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Abstract

In this paper, chromatic polynomials of (non-uniform) hypercycles, unicyclic hy-
pergraphs, hypercacti and sunflower hypergraphs are presented. The formulae gen-
eralize known results for r-uniform hypergraphs due to Allagan, Borowiecki/Lazuka,
Dohmen and Tomescu.

Furthermore, it is shown that the class of (non-uniform) hypertrees with m edges,
where m, edges have size r, r > 2, is chromatically closed if and only if m < 4,
mo > m — 1.

1 Notation and preliminaries

Most of the notation concerning graphs and hypergraphs is based on Berge [4].

A hypergraph H = (V, £) consists of a finite non-empty set V of vertices and a family
& of edges which are non-empty subsets of V of cardinality at least 2. An edge e of
cardinality r(e) is called an r-edge. ‘H is r-uniform if each edge e € £ is an r-edge. The
degree dy(v) is the number of edges containing the vertex v. A vertex v is called pendant
if dH<U) =1.

‘H is said to be simple if all edges are distinct. H is is said to be Sperner if no edge
is a subset of another edge. Uniform simple hypergraphs are Sperner. Simple 2-uniform
hypergraphs are graphs.

A hypergraph H' = W, F) with W C V and F C & is called a subhypergraph of H.
If W = J,..re, then the subhypergraph is said to be induced by F, abbreviated by Hz.

The 2-section of a hypergraph H = (V,€&) is the graph [H], = (V,[£],) such that
{u,v} € [€],y, u# v, u,v € V if and only if u,v are contained in a hyperedge of H.

In a hypergraph ‘H = (V, ) an alternating sequence vy, €1, Vg, €a, . . ., €, Umi1, Where
v, # v, 1 <1< j<m, v,v4 € e is called a chain. Note that repeated edges are
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allowed in a chain. If also e; # e;, 1 < i < j < m, we call it a path of length m. If
V1 = Upma1, a chain is called cyclic chain, and a path is called cycle. The subhypergraph C
induced by the edge set of a cycle of length m is called a hypercycle, short m-hypercycle.
Observe that in case of graphs the notion chain and path, cyclic chain and cycle coincide
whereas this is not the case for hypergraphs in general.

A hypergraph H is said to be connected if for every v,w € V there exists a sequence
of edges ey,...,ex, k> 1 such that v € ey, w € e and e; Ne;j 1 # 0, for 1 < i < k. The
maximal subhypergraphs which are connected are called components. If a single vertex v
or single edge e is a component then v or e is called isolated. We use the abbreviation
for the disjoint union operation, especially of connected components.

According Acharya [1], the relation ~ in £ is an equivalence relation, where e; ~ ey if
and only if e; = ey or there exists a cyclic chain containing ey, es. A block of H is either
an isolated vertex/edge or a subhypergraph induced by the edge set of an equivalence
class. A block consisting of only one non-isolated edge is called a bridge-block.

Lemma 1.1 ( [1, Theorem 1.1]). Two distinct blocks of a hypergraph have at most one
vertex in common.

The block-graph be(H) of a hypergraph H = (V, ) is the bipartite graph created as
follows. Take as vertices the blocks of H and the vertices in ¥V which are common vertices
of two blocks. Two vertices of bc(H) are adjacent if and only if one vertex corresponds to
a block B of ‘H and the other vertex is a common vertex ¢ € B. Observe that in case of
graphs we get the block-cutpoint-tree introduced by Harary and Prins [10].

Lemma 1.2 ( [10, Theorem 1]). If G is a connected graph, then bc(G) is a tree

A hypercycle C is said to be elementary if de(v;) = 2 for each i € {1,2,...,m} and
each other vertex u € |JI", e; is pendant. This is equivalent to the fact that C contains
only a unique cycle (sequence) up to permutation. A 2-uniform m-hypercycle (which is
elementary per se) is called m-gon. A hypergraph is linear if any two of its edges do
not intersect in more than one vertex. Elementary 2-hypercycles are not linear, whereas
elementary m-hypercycles, m > 3, are linear.

