,
we write C(k1)r1,...,(km)rm .

Explicit expressions of chromatic polynomials of hypergraphs were obtained by several
authors. In most cases the hypergraphs are assumed to be uniform and linear.

The chromatic polynomials of r-uniform hyperforests and r-uniform elementary hyper-
cycles were presented by Dohmen [7] and rediscovered by Allagan [3] who used a slightly
different notation.

Theorem 1.1 ( [7, Theorem 1.3.2, Theorem 1.3.4], [3, Theorem 1, Theorem 2]).
If H = (V , E) is an r-uniform hyperforest with m edges and c components, where r ≥ 2,
then

P (H, λ) = λc(λr−1 − 1)m (1.1)

If H = (V , E) is an r-uniform elementary m-hypercycle, where r ≥ 2, m ≥ 3, then

P (H, λ) = (λr−1 − 1)m + (−1)m(λ− 1) (1.2)

With the restriction that the hypergraphs are linear, Borowiecki/ Lazuka [6] were able
to show the converse of (1.1). Combined with the classical result of Read [13] concerning
trees, we get

Theorem 1.2 ( [6, Theorem 5], [13, Theorem 13]). If H is a linear hypergraph and

P (H, λ) = λ(λr−1 − 1)m, where r ≥ 2, m ≥ 1 (1.3)

then H is an r-uniform hypertree with m edges.

Similarly, results of Eisenberg [9],  Lazuka [12] for graphs and Borowiecki/ Lazuka [6]
concerning r-uniform unicyclic hypergraphs, r ≥ 3, can be summarized as follows:
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Theorem 1.3 ( [9], [12, Theorem 2], [6, Theorem 8]). Let H be a linear hypergraph. H is
an r-uniform unicyclic hypergraph with m + p edges and a cycle of length p if and only if

P (H, λ) = (λr−1 − 1)m+p + (−1)p(λ− 1)(λr−1 − 1)m, (1.4)

where r ≥ 2, m ≥ 0 and p ≥ 3.

In parallel Allagan [3, Corollary 3] discovered a slightly different formula for r-uniform
unicyclic hypergraphs which can be easily transformed into (1.4).

Borowiecki/ Lazuka [5, Theorem 5] were the first who studied a class of non-linear
uniform hypergraphs which are named sunflower hypergraphs by Tomescu in [17]. In [18]
Tomescu gave the following formula of the corresponding chromatic polynomial which we
restate in a slightly different notation.

Theorem 1.4 ( [18, Lemma 2.1]). Let S(m, q, r) be an r-uniform sunflower hypergraph
having m petals and q seeds, where m ≥ 1, 1 ≤ q ≤ r − 1, then

P (S(m, q, r), λ) = λ(λr−q − 1)m + λ(r−q)m(λq − λ) (1.5)

The first formulae of chromatic polynomials of non-uniform hypergraphs were men-
tioned by Allagan [2]. He considered the special case of non-uniform elementary cycles
Hm which are constructed from an m-gon, m ≥ 3, by replacing a 2-edge by a k+-edge,
where k ≥ 1.

Theorem 1.5 ( [2, Theorem 1]). The chromatic polynomial of the hypergraph Hm, m ≥ 3,
has the form:

P (Hm, λ) = (λ− 1)m

k∑
i=0

λi + (−1)m(λ− 1). (1.6)

Remark 1.1. (1.6) can be restated as follows

P (Hm, λ) = (λ− 1)m−1(λk+1 − 1) + (−1)m(λ− 1) (1.7)

Borowiecki/ Lazuka [5] extended (1.1) by dropping the uniformity assumption.

Theorem 1.6 ( [5, Theorem 8]). If H = (V , E) is a hyperforest with mr r-edges, where
2 ≤ r ≤ R, and c components, then

P (H, λ) = λc

R∏
r=2

(λr−1 − 1)mr (1.8)

These results suggest to generalize (1.2), (1.4) and (1.5) to non-uniform hypergraphs.

Before we state our results, we remember three useful reduction methods concerning
the calculation of chromatic polynomials of hypergraphs.

Given a hypergraph H. If dropping an edge e ∈ E yields a hypergraph H′ being
chromatically equivalent to H, then e is called chromatically inactive. Otherwise, e is said
to be chromatically active. Dohmen [7] gave the following lemma:
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Lemma 1.3 ( [7, Theorem 1.2.1]). A hypergraph H and the subhypergraph H′ which
results by dropping all chromatically inactive edges are chromatically equivalent.

