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Abstract

Let G be a finite abelian group, and let S be a sequence of elements in G. Let
f(S) denote the number of elements in G which can be expressed as the sum over
a nonempty subsequence of S. In this paper, we slightly improve some results of
[10] on f(S) and we show that for every zero-sum-free sequences S over G of length
|S| = exp(G) + 2 satisfying f(S) > 4exp(G) — 1.
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1 Introduction

Let G be a finite abelian group (written additively)throughout the present paper. F(G)
denotes the free abelian monoid with basis GG, the elements of which are called sequences
(in G). A sequence of not necessarily distinct elements from G will be written in the
form S =g1- - g, =[], 9 = ngGg"g(s) € F(G), where v,(S) > 0 is called the
multiplicity of g in S. Denote by |S| = n the number of elements in S (or the length of
S) and let supp(S) = {g € G : v4(S) > 0} be the support of S.

We say that S contains some g € G if v,(S) > 1 and a sequence T' € F(G) is a
subsequence of S if vy (T') < v,(S) for every g € G, denoted by T'|S. If T'|S, then let
ST~ denote the sequence obtained by deleting the terms of 7' from S. Furthermore, by
o(S) we denote the sum of S, (ie. o(S) =S g = > gec Ve(S)g € G). By > (S5) we
denote the set consisting of all elements which can be expressed as a sum over a nonempty
subsequence of S, i.e.

Z(S) = {o(T) : T'isanonempty subsequence of S}.
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We write f(S) =1]>.(5)]|, (S) for the subgroup of G generated by all the elements of S.

Let S be a sequence in G. We call S a zero—sum sequence if o(S) = 0, a zero—sum—
free sequence if (W) # 0 for any subsequence W of S, and square free if v,(S) < 1 for
every g € G.

Let D(G) be the Davenport’s constant of G, i.e., the smallest integer d such that every
sequence S of elements in G with |S| > d satisfies 0 € > (S). For every positive integer r
in the interval {1, ..., D(G) — 1}, let

falr) = gnin f(S), (1)
where S runs over all zero-sumfree sequences of r elements in G.

In 1972, Eggleton and Erdds (see [4]) first tackled the problem of determining the
minimal cardinality of »_(.S) for squarefree zero-sum-free sequences (that is for zero-sum-
free subsets of G). In 2006, Gao and Leader [5] proved the following result.

Theorem A [5] Let G be a finite abelian group of exponent m. Then

(i) If 1 <r <m—1 then fg(r)=r.

(i) If ged(6, m) = 1 and G is not cyclic then fg(m) = 2m — 1.

In 2007, Sun[11] showed that fs(m) = 2m — 1 still holds without the restriction that
ged(6, m) = 1.

Using some techniques from the author [12], the author [13] proved the following two
theorems.

Theorem B([9],[13]) Let S be a zero-sumfree sequence in G such that (S) is not a cyclic
group, then f(S) = 2|S|— 1.

Theorem C ([13]) Let S be a zero-sumfree sequence in G such that (S) is not a cyclic
group and f(S) = 2|S|— 1. Then S is one of the following forms

(i) S=a"(a+g)¥, x >y > 1, where g is an element of order 2.

(i) S =a*(a+ g)¥g, x =y > 1, where g is an element of order 2.

(iii) S = a*b, v > 1.

However, Theorem B is an old theorem of Olson and White (see [10] Theorem 1.5)
which has been overlooked by the author.

Recently, by an elegant argument, Pixton [10] proved the following result.

Theorem D ([10]) Let G be a finite abelian group and S a zero-sum-free sequence of
length n generating a subgroup of rank greater than 2, then f(S) > 4|S| — 5.
One purpose of the paper is to slightly improve the above result of Pixton. We have

Theorem 1.1 Let n > 2 be a positive integer. Let G be a finite abelian group and
S = (g:), a zero-sum-free sequence of length n generating a subgroup H of rank 2 and
H % C5 @ Cy,,, where m is a positive integer. Suppose that

> () # AcU (b+ Bu),

where a,b € G, A,, B, are some subsets of the cyclic group (a) generated by a and b & {(a),
then f(S) > 3n —4.
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Theorem 1.2 Let n > 5 be a positive integer. Let G be a finite abelian group and
S = (g:)~, a zero-sum-free sequence of length n generating a subgroup H of rank 2 and
H % Cy @ Cyyy, 2 C3® Csypy, 22 Cy @ Cy, where m is a positive integer. Suppose that

D (S) # AU (b+ By), AU (b+ Bo) U (20 + Co), Ay U (b+ B,) U (=b+ Co),

where a,b € G, A, By, C, are some subsets of the cyclic group (a) generated by a and
b ¢ (a), then f(S)>4n —9.