A hypertree is a connected hypergraph without cycles. Obviously, a hypertree is linear.
A hyperstar is a hypertree where all edges intersect in one vertex. A hyperforest consists
of components each of which is a hypertree. A wunicyclic hypergraph is a connected
hypergraph containing exactly one cycle, i.e. one hypercycle which is elementary.

A hypercactus is a connected hypergraph, where each block is an elementary hypercycle
or a bridge-block. Note that this is another approach to generalize the notion of cactus
from graphs to hypergraphs as chosen by Sonntag [14,15].

A hypergraph H = (V,€) of order n is called a sunflower hypergraph if there exist
X CV,|X|=¢q,1<q<nanda partition V\ X = (J,Y; such that & = J" (X U V).
Each set ) is called a petal, the vertices in X are called seeds. Observe, if |X'| = 1 then
H is a hyperstar and if |X'| = 2 then H is a 2-hypercycle.
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A A-coloring of H is a function f: V — {1,...,A}, A € N, such that for each edge
e € & there exist u,v € e, u # v, f(u) # f(v). The number of A-colorings of H is given
by a polynomial P(H, \) of degree n in A, called the chromatic polynomial of H.

Two hypergraphs ‘H and H' are said to be chromatically equivalent, written H ~ H’',
if and only if P(H, \)=P(H’, ). The equivalence class of H is abbreviated by (H).

Extending a definition based on Dong, Koh and Teo [8, Chapter 3] from graphs to
hypergraphs, a class 3 of hypergraphs is called chromatically closed if for any H € H
the condition (H) C H is satisfied. Let 3, K be two classes of hypergraphs, then I
is said to be chromatically closed within the class XK, if for every H € H N K we have
(H)yNKCHNXK.

We use the following abbreviations throughout this paper. If H is isomorphic to H’,
we write H & H'. If H = Hi UHo, Hi N Hy & K,,, we write H = H; U, Ho. K,
denotes the complete graph of order n, especially K, is an isolated vertex. K, denotes
the hypergraph consisting of n > 2 isolated vertices. Sw,)r,,....(km)r denotes a hyperstar
with k; r-edges, i = 1,...,m. C,, ., denotes the elementary m-hypercycle, where e;
has size r;, 1 = 1,...,m. If k; consecutive edges of the hypercycle have the same size r;,
we write C(lﬁ)h ..... (kem)rm -

Explicit expressions of chromatic polynomials of hypergraphs were obtained by several
authors. In most cases the hypergraphs are assumed to be uniform and linear.

The chromatic polynomials of r-uniform hyperforests and r-uniform elementary hyper-
cycles were presented by Dohmen [7] and rediscovered by Allagan [3] who used a slightly
different notation.

Theorem 1.1 ( [7, Theorem 1.3.2, Theorem 1.3.4], [3, Theorem 1, Theorem 2)).
If H = (V,&) is an r-uniform hyperforest with m edges and ¢ components, where r > 2,
then

P(H,\) = XN~ —1)™ (1.1)
If H = (V,E) is an r-uniform elementary m-hypercycle, where r > 2, m > 3, then
PH,A) =\ =1)"+ (=1)"(A—1) (1.2)

With the restriction that the hypergraphs are linear, Borowiecki/Lazuka [6] were able
to show the converse of (1.1). Combined with the classical result of Read [13] concerning
trees, we get

Theorem 1.2 ( [6, Theorem 5], [13, Theorem 13]). If H is a linear hypergraph and
P(H,A\) = ANt =1, wherer >2,m > 1 (1.3)
then 'H 1is an r-uniform hypertree with m edges.

Similarly, results of Eisenberg [9], Lazuka [12] for graphs and Borowiecki/Lazuka [6]
concerning r-uniform unicyclic hypergraphs, » > 3, can be summarized as follows:
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Theorem 1.3 ( [9], [12, Theorem 2], [6, Theorem 8]). Let H be a linear hypergraph. H is
an r-uniform unicyclic hypergraph with m + p edges and a cycle of length p if and only if

P(H,A) = (N1 =1)™P 4 (=1)*(A = 1)(\" = 1)™, (1.4)
where r > 2, m >0 and p > 3.