The next lemma generalizes Whitney’s fundamental reduction theorem. It was already
mentioned by Jones [11] in case where the added edge is a 2-edge.

Lemma 1.4. Let H = (V , E) be a hypergraph, X ⊆ V an r-set, r ≥ 2, such that e * X
for every e ∈ E. Let H+X denote the hypergraph obtained by adding X as a new edge to
E and dropping all chromatically inactive edges. Let H.X be the hypergraph obtained by
contracting all vertices in X to a common vertex x and dropping all chromatically inactive
edges. Then

P (H, λ) = P (H+X, λ) + P (H.X, λ) (1.9)

Proof. We extend the standard proof well-known in the case of graphs.
Let f be a λ-coloring of H and X ⊆ V an r-set, r ≥ 2, such that e * X for every

e ∈ E . Either (i) there exist u, v ∈ X with f(u) 6= f(v) or (ii) f(u) = f(v) for all u, v ∈ X.
The λ-colorings of H for which (i) holds are also λ-colorings of H+X = (V , E+X)

where E+X = E ∪X \ EX where EX = {e ∈ E | X ⊂ e}, and vice versa.
The λ-colorings of H for which (ii) holds are also λ-colorings of H.X = (V .X, E .X)

where V .X = V \ X ∪ {x} , E .X = {e \X ∪ {x} | e ∈ E}, and vice versa. Observe that
H.X may contain parallel edges, of which all but one can be dropped as chromatically
inactive edges.

Corollary 1.1. Let H = (V , E) be a hypergraph. Let H−e denote the hypergraph obtained
by deleting some e ∈ E and let H.e be the hypergraph by contracting all vertices in e to a
common vertex x and dropping all chromatically inactive edges. Then

P (H, λ) = P (H−e, λ)− P (H.e, λ) (1.10)

Borowiecki/ Lazuka [5] generalized an old result of Read [13].

Lemma 1.5 ( [5, Theorem 6]). If H is a hypergraph such that H =
⋃k

i=1Hi for k ≥ 2,

where Hi ∩Hj = Kp for i 6= j and
⋂k

i=1Hi = Kp, then

P (H, λ) = P (Kp, λ)1−k

k∏
i=1

P (Hi, λ). (1.11)

2 The chromatic polynomials of non-uniform hyper-

graphs

Our first generalization concerns non-uniform elementary hypercycles. Note, that
elementary 2-hypercycles are not linear whereas elementary m-hypercycles, m ≥ 3, are
linear.
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Theorem 2.1. If C = (V , E) is an elementary m-hypercycle having mr r-edges,
where 2 ≤ r ≤ R, then

P (C, λ) =
R∏

r=2

(λr−1 − 1)mr + (−1)m(λ− 1) (2.1)

Our second generalization concerns non-uniform hypercacti.

Theorem 2.2. Let H = (V , E) be a hypercactus with

(1) k elementary pi-hypercycles Ci = (Wi,Fi), i = 1, . . . , k, having pir r-edges,
where 2 ≤ r ≤ R

(2) mr bridge-blocks of size r, 2 ≤ r ≤ R.

Then

P (H, λ) =
1

λk−1

R∏
r=2

(λr−1 − 1)mr

k∏
i=1

[
R∏

r=2

(λr−1 − 1)pir + (−1)pi(λ− 1)

]
(2.2)

By converting (2.2), we get the following generalization of Theorem 1.3 concerning
non-uniform unicyclic hypergraphs.

Corollary 2.1. Let H = (V , E) be a connected unicyclic hypergraph containing a
p-hypercycle C = (W ,F) with pr r-edges and containing mr bridge-blocks of size r, where
2 ≤ r ≤ R, then

P (H, λ) =
R∏

r=2

(λr−1 − 1)mr+pr + (−1)p(λ− 1)
R∏

r=2

(λr−1 − 1)mr (2.3)

Our third generalization concerns non-uniform sunflower hypergraphs.