Theorem 1.3 Let G be an abelian group and S = (g;)7_, is a zero-sum-free sequence of
length n > 5 that generating a subgroup of rank greater than 2 and (S) 2 Cy ® Cy @ Coyy,
then f(S)| > 4|S| — 3 except when S = a*(a + g)Yc, a”(a + g)Ygc, a®be, where a,b, c, g are
elements of G with ord(g) = 2, in these cases, f(S) = 4|S| — 5 when the rank of the
subgroup generated by S is 3.

Another main result of the paper runs as follows.

Theorem 1.4 Let G = C,,, @ ... D C,, be a finite abelian group with 1 < nq|...|n,.. If
r > 2 and n,._1 > 4, then every zero-sum-free sequence S over G of length |S| = n, + 2
satisfies f(S) = 4n, — 1.

This partly confirms a former conjecture of Bollobds and Leader [2] and a conjecture of
Gao, Li, Peng and Sun [6], which is outlined in Section 5.

The paper is organized as follows. In Section 2 we present some results on Davenport’s
constant. In section 3 we prove more preliminary results which will be used in the proof of
the main Theorems. The proofs of Theorems 1.1 to 1.3 are given in Section 4. In section
5 we will prove Theorem 1.4 and give some applications of Theorems 1.1 and 1.2.

2 Some bounds on Davenport’s constant
Lemma 2.1 (see [8]) Let G' be a non-cyclic finite abelian group. Then D(G) < @ +1.

Lemma 2.2 ([10] Lemma 4.1) Let k € N. If H < G are some finite abelian groups and
Gy = G/H ~ (Z/QZ)k—I—I Then D(G) < QD(H) 4 ok+l _ 9

Lemma 2.3 ([10] Lemma 2.3) Let H < G be some finite abelian groups and Gy = G/H
is non-cyclic, then D(G) < (D(Gy) — 1)D(H) + 1.

Lemma 2.4 (i)Let G be a finite abelian group of rank 2 and G % Cy @ Cyy,. Then (i)
D(G) <8 4 2.

(i) D((Z/pZ)") = r(p — 1) + 1 for prime p and r > 1.

(iii) D(G) < |G.

Proof. (iii) is obvious. (i) and (ii) follow from Theorems 5.5.9 and 5.8.3 in [7]. O
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Lemma 2.5 If G is an abelian group of rank greater than 2 and G ¢ Cy @ Cy @ Csy,
then D(G) < |G‘4+2.

Proof. Since G has rank greater than 2, then G has p-rank at least 3 for some prime
p, and thus there exists a subgroup H < G with G/H ~ (Z/pZ)3. We can then apply
Lemmas 2.3 and 2.4 (ii),(iii) to conclude that

3(p—1)
p3

|G| + 2

D(G) < :

2
Gl+1< 561 +1<

when p > 3. If p = 2 we can apply Lemmas 2.1 and 2.2 to see that

<\G|+2

D(G)<2D(H)+6<2-<@+1)+6:‘%|+8 1

2

when |G| > 60. Further, the only case with |G| < 60 and G % Cy @& Cy @ Cy,, is that
G=Cy® Cy® Cy, in this case D(G) =8 < %. We are done. O

Lemma 2.6 ([10] Theorem 5.3) If G is an abelian group of rank greater than 2, and let
X C G\{0} be a generating set for G consisting only of elements of order greater than 2.
Suppose A C G satisfies |(A+ x)\A| < 3 for all x € X. Then min{|A|, |G\A|} < 5.