In parallel Allagan [3, Corollary 3] discovered a slightly different formula for r-uniform
unicyclic hypergraphs which can be easily transformed into (1.4).

Borowiecki/Lazuka [5, Theorem 5] were the first who studied a class of non-linear
uniform hypergraphs which are named sunflower hypergraphs by Tomescu in [17]. In [18]
Tomescu gave the following formula of the corresponding chromatic polynomial which we
restate in a slightly different notation.

Theorem 1.4 ( [18, Lemma 2.1]). Let S(m,q,r) be an r-uniform sunflower hypergraph
having m petals and q seeds, where m > 1,1 < g <r —1, then

P(S(m,q,7),A) = AA™7 = 1)™ 4 AT=0m(XT — )\) (1.5)

The first formulae of chromatic polynomials of non-uniform hypergraphs were men-
tioned by Allagan [2]. He considered the special case of non-uniform elementary cycles
‘H,, which are constructed from an m-gon, m > 3, by replacing a 2-edge by a k-+2-edge,
where k£ > 1.

Theorem 1.5 ( [2, Theorem 1]). The chromatic polynomial of the hypergraph H,,, m > 3,

has the form:
k

P(Hp, A) = (A= 1" > XN+ (=1)™(A = 1). (1.6)
Remark 1.1. (1.6) can be restated as follouZJ;
P(Hpm, A) = (A= D)™ PO — 1) + (=)™ (A = 1) (1.7)

Borowiecki/Lazuka [5] extended (1.1) by dropping the uniformity assumption.
Theorem 1.6 ( [5, Theorem 8]). If H = (V,€) is a hyperforest with m, r-edges, where
2 <r <R, and ¢ components, then

R

P(H N =x ][t =™ (1.8)

r=2

These results suggest to generalize (1.2), (1.4) and (1.5) to non-uniform hypergraphs.

Before we state our results, we remember three useful reduction methods concerning
the calculation of chromatic polynomials of hypergraphs.

Given a hypergraph H. If dropping an edge e € & yields a hypergraph H’ being
chromatically equivalent to H, then e is called chromatically inactive. Otherwise, e is said

to be chromatically active. Dohmen [7] gave the following lemma:
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Lemma 1.3 ( [7, Theorem 1.2.1)). A hypergraph H and the subhypergraph H' which
results by dropping all chromatically inactive edges are chromatically equivalent.

The next lemma generalizes Whitney’s fundamental reduction theorem. It was already
mentioned by Jones [11] in case where the added edge is a 2-edge.

Lemma 1.4. Let H = (V,€) be a hypergraph, X CV an r-set, r > 2, such that e £ X
for every e € £. Let H+X denote the hypergraph obtained by adding X as a new edge to
E and dropping all chromatically inactive edges. Let H.X be the hypergraph obtained by
contracting all vertices in X to a common vertex x and dropping all chromatically inactive
edges. Then

P(H, ) = P(H+X,)\) + P(H.X, \) (1.9)

Proof. We extend the standard proof well-known in the case of graphs.

Let f be a A-coloring of H and X C V an r-set, r > 2, such that e ¢ X for every
e € €. Either (i) there exist u,v € X with f(u) # f(v) or (ii) f(u) = f(v) for all u,v € X.

The A-colorings of H for which (i) holds are also A-colorings of H+X = (V,E+X)
where E+X =EU X \ Ex where Ex = {e € £ | X C e}, and vice versa.