Theorem 2.3. Let S be a sunflower hypergraph of order n containing mr r-edges and q
seeds, where q + 1 ≤ r ≤ R, then

P (S, λ) = λ

[
λn−1 − λn−q +

R∏
r=q+1

(λr−q − 1)mr

]
(2.4)

Especially in case of uniform hypergraphs we get an alternative expression of Theo-
rem 1.4:

Corollary 2.2. If H is an r-uniform sunflower hypergraph of order n and q seeds, then

P (H, λ) = λ
[
λn−1 − λn−q + (λr−q − 1)m

]
(2.5)
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Remark 2.1. The proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3 are based on
the fact that the chromatic polynomials can be restated as follows

(1.8) P (H, λ) = λc
∏
x∈E

(λr(x)−1 − 1) (2.6)

(2.1) P (C, λ) =
∏
x∈E

(λr(x)−1 − 1) + (−1)m(λ− 1) (2.7)

(2.2) P (H, λ) =
1

λ|I|−1

∏
x∈E\F

(λr(x)−1 − 1)
∏
i∈I

[ ∏
x∈Fi

(λr(x)−1 − 1) + (−1)pi(λ− 1)

]
,

where F =
⋃
i∈I

Fi, I = {1, . . . , k} (2.8)

(2.3) P (H, λ) =
∏
x∈E

(λr(x)−1 − 1) + (−1)p(λ− 1)
∏

x∈E\F

(λr(x)−1 − 1) (2.9)

(2.4) P (H, λ) = λ

[
λn−1 − λn−q +

∏
x∈E

(λr(x)−q − 1)

]
(2.10)

Proof of Theorem 2.1. We use induction on the sum s(C) of the edge cardinalities of
the elementary m-hypercycle C.

The induction starts for each m separately.
For m = 2, the elementary m-hypercycle C with minimum s(C) consists of two 3-edges

e, f , which intersect in exactly two vertices u1, u2. Let v ∈ e \ f. Replacing the edge e
by a 2-edge k = {u1, v} yields the hypergraph C+k which is obviously a hypertree with
a 3-edge and a 2-edge. Contracting the vertices u, v yields the hypergraph C.k, where e
shrinks to the 2-edge {u1, u2} ⊂ f . Therefore f is chromatically inactive in C.k and can
be dropped. The resulting chromatically equivalent Sperner hypergraph is isomorphic to
K1 ∪· K2.

By Lemma 1.4 and (2.6), we have

P (C, λ) = λ(λ− 1)(λ2 − 1) + λ2(λ− 1) = (λ2 − 1)2 + (−1)2(λ− 1)

This proves the assertion.
For m ≥ 3 the elementary m-hypercycle with minimal s(C) is the m-gon.

Hence, (2.1) is the well-known formula

P (C, λ) = (λ− 1)m + (−1)m(λ− 1).

The induction step can be made for all m ≥ 2 simultaneously.
Choose an edge e of the elementary cycle C with maximal cardinality. If m = 2, then

r(e) ≥ 4, if m ≥ 3, then r(e) ≥ 3. Let f be the predecessor edge in the cycle sequence.
Let u ∈ e ∩ f and v ∈ e \ f . We create the two hypergraphs C+k and C.k as follows.
We add the 2-edge k = {u, v} and shrink the edge e to the edge e′ by identifying u, v. e′

remains chromatically active in C.k.

the electronic journal of combinatorics 16 (2009), #R94 7



Obviously, C+k is a hyperforest and has r(e)− 2 components where r(e)− 3 of these are
isolated vertices. C.k is an elementary m-hypercycle where e is replaced by e′ with size
r(e′) = r(e)− 1. Observe that C, C+k and C.k have the same number of edges m.
Since s(C.k)=s(C)-1, we can apply the induction hypothesis. By (1.9), (2.6) and (2.7), we
have

P (C, λ) = λr(e)−2(λ− 1)
∏

g∈E,g 6=e

(λr(g)−1 − 1)

+ (λr(e′)−1 − 1)
∏

x∈E,x 6=e′

(λr(x)−1 − 1) + (−1)m(λ− 1)

= λr(e)−2(λ− 1)
∏

x∈E,x 6=e

(λr(x)−1 − 1)

+ (λr(e)−2 − 1)
∏

x∈E,x 6=e

(λr(x)−1 − 1) + (−1)m(λ− 1)

=
[
λr(e)−2(λ− 1) + λr(e)−2 − 1

] ∏
x∈E,x 6=e

(λr(x)−1 − 1) + (−1)m(λ− 1)

= (λr(e)−1 − 1)
∏

x∈E,x 6=e

(λr(x)−1 − 1) + (−1)m(λ− 1)

=
∏
x∈E

(λr(x)−1 − 1) + (−1)m(λ− 1)

To simplify the proof of Theorem 2.2 we extend Lemma 1.2 to hypergraphs.