Lemma 2.7 ([10] Lemma 4.3) Let G be a finite abelian group and let X C G\{0} be a
generating set for G. Suppose A is a nonempty proper subset of G. Then

D 1A+ 2)\Al > |X].

zeX

Lemma 2.8 ([10] Lemma 4.4) Let G be a finite abelian group and let X C G\{0} be a
generating set for G. Suppose f : G — 7Z is a function on G. Then

> max{f(g+ ) — f(g),0} = (max(f) — min(f))|X].

zeXgeG
Using the technique in the proof of [10] Theorem 5.3, we have

Lemma 2.9 Let m > 0 be a positive integer and G a finite abelian group, and let X C
G\{0} be a generating set for G. Suppose A C G satisfies |(A+x)\A| < m forallz € X
and there exists a proper subset Y C X such that H = (Y') and Gy = G/H both contain
at least (m + 1) elements. Then min{|Al, |G\ A|} < m?.

Proof. First, without loss of generality we may replace X by a minimal subset X; of X
such that (X; NY) = (V) and (X;) =G.
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Define a function f: Gy — Z by f(g9) =|AN (g + H)|. Then we have that

(A—2\Al= ) [(A=a\A) N (g + H)|

IS €S

=Y [(A-2)n(g+H)| - |[(A-—z)nAN(g+ H)|
9eGy

= (AN (g+z+H)| - |(A-—2)nAN(g+ H)|

geGh

> Z max{f(g+z) — f(g),0}.

geG1

It follows that

mX\Y[> Y |[(A—2)\4

zeX\Y

> Y > max{f(g+x) - f(9),0}

zeX\Y geiGy

> (max(f) — min(f))[X\Y]|

by Lemma 2.8, since X\Y projects to | X\Y| distinct nonzero elements in G; because
X is a minimal generating set with the property described in the first paragraph. Thus
(max(f) —min(f)) < m. Then by replacing A by G\A if necessary, we can assume that
f(g) # |H| for any g € G;. The reason is that

(G\A+2)\(G\A) = A\(A + ),
[(G\A+2)\(G\A)| = [A\(A + )| = [(A = 2)\A|.

Since for every x € Y we have

(A+a\A =) [(A+2)\A) N (g + H)|

geG1

=Y (A+2)n(g+H)— (A+2)NAN(g+ H)|

IS €S

=Y [(A+z)n(g+H+2) - (A+z)n(g+z+H)N(AN(g+ H))|

=Y [((An(g+H)+z—(AN(g+ H) +2)N (AN (a+ H))|

geGh

=Y ((An(g+H)+2)\(An (g + H)),

geGt
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thus we can apply Lemma 2.7 to obtain that

mlY[>) [(A+2)\A|

zeY

=> D I((An(g+ H) +2)\(An (g + H))|

geGy z€Y
> |supp(f)] Y],

where supp(f) = {g € G1|f(g) # 0} is the support of f. Since |G| = m + 1, this implies
that f(g) = 0 for some g, and thus f(g) < m for all g € Gy. Then |[A| =3 . f(g9) <
max (f)|supp(f)| < m?, as desired. O

3 Proof of Theorems 1.1 to 1.3

Proof of Theorem 1.1:

Proof. We first prove the theorem if S contains an element of order 2. Suppose that
S = (g;), generates G, G has rank 2,0 ¢ > (S), and g, has order 2. Let G be the
quotient of G by the subgroup generated by g,, then G has rank 2 since G % Cy @ Coyp,.
Let S = (3;)"-] be the projection of the first n — 1 terms of S to G. Then 0 € >_(S)
would imply that either 0 or g, lies in > ((g;)7=}') and hence 0 € >2(5), so ((g;)i=]) is
not a cyclic group and () = Y ((:)75") U{g.} U (X ((9:)1") + gn) is a disjoint union.
Therefore, by Theorem B

F(S) 2 2f((g)il) + 1> 220~ 3) 4+ 1> dn— 5 > 3n — 4,

as desired.