The A-colorings of H for which (ii) holds are also A-colorings of H.X = (V.X,£.X)
where V.X = V\ X U {z},£.X = {e\ XU{x} | e € &}, and vice versa. Observe that
‘H.X may contain parallel edges, of which all but one can be dropped as chromatically
inactive edges. O]

Corollary 1.1. Let H = (V, &) be a hypergraph. Let H—e denote the hypergraph obtained
by deleting some e € £ and let H.e be the hypergraph by contracting all vertices in e to a
common vertex x and dropping all chromatically inactive edges. Then

P(H,\) = P(H—¢,\) — P(H.e,\) (1.10)
Borowiecki/Lazuka [5] generalized an old result of Read [13].

Lemma 1.5 ( [5, Theorem 6]). If H is a hypergraph such that H = \Jl_, H; for k > 2,
where H; N'H; = K,, fori# j and ﬂle H; = K,, then

P(H,\) = P(K, )" * ] P(Hi, \). (1.11)

i=1

2 The chromatic polynomials of non-uniform hyper-
graphs

Our first generalization concerns non-uniform elementary hypercycles. Note, that

elementary 2-hypercycles are not linear whereas elementary m-hypercycles, m > 3, are
linear.
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Theorem 2.1. IfC = (V, &) is an elementary m-hypercycle having m, r-edges,
where 2 < r < R, then

R

PECA) =]V =)™+ (-1)"(A - 1) (2.1)

r=2
Our second generalization concerns non-uniform hypercacti.

Theorem 2.2. Let H = (V, &) be a hypercactus with

(1) k elementary p;-hypercycles C; = W;, F;),i = 1,...,k, having p;. r-edges,
where 2 <r < R

(2) m, bridge-blocks of sizer, 2 <r < R.

Then

R

R k
— [ -1 H [TV = e+ (—P(a—1) (2.2)

r=2

P(H,\) =

By converting (2.2), we get the following generalization of Theorem 1.3 concerning
non-uniform unicyclic hypergraphs.

Corollary 2.1. Let H = (V, &) be a connected unicyclic hypergraph containing a
p-hypercycle C = (W, F) with p, r-edges and containing m,. bridge-blocks of size r, where
2 <r <R, then

R
P(H,A) = [ = 1mter o+ (

r=2 r=2

(N —1)m (2.3)

’:]:u

Our third generalization concerns non-uniform sunflower hypergraphs.
Theorem 2.3. Let S be a sunflower hypergraph of order n containing m, r-edges and q
seeds, where ¢+ 1 <r < R, then
R
PS,\) =X A=t JT (v —1m (2.4)
r=q+1

Especially in case of uniform hypergraphs we get an alternative expression of Theo-
rem 1.4:

Corollary 2.2. If 'H is an r-uniform sunflower hypergraph of order n and q seeds, then

P(H, ) = A[A™ = A2 4 (A4 —1)™] (2.5)
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Remark 2.1. The proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3 are based on
the fact that the chromatic polynomials can be restated as follows

(1.8) P(HA) = ]]Jy®" =1 (2.6)
ze€
(21) PECA) =[NV =1+ (-D)"(A-1) (2.7)
z€eE
(2.2) P(H,\) = % IT @ -n]] [H A@=1 1) 4 (1) (A—1)],
T€E\F iel LzeF;
wheref:U}},I:{l,...,k} (2.8)
(23) P(HA) =[NV =)+ (-pr(a-1) J] W@ —1) (2.9)
zef xz€E\F
(24) P(HA) =X X=X JT@ 7 - 1)] (2.10)
el

Proof of Theorem 2.1. We use induction on the sum s(C) of the edge cardinalities of
the elementary m-hypercycle C.

The induction starts for each m separately.

For m = 2, the elementary m-hypercycle C with minimum s(C) consists of two 3-edges
e, f, which intersect in exactly two vertices uy,us. Let v € e\ f. Replacing the edge e
by a 2-edge k = {uy,v} yields the hypergraph C+k which is obviously a hypertree with
a 3-edge and a 2-edge. Contracting the vertices u, v yields the hypergraph C.k, where e
shrinks to the 2-edge {uy,us} C f. Therefore f is chromatically inactive in C.k and can
be dropped. The resulting chromatically equivalent Sperner hypergraph is isomorphic to
K1 J KQ.