Lemma 2.1. The block-graph bc(H) of a connected hypergraph H is a tree.

Proof. If H is a graph, we have nothing to show.
If H is not a graph, we show that bc(H) ∼= bc([H]2). Then Lemma 1.2 completes the

proof.
We have to verify that e, f ∈ E are in the same block of H if and only if e′, f ′ ∈ E2

are in the same block of [H]2 for all e′ ⊆ e, f ′ ⊆ f . This implies also that the common
vertices of the blocks of H and [H]2 coincide.

Let e′ ⊆ e, f ′ ⊆ f , e′ 6= f ′ be in the same block of [H]2. Then [H]2 contains a cycle
v1, e

′
1, . . . , e

′, . . . , f ′, . . . , e′m, vm+1, vi 6= vj, 1 ≤ i < j < m, v1 = vm+1. We replace every
edge x′ ∈ [E ]2 in this cycle by the corresponding edge x ∈ E , x′ ⊆ x. The result is a cycle
in H which contains e, f .

Conversely, let e′ ⊆ e, f ′ ⊆ f , where e, f are in the same block of H. Then there
exists a cyclic chain u1, e1, . . . , en, un+1, ui 6= uj, 1 ≤ i < j < n, u1 = un+1, where
w.l.o.g. ek = e, el = f with 1 ≤ k < l ≤ n. Replace ei by the 2-edge {ui, ui+1},
i = 1, . . . , n. If e′ = {ui, ui+1} and f ′ = {uj, uj+1}, we are finished. Assume that
e′ = {u, v}, u, v ∈ e, with {u, v} 6= {ui, ui+1} for all i = 1, . . . , n. Then the cycle
u, {u, v} , v, {v, ui} , ui, {ui, ui+1} , ui+1 {ui+1, u} , u exists because each substituted 2-edge
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exists by the definition of [H]2. It follows that e′, {ui, ui+1} and {uj, uj+1} are in the same
block of [H]2. We apply the same argument to f ′ to complete the proof.

Proof of Theorem 2.2. We use induction on the number b of blocks.
If b = 1, then H is either a bridge-block or consists of an elementary hypercycle. The

evaluation of (2.2) yields either (1.1) or (2.1).
If b ≥ 2, bc(H) is a tree by Lemma 2.1. Therefore, we can split H = Y ∪1 Z, where

Y ,Z are hypercacti. Obviously, the hypercycles and bridge-blocks of H are divided in
those of Y and Z, i.e. FY = F ∩ EY and FZ = F ∩ EZ , where EY , EZ are the edge sets of
Y ,Z. Hence we can use the induction hypothesis and (1.11).

P (H, λ) =
1

λ
P (Y , λ)P (Z, λ)

=
1

λ

 1

λ|IY |−1

∏
x∈EY\FY

(λr(x)−1 − 1)
∏
i∈IY

[ ∏
x∈Fi

(λr(x)−1 − 1) + (−1)pi(λ− 1)

]
 1

λ|IZ |−1

∏
x∈EZ\FZ

(λr(x)−1 − 1)
∏
i∈IZ

[ ∏
x∈Fi

(λr(x)−1 − 1) + (−1)pi(λ− 1)

]
=

1

λ|IY |+|IZ |−1

∏
x∈(EY\FY )∪(EZ\FZ)

(λr(x)−1 − 1)

×
∏

i∈IY∪IZ

[ ∏
x∈Fi

(λr(x)−1 − 1) + (−1)pi(λ− 1)

]

=
1

λ|I|−1

∏
x∈E\F

(λr(x)−1 − 1)
∏
i∈I

[ ∏
x∈Fi

(λr(x)−1 − 1) + (−1)pi(λ− 1)

]

Proof of Theorem 2.3. Assume first that the sunflower hypergraph S has only one
petal, i.e. S consists of one edge of size q + 1 ≤ r ≤ R. Then by (2.4)

P (S, λ) = λ
[
λr−1 − λr−q + (λr−q − 1)

]
= λ(λr−1 − 1) (2.11)

For the remaining cases, we use induction on n − q. The case n − q = 1 was just
verified.