Now suppose for contradiction that the theorem fails for some abelian group G of
minimum size. Choose S = (¢;)I"; to be a counterexample sequence of minimum length
n, so f(S) < 3n—>5. Also, S must generate G by the minimality of |G|, so G is noncyclic,
G % Cy & Cyy,. Moreover, by the minimality of n we have that either the theorem holds
for all Sg;' (1 < i < n); or (Sg; 1) = Cy @ Oy, or Y(Sgh) = A, U (b+ B,), where
a,b € G, A,, B, are some subsets of the cyclic group (a) generated by a and b & (a) for
some 1 <7 < n. We divide the remaining proof into three cases.

Case 1: (Sg;') = Oy @ Cy,, for some 1 < i < n. Then S = (Sg; Mg and g; € (Sg; ")
since G % Cy @ Cayy,. It follows that Y () = S°(Sg; ) U{gi} U (Sg; )+ g;) is a disjoint
union, by Theorem B we have f(S) > 2f(Sg; ')+ 1> 2(2n—3) +1 > 3n — 4, as desired.

Case 2: > (Sg;') = A, U(b+ B,) for some 1 < i < n. Then g; & {(a) since
>(S) # AU (b+ B,). By the definitions of >°(Sg; '), we have Sg; ' = S(g:9;) 95, 9; =
b+la & {(a), S(gig;)~* C {(a) and j # i. It follows that >°(Sg; ') = A,U{g;}U(g;+A,) ==
A, A, C (a) is a disjoint union and

> (S)=AU{g}UB, B=(gi+ Ad) U{gi+g;} U (g + g + Ad).
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If g, = gj or AN B # (), then x; € (b+ (a)) U (—b+ (a)), and thus
> (S)=A,U(b+B)U(2b+C,), or A,U(b+ B,)U(=b+Cy),

where A,, B,, C, are some subsets of (a).
If g; € b+ (a), then g; = b+ ka for some k € Z and

> (S) DA, U(b+ B,) U (2b+ ka + B,),
and the right hand side is a disjoint union, and thus
f(S) = |Asl + |Ba| +|Bal 2n—2+2(n—1) =3n—4.
If gi € —b+ (a), then g; = —b+ ka for some k € Z and
> (S) 2 AU (b+ By) U (=b+ ka + (A, U {0})
and A, U (b+ B,) U (—=b+ ka + (A, U {0}) is a disjoint union, and thus
f(S) = |Au| + |Bal + |Aal +12n—242(n—1) =3n—4.

If g; # g; and ANB = 0, then Y (S) = AU{¢;}UB, B = (¢;+A.)U{gi+9;}U(g:i+9;+ Aa)

is a disjoint union, hence
f(S)=4|A, +3>4(n—2)+3>3n—4.

Case 3: If the theorem holds for all Sg;*,1 <i<n. Let A =>(S) C G. Then for
any i we have > (Sg; ') € (A —g;)) N A, so

(A= g\AI < f(S) = f(Sg; ") <3n—=5—(3(n—1)—4) =2.

It is easy to see that S satisfies the conditions of Lemma 2.9 since (S) % Cy @ Cyy,.
Applying Lemma 2.9 to A C G with generating set S, we obtain that either A or G\ A
has cardinality at most 4. Since |A| > 4, so we have that |G\ A| < 4.

We now consider the two cases. If |G\A| =1, thenn < D(G)—1 < % + 1 by Lemma
2.4(i), and hence
G =|A|+1<3n—5+1<|G| -1,

which is a contradiction.
Otherwise, there is some nonzero element y € G\ A, and S is still zero-sum free after
appending —y, son < D(G) — 2 < ‘—?' by Lemma 2.4(i) again, and thus

G <Al +4<3n—5+4<|G| -1,

is again a contradiction. Theorem 1.1 is proved.
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Proof of Theorem 1.2:

Proof. For |S| =5, by Theorems 1.1, we have f(S) > 3|S| —4 = 4|S| — 9, so the theorem
holds for n = 5. If S = (g;)I, contains an element of order 2, say, o(g,) = 2. By the
similar argument as in Theorem 1.1 and by Theorem B, we have

FS) =2 2f((9:)i5) +1>2(2n —3) +1 > 4n — 5,

as desired.