By Lemma 1.4 and (2.6), we have

PCN =X A=D1\ =D+NA-1) =N -1+ (-1)*(A-1)

This proves the assertion.
For m > 3 the elementary m-hypercycle with minimal s(C) is the m-gon.
Hence, (2.1) is the well-known formula

PC,AN)=A=1)"4+ (=)™ -1).

The induction step can be made for all m > 2 simultaneously.

Choose an edge e of the elementary cycle C with maximal cardinality. If m = 2, then
r(e) > 4, if m > 3, then r(e) > 3. Let f be the predecessor edge in the cycle sequence.
Let w € en fand v € e\ f. We create the two hypergraphs C+k and C.k as follows.
We add the 2-edge k = {u,v} and shrink the edge e to the edge ¢’ by identifying u, v. €
remains chromatically active in C.k.
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Obviously, C+k is a hyperforest and has r(e) — 2 components where r(e) — 3 of these are
isolated vertices. C.k is an elementary m-hypercycle where e is replaced by e’ with size
r(e’) = r(e) — 1. Observe that C, C+k and C.k have the same number of edges m.

Since s(C.k)=s(C)-1, we can apply the induction hypothesis. By (1.9), (2.6) and (2.7), we
have

PN =XO20-1) J] W@ -1

ge€,g#e
+ WO 1) T WO =)+ (-)m(A=1)
ze€,x#e’
_ )\r(e)—?()\ _ 1) H ()\r(a:)—l . 1)
ze€,x#e
+ WO [T WO =D+ ()" (A - 1)
ze€,x#e
= [NOPA-D+ N 1] [T WO =)+ (=)A= 1)
ze€ x#e
SRR | (CCRE RN
ze€,x#e
=[N =D+ ()" (A-1)

e

To simplify the proof of Theorem 2.2 we extend Lemma 1.2 to hypergraphs.
Lemma 2.1. The block-graph be(H) of a connected hypergraph H is a tree.

Proof. 1f 'H is a graph, we have nothing to show.

If H is not a graph, we show that bc(H) = be([H],). Then Lemma 1.2 completes the
proof.

We have to verify that e, f € £ are in the same block of H if and only if €, f' € &
are in the same block of [H], for all ¢’ C e, f* C f. This implies also that the common
vertices of the blocks of H and [H], coincide.

Let ¢ Ce, f/ C f, € # f' be in the same block of [H],. Then [H], contains a cycle
v, €€ e Uy, U F vy, 1 << j < m, vp = Upqq. We replace every
edge «’ € [£], in this cycle by the corresponding edge x € £, 2" C z. The result is a cycle
in ‘H which contains e, f.

Conversely, let ¢/ C e, f' C f, where ¢, f are in the same block of H. Then there

exists a cyclic chain wuy, ey, ..., en, Uns1, U # u;, 1 < 0 < j < N, U = Upy1, Where
wlog e, =e ¢ = fwith 1 <k <[ < n. Replace ¢; by the 2-edge {u;, u;11},
i=1,...,n. If e = {u,u1} and f' = {u;,uj41}, we are finished. Assume that

¢ = {u,v}, u,v € e, with {u,v} # {u;,u;s1} for all ¢ = 1,...,n. Then the cycle
w, {u, v}, v, {v,w} g, {ug, wigr }, winr {uig1, u}, u exists because each substituted 2-edge
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exists by the definition of [H],. It follows that €/, {;, u;+1} and {u;, u;+1} are in the same
block of [H],. We apply the same argument to f’ to complete the proof. O]

Proof of Theorem 2.2. We use induction on the number b of blocks.

If b= 1, then H is either a bridge-block or consists of an elementary hypercycle. The
evaluation of (2.2) yields either (1.1) or (2.1).