Let u ∈ Y , Y be a petal of S and v be a seed. Add the edge k = {u, v} to S. Then
the edge e = X ∪· Y becomes chromatically inactive. We consider two cases.

Case 1: The petal Y can be chosen to have size 1.
Then S+k ∼= K2 ∪1 U , where U is the sunflower hypergraph induced by E \ e, with

e = X ∪· Y . We contract k and drop all chromatically inactive edges. We receive the
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Sperner hypergraph S.k = KP
x∈E\e(r(x)−q) ∪· H{X} because e shrinks to X. By Lemma 1.4

and (2.10)

P (S, λ) = (λ− 1)λ

λn−2 − λn−q−1 +
∏

x∈E\e

(λr(x)−q − 1)

 + λ(λq−1 − 1)λ
P

x∈E\e(r(x)−q)

by induction hypothesis

= λ

[
(λ−1)λn−2 − (λ−1)λn−q−1 + (λ−1)

∏
x∈E\e

(λr(x)−q−1) + (λq−1−1)λn−q−1

]
because

∑
x∈E\e

(r(x)− q) = n− q − 1

= λ

[
λn−1 − λn−q +

∏
x∈E

(λr(x)−q − 1)

]
because λr(e)−q = λ

Case 2: All petals, especially Y , have size greater 1.
Then S+k ∼= Kr(e)−q−1 ∪· (K2 ∪1 U), where U is the sunflower hypergraph induced by

E \ e, having n− r(e) + q vertices. S.k is the sunflower hypergraph of order n− 1 which is
induced by E \ e∪ e′, where e′ = X ∪· Y ′, Y ′ = Y \ {u} is a petal. All other petals remain
chromatically active in S.k. Thus,

P (S, λ) = λ(λ− 1)λr(e)−q−1

λn−r(e)+q−1 − λn−r(e)−1 +
∏

x∈E\e

(λr(x)−q − 1)


+ λ

λn−2 − λn−q−1 + (λr(e′)−q − 1)
∏

x∈E\e′
(λr(x)−q − 1)


by induction hypothesis

= λ

λn−1 − λn−q − λn−2 + λn−q−1 + (λ− 1)λr(e)−q−1
∏

x∈E\e

(λr(x)−q − 1)

+ λn−2 − λn−q−1 + (λr(e)−q−1 − 1)
∏

x∈E\e

(λr(x)−q − 1)


= λ

[
λn−1 − λn−q +

∏
x∈E

(λr(x)−q − 1)

]
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3 Chromaticity of hypertrees

The fact that trees are chromatically closed within the class of graphs can be extended
to the case of r-uniform hypertrees, r ≥ 2, by use of the following lemma due to Tomescu
[16] in combination with Theorem 1.2 and (1.1).

Lemma 3.1 ( [16, Lemma 3.1]). If simple r-uniform hypergraphs H and G are chromat-
ically equivalent and H is linear then G is linear too.

Theorem 3.1. The class of r-uniform hypertrees is chromatically closed within the class
of r-uniform hypergraphs, where r ≥ 2.

Borowiecki/ Lazuka already mentioned in [6], without giving concrete examples, that
the class of r-uniform hypertrees might not be chromatically closed in general. The
following theorem shows that this is indeed true except for a few cases.

Theorem 3.2. The class T of hypertrees with m edges, where mr edges have size r, r ≥ 2,
is chromatically closed if and only if m ≤ 4, m2 ≥ m− 1.

To prove this, we use some lemmas concerning the coefficients of the chromatic poly-
nomial of a hypergraph H of order n expressed in the standard form

P (H, λ) =
n∑

i=0

aiλ
n−i (3.1)

Borowiecki/ Lazuka [6] showed

Lemma 3.2 ( [6, Lemma 1]). Let H be a hypergraph of order n and the chromatic
polynomial expressed by (3.1). If an−1 6= 0 then H is connected.

Dohmen [7] showed

Lemma 3.3 ( [7, Theorem 1.4.1]). Let H be a hypergraph of order n having mr edges of
minimal size r, where 2 ≤ r ≤ n and the chromatic polynomial expressed by (3.1). Then
ak = 0, k = 1, . . . , r − 2 and ar−1 = −mr.

Proof of Theorem 3.2. We show first that the class of all hypertrees is chromatically
closed if m ≤ 4, m2 ≥ m − 1. It suffices to consider only hypertrees having exactly four
edges by the following reason. If a hypertree T with m ≤ 3 edges would be chromatically
equivalent to hypergraph H which is not a tree then H∪1 S(4−m)2 would be chromatically
equivalent to a hypertree with four edges.

Assume there exists a Sperner hypergraph H which is chromatically equivalent to a
hypertree with four edges and at most one r-edge, r ≥ 3. Obviously, H is connected
by Lemma 3.2 and if H has the same number of k-edges as T then it is hypertree. We
therefore inspect the number mk of k-edges of H, k = 2, . . . , r + 3.

Clearly mr+3 = 0, because no chromatically active r+3-edge can exist. Furthermore
Lemma 3.3 implies that H has the same number of 2-edges as T , i.e. m2 = 3, if r ≥ 3,
and m2 = 4, if r = 2.
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To verify the remaining cases mk, 2 < k ≤ r + 2, observe that if mk 6= 0 then H
contains a spanning hypergraph with one k-edge and all 2-edges. This hypergraph is
either a forest or one of the hypergraphs Hi, i = 1, . . . , 6 in Figure 1.

Figure 1

First mr+2 = 0. Otherwise, assume there exists an r+2-edge. Since λ − 2 - P (H, λ)
we conclude that K3 * H. The fact that H is Sperner implies that H ∼= H5, where no
isolated vertices exist.

We delete/contract the r+2-edge. By (1.10)

P (H, λ) = λr(λ− 1)3 − λ(λ− 1) = λ(λr−1 − 1)(λ− 1)3 + λ(λ− 1)3 − λ(λ− 1)

6= P (T , λ)

Next, we show that mk = 0, 2 < k < r. This is done by comparing P (H, λ) and
P (T , λ) for λ ∈ N.

Assume that H contains a spanning hyperforest F with all the 2-edges and one k-edge,
2 < k ≤ r. By (1.8) we have

P (H, λ) ≤ P (F , λ) = λr−k+1(λk−1 − 1)(λ− 1)3

= λ(λr−1 − 1)(λ− 1)3 − λ(λr−k − 1)(λ− 1)3 ≤ P (T , λ)

Only in case k = r equality holds, i.e. H ≈ F ≈ T .
Assume next that Hi ⊆ H for some i = 1, . . . , 6 and k ≤ r.
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If Hi ⊆ H for i = 1, . . . , 4, we apply (2.1) and (1.11).

P (H, λ) ≤ P (Hi, λ) = λr−k+1(λ− 1)
[
(λk−1 − 1)(λ− 1)2 − (λ− 1)

]
= λ(λr−1 − 1)(λ− 1)3 − λ(λ− 1)2(λr−k+1 − λ + 1)

< P (T , λ), because of k ≤ r.

If H5 ⊆ H we delete/contract the k-edge and apply (1.10), (1.11) and (2.1).

P (H, λ) ≤ P (H5, λ) = λr(λ− 1)3 − λr−k+3(λ− 1)

= λ(λr−1 − 1)(λ− 1)3 − λ(λ− 1)
[
λr−k+2 − λ2 + 2λ− 1

]
< P (T , λ), because of k ≤ r.

If H6 ⊆ H and k < r, we apply (1.11) and (2.1).

P (H, λ) ≤ P (H6, λ) = λr−k+1
[
(λk−1 − 1)(λ− 1)3 + (λ− 1)

]
= λ(λr−1 − 1)(λ− 1)3 − λ(λ− 1)(λr−k+2 − 2λr−k+1 − λ2 + 2λ− 1)

< P (T , λ), because of k < r.

Consider H6 ⊆ H and k = r. H ∼= H6 is impossible because (1.11) and (2.1) imply

P (H6, λ) = λ
[
(λr−1 − 1)(λ− 1)3 + (λ− 1)

]
> P (T , λ)

Therefore H must contain additional edges, each of size r or size r+1. If we delete these
edges in an arbitrary sequence until H6 remains, the order of the hypergraphs resulting
from the contraction is always at least 3. Applying (1.10) repeatedly subtracts from
P (H6, λ) a polynomial of at least degree 3. Hence P (H, λ) < P (T , λ).