If b > 2, be(H) is a tree by Lemma 2.1. Therefore, we can split H = Y U; Z, where
Y, Z are hypercacti. Obviously, the hypercycles and bridge-blocks of H are divided in
those of Y and Z, ie. Fy = FNEy and Fz = F N Ez, where &y, Ez are the edge sets of
Y, Z. Hence we can use the induction hypothesis and (1.11).

1
1 1 ~ [ o | ]
=3 | o [T o= [TV =D+ (-1
z€Ey\Fy i€ly LxeF; |
1 r(x)— | r(x)— ; ]
s L O =D I T =0+ =nmi-1)
ngz\]:z ielz LxzeF; ;
1
- - r(z)—1
R 11 (A 1)
r€(Ey\Fy)U(E\Fz)
< 1 [H A1) 4 (1P (A - 1)]
iEIyUIZ zeF;
1 T \T)— rx)— ;
=y L @ =] [H(A“ 1_1)“_1)%_1)]
z€E\F i€l LxeF;

O

Proof of Theorem 2.3. Assume first that the sunflower hypergraph S has only one
petal, i.e. S consists of one edge of size ¢+ 1 < r < R. Then by (2.4)

PEXN) =AM =N+ NI =1 =N =1) (2.11)

For the remaining cases, we use induction on n — ¢q. The case n — ¢ = 1 was just
verified.

Let u € Y, Y be a petal of S and v be a seed. Add the edge k = {u,v} to S. Then
the edge e = X U Y becomes chromatically inactive. We consider two cases.

Case 1: The petal Y can be chosen to have size 1.

Then S+k = Ky Uy U, where U is the sunflower hypergraph induced by £ \ e, with
e =X UY. We contract £ and drop all chromatically inactive edges. We receive the
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Sperner hypergraph S.k = FZI
and (2.10)

—q Y Hyx) because e shrinks to X. By Lemma 1.4

cere(r(®@)

P(S,\) =(A—1)A A2 oyl H ()\r(x)*q —1)| + )\()\qfl _ 1))\Zze£\e(r(x)—q)
zel\e

by induction hypothesis
=\ {(A—l))\"‘Z — A=D1 J] Oy 4 (A A

ze€\e
because Z (r(x)—q)=n—q—1
ze€\e
Y [)\nl N4 H(}\r(:v)fq . 1)
ze€

because \'©~9 = )

Case 2: All petals, especially Y, have size greater 1.

Then S+k = FT(e)_q_l W (K3 U U), where U is the sunflower hypergraph induced by
&\ e, having n —r(e) + g vertices. S.k is the sunflower hypergraph of order n — 1 which is
induced by £\ eUe’, where ¢/ = X U Y’ Y' =Y\ {u} is a petal. All other petals remain
chromatically active in §.k. Thus,

P(S) /\) — /\()\ _ 1)/\7"(6)—(1—1 )\n—r(e)—i-q—l _ )\n—r(e)—l + H ()\T(x)—q . 1)
ze€\e

+ A >\n72 i /\nqul + ()\r(e’)fq - 1) H ()\T(IE)*Q _ 1)
ze€\e!

by induction hypothesis

— \ [\t \nma o \n2 + A\l + ()\ o 1))\1”(6)7(]71 H ()\r(x)fq _ 1)
ze€\e

+ )\7172 _ )\nqul + ()\r(e)qul - 1) H ()\r(x)fq _ 1)
ze€\e

= A A [T -1

ze€
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3 Chromaticity of hypertrees

The fact that trees are chromatically closed within the class of graphs can be extended
to the case of r-uniform hypertrees, r > 2, by use of the following lemma due to Tomescu
[16] in combination with Theorem 1.2 and (1.1).

Lemma 3.1 ( [16, Lemma 3.1]). If simple r-uniform hypergraphs H and G are chromat-
ically equivalent and H is linear then G s linear too.

Theorem 3.1. The class of r-uniform hypertrees is chromatically closed within the class
of r-uniform hypergraphs, where r > 2.

Borowiecki/Lazuka already mentioned in [6], without giving concrete examples, that
the class of r-uniform hypertrees might not be chromatically closed in general. The
following theorem shows that this is indeed true except for a few cases.

Theorem 3.2. The class T of hypertrees with m edges, where m,. edges have sizer, r > 2,
is chromatically closed if and only if m <4, mg > m — 1.

To prove this, we use some lemmas concerning the coefficients of the chromatic poly-
nomial of a hypergraph H of order n expressed in the standard form

n

P(H M) = a\"™ (3.1)

=0
Borowiecki/Lazuka [6] showed

Lemma 3.2 ( [6, Lemma 1]). Let H be a hypergraph of order n and the chromatic
polynomial expressed by (3.1). If a,—1 # 0 then H is connected.

Dohmen [7] showed

Lemma 3.3 ( [7, Theorem 1.4.1]). Let H be a hypergraph of order n having m, edges of
minimal size v, where 2 < r < n and the chromatic polynomial expressed by (3.1). Then
a,=0,k=1,...,r—2 and a,_1 = —m,..

Proof of Theorem 3.2. We show first that the class of all hypertrees is chromatically
closed if m <4, my > m — 1. It suffices to consider only hypertrees having exactly four
edges by the following reason. If a hypertree 7 with m < 3 edges would be chromatically
equivalent to hypergraph H which is not a tree then H U; S4—,)2 would be chromatically
equivalent to a hypertree with four edges.

Assume there exists a Sperner hypergraph H which is chromatically equivalent to a
hypertree with four edges and at most one r-edge, » > 3. Obviously, H is connected
by Lemma 3.2 and if H has the same number of k-edges as 7 then it is hypertree. We
therefore inspect the number my, of k-edges of H, k =2,...,r + 3.

Clearly m,,3 = 0, because no chromatically active r+3-edge can exist. Furthermore
Lemma 3.3 implies that H has the same number of 2-edges as 7, i.e. my = 3, if r > 3,
and my =4, if r = 2.
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To verify the remaining cases my, 2 < k < r + 2, observe that if m; # 0 then H
contains a spanning hypergraph with one k-edge and all 2-edges. This hypergraph is
either a forest or one of the hypergraphs H;,2 =1,...,6 in Figure 1.

# 7

2 7

#

- & @ LI

r-k+1 r-k+1

k. -2 r-k+1

Figure 1

First m,, 2 = 0. Otherwise, assume there exists an r+2-edge. Since A — 21 P(H,\)
we conclude that K3 ¢ H. The fact that H is Sperner implies that H = H;, where no
isolated vertices exist.

We delete/contract the r+2-edge. By (1.10)

PHA) =XNA=1 = AA=1) = XN""=1)A =1+ XA =1 = AA—1)
# P(T, )
Next, we show that m; = 0, 2 < k < r. This is done by comparing P(H, \) and
P(T,)) for A € N.

Assume that H contains a spanning hyperforest F with all the 2-edges and one k-edge,
2 < k <r. By (1.8) we have

P(H,\) < P(F,\) = X F O 1) (A —1)°
= AN T DA =12 = XAF ) (A= 1) < P(T, N

Only in case k = r equality holds, i.e. H~ F ~ 7.
Assume next that H; C ‘H for some ¢ =1,...,6 and k <.
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IfH; CHfori=1,...,4, we apply (2.1) and (1.11).

P(H,\) < P(Hi, A) = X A= 1) [V = 1)(A=1)> = (A= 1)]
= AN T DA =12 = AN = 1D2OF X4 1)
< P(T,\), because of k <.

If Hs C H we delete/contract the k-edge and apply (1.10), (1.11) and (2.1).

P(H,\) < P(Hs,\) = \"(A — 1) = A" FF3 (N — 1)
=AM T DA =12 = AN = 1) AR = A2 20 — 1]
< P(T,\), because of k <r.

If He € H and k < r, we apply (1.11) and (2.1).

P(H,A) < P(He,A) = X[ =) (A =12 + (A = 1)]
= AN TN =13 = A = D(NFF2 2 R A2 o) — 1)
< P(T,\), because of k < r.