In summary, we get that mk = 0 for 2 < k < r and that if H contains an r-edge then
H is a tree.

It remains to exclude the case that a hypergraph containing only r+1-edges besides the
2-edges is chromatically equivalent to T . Obviously, H cannot contain a subhypergraph
isomorphic to H4.

If H ∼= Hi, i = 1, . . . , 3, we apply (2.1) and (1.11)

P (Hi, λ) = (λ− 1)
[
(λr − 1)(λ− 1)2 − (λ− 1)

]
= λ(λr−1 − 1)(λ− 1)3 + λ(λ− 1)2(λ− 2) > P (T , λ)

If H ∼= H5, we apply (1.10), (2.1) and (1.11)

P (H5, λ) = λr(λ− 1)3 − λ2(λ− 1)

= λ(λr−1 − 1)(λ− 1)3 + λ(λ− 1)(λ2 − 3λ + 1) > P (T , λ)
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If H ∼= H6, we apply (2.1)

P (H6, λ) = (λr − 1)(λ− 1)3 + (λ− 1)

= λ(λr−1 − 1)(λ− 1)3 + λ(λ− 1)(λ2 − 3λ + 3) > P (T , λ)

Thus, H contains additional edges each of size r+1 because P (Hi, λ) > P (T , λ),
for i = 1, . . . , 3, i = 5, 6. If we delete these edges in an arbitrary sequence until Hi

remains, the order of the hypergraphs resulting by the contraction is always equal 3.
Applying (1.10) repeatedly subtracts from P (Hi, λ) a polynomial of degree 3. Therefore
P (H, λ) > P (T , λ) in each case.

Conversely, if m ≥ 5 or m2 < m − 1, we can construct a chromatically equivalent
hypergraph which is not a hypertree.

Case (1): H contains two edges of size greater 2.
We can assume that the starting point of our construction is a hyperstar, i.e. all edges

have one vertex u in common.
In case of H ∼= Sr,s, r, s ≥ 3, create H1 = (V1, E1), with V1 = V \ {ve, vf} ∪ {p, q},

p, q /∈ V and with E1 = E \ {e, f}∪{e1, f1}, where e1 = e \ {ve}∪{p}, f1 = f \ {vf}∪{p}.
Observe that e1 * f1, f1 * e1, i.e. e1, f1 are chromatically active (see Figure 2).

Figure 2

Let H′ = H1+g, where g = e1∪ fe \ {p}∪{q} (see Figure 2). Then H′−g ∼= K1 ∪· Cr,s

and H′.g ∼= K2.
We apply (1.10)

P (H′, λ) = λ
[
(λr−1 − 1)(λs−1 − 1) + (λ− 1)

]
− λ(λ− 1) = λ(λr−1 − 1)(λs−1 − 1)
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If the hyperstar H has m > 2 edges, we take H′′ ∼= H′ ∪1 S, where S is the hyperstar
defined by the remaining edges. Applying (1.11) to H′′ completes the proof of this case.

Case (2): If m ≥ 5, it remains only to consider the cases m2 ≥ m− 1.
Let m = 5. We can assume that H is of the form given in Figure 3, because (1.8) is

independent of the block arrangement of the hypertree. Note that the edge e might be a
2-edge. Then change H to K1 ∪·

(
K2 ∪1 C(3)2,r

)
.

Figure 3

Adding the edge g = V \ {p, x2} yields H′. Deleting the edge g yields
H′−g ∼= K1 ∪·

(
K2 ∪1 C(3)2,r

)
. Contracting the edge g yields H′.g ∼= S2,2.

We apply (1.10)

P (H′, λ) = λ(λ− 1)
[
(λ− 1)3(λr−1 − 1) + λ− 1

]
− λ(λ− 1)2

= λ(λ− 1)4(λr−1 − 1) + λ(λ− 1)2 − λ(λ− 1)2 = λ(λ− 1)4(λr−1 − 1)

If m > 5, take H′′ ∼= H′ ∪1 S(m−5)2. Use of (1.11) completes the proof.

Corollary 3.1. The class of trees with order n is chromatically closed if and only if n ≤ 5.
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