Consider Hg C 'H and k = r. H = Hg is impossible because (1.11) and (2.1) imply
P(Hg, A) =X [N =1)(A =1+ (A=1)] > P(T, )

Therefore ‘H must contain additional edges, each of size r or size r+1. If we delete these
edges in an arbitrary sequence until Hg remains, the order of the hypergraphs resulting
from the contraction is always at least 3. Applying (1.10) repeatedly subtracts from
P(Hg, A) a polynomial of at least degree 3. Hence P(H,\) < P(7,\).

In summary, we get that my = 0 for 2 < k < r and that if H contains an r-edge then
H is a tree.

It remains to exclude the case that a hypergraph containing only r+1-edges besides the
2-edges is chromatically equivalent to 7. Obviously, H cannot contain a subhypergraph
isomorphic to Hy.

UH=H,,i=1,...,3, we apply (2.1) and (1.11)

PH ) =A=1) [N =1)(A=1*=(A-1)]
=AMV TT=1D)A =12+ A\ =1)*(A=2) > P(T,))

If H = Hs, we apply (1.10), (2.1) and (1.11)

P(Hs,A) = X" (A =1 = X*(A = 1)
=AM TP 1DA =12+ AN = DA =31 +1) > P(T,\)
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If H = Hg, we apply (2.1)

P(He,\) = (N = DA =14+ (A =1)
= AN T DA =13+ XA =D (AN =3X+3) > P(T,\)

Thus, H contains additional edges each of size r+1 because P(H;, A\) > P(7,\),
for i = 1,...,3,7 = 5,6. If we delete these edges in an arbitrary sequence until H;
remains, the order of the hypergraphs resulting by the contraction is always equal 3.

Applying (1.10) repeatedly subtracts from P(H;, A\) a polynomial of degree 3. Therefore
P(H,\) > P(7,)\) in each case.

Conversely, if m > 5 or my < m — 1, we can construct a chromatically equivalent
hypergraph which is not a hypertree.

Case (1): H contains two edges of size greater 2.
We can assume that the starting point of our construction is a hyperstar, i.e. all edges
have one vertex u in common.

In case of H =2 S, 5, r,s > 3, create Hy = (V1,&1), with Vi = V \ {v.,vs} U {p, ¢},

p,q ¢ V and with & = €\ {e, f} U{ey, fi}, where e; = e\ {v.} U{p}, fi = f\{vs}U{p}.
Observe that ey € fi1, fi € e1, L.e. ey, fi are chromatically active (see Figure 2).

A . f H

¢,

fi

& Y

4

#y CON

; : ”I
1

L

Figure 2

Let H' = Hi+g, where g = ey U fo \ {p} U{q} (see Figure 2). Then H'—g = K; U C,
and H'.g = K.
We apply (1.10)

P(H' ) = AN =D =D+ A=) =AA=1) = AN = (A = 1)
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If the hyperstar H has m > 2 edges, we take H” =2 H' U; S, where S is the hyperstar
defined by the remaining edges. Applying (1.11) to H” completes the proof of this case.

Case (2): If m > 5, it remains only to consider the cases my > m — 1.

Let m = 5. We can assume that H is of the form given in Figure 3, because (1.8) is
independent of the block arrangement of the hypertree. Note that the edge e might be a
2-edge. Then change H to Ky U (Kg Uq C(3)27r>.

Figure 3

Adding the edge g = V \ {p, x2} yields H'. Deleting the edge g yields
H—-g=K U (Kg Uy C(3)277-). Contracting the edge g yields H'.g = Ss 5.
We apply (1.10)

PH AN =AXA=1D[A=1°N""=1)+A=1] = A(A—1)?
=AMA=D* AP =D AN =12 = XA =12 =2 =D =1

If m > 5, take H" = H' Uy S(;n—s5)2. Use of (1.11) completes the proof. ]

Corollary 3.1. The class of trees with order n is chromatically closed if and only if n < 5.
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