Now suppose for contradiction that the theorem fails for some abelian group G of
minimum size. Choose S = (g;)?_; to be a counterexample sequence of minimum length
n, so f(S) < 4n — 10. Also, S must generate G by the minimality of |G|, so G is
noncyclic, G 22 Cy @ Cyy,, 22 C3 ® C3y, 22 Cy @ Clyyy. Moreover, by the minimality of n
we have that either the theorem holds for all Sg; ' (1 < i < n), or (Sg; ') = Cy @ Oy,
or (Sg;') =2 C3 @ O3y, or (Sg;) =2 Cy @ Cup, or (Sgh) = A, U (b + B,), or
A, U(b+ B,) U (2b+ C,), or A, U (b+ B,) U (=b+ C,), where a,b € G, A,, B,,C, are
some subsets of the cyclic group (a) generated by a and b ¢ (a) for some 1 < i < n. We
divide the remaining proof into five cases.

Case 1: (Sg; ) = Cy @ Cyyy, or (Sg; ') = C3 @ Oy, or (Sg; ') = Cy @ Oy, for some
1 <i<n Then S =(Sg; ')g; and g; & (Sg; ") since G ¥ Cy & Oy, G % C3 @ Cs,,, and
G % Cy ® Oy Tt follows that >2(S) = Y2(Sg; ) U {g:} U (O2(Sg; ) + g;) is a disjoint
union, by Theorem B we have f(S) > 2f(Sg; ') +1 > 2(2n—3) +1 > 4n — 5, as desired.

Case 2: > (Sg7') = A, U(b+ B,) for some 1 < i < n. Then g; & {(a) since
S(S) # A,U(b+ B,). By the definitions of > (Sg; '), we have Sg; ' = (S(g:9:) ) g, 9; =
b+la & {(a), S(gig;)~* C (a) and j # i. It follows that >"(Sg; ") = A,U{g;}U(g;+ As) ==
A, A, C (a) is a disjoint union and

> (S)=AU{g}UB, B=(gi+ Ad) U{gi + g;} U (i + g + Ao).
If g =gj or AN B # 0, then g; € (b+ (a)) U (=b+ (a)), and thus
Y (S) = A, U(b+ B U(2b+Ca), or AU (b+B,)U(=b+ Cl),

where A, B,,C, are some subsets of (a), a contradiction. It follows that > (S) = AU
{9:}UB, B=(g:+A.) U{gi+9;} U(9;: + g; + A,) is a disjoint union, and thus f(S5) =
41All +3 = 415(gi9;) 7 +3=4(n—2) + 3 = 4n — 5, as desired.

Case 3: Y (S¢;') = A, U(b+ B,) U (2b+ C,) := A for some 1 < i < n. Then
gi & {a) since Y(S) # A, U (b+ B,) U (2b+ C,). By the definitions of > (Sg; '), we have
Sgit = (S(9i9;9%) " )gi9k, 95 = b +la & (a), g = b+ ha & (a), (S(g:959%) ") C (a) and
j # k #i. It follows that Y (Sg; ') = A,U(b+ B,)U(2b+C,) := A, A, C (a) is a disjoint
union and |A,| > |S(gig;96) " =n—3, |Bal 2 |Aul +12n =2, |Cy| = |Au|+12n—2.
And

> (8)=AU{g}UB, B=(g:+A).

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R97 8



If g; = g; or g; = g, or ANB # (), then g; € (b+ (a))U(=b+ (a))U(2b+ (a)) U (—2b+ (a))
and b is an element of order at least 4 by the assumptions. If g; € b+ (a), then g; = b+ ka
for some k € Z and
D (S)=A,U(b+B,)U(2b+C,) U (3b+ka+ Ca), B, C B,, C, CC,,
is a disjoint union, and thus
f(S)=|Aul + B+ |Cal +|Cul =n—3+3(n—2)=4n—9.
If g; € 2b+ (a), then g; = 2b + ka for some k € Z and
> (S)2 4, U (b+B,)U(20+C,) U (3b+ka+ B,),B, € B,, C, C C,
and A, U (b+ B.)U (20+ C!) U (3b+ ka + B,) is a disjoint union, and thus
f(S) = |Aul + |BL| +|Cul +|Ba) 2n—343(n—2) =4n—09.
If g; € —b+ (a), then g; = —b+ ka for some k € Z and
> (S)=ALU(b+ B,)U(2b+Co) U (=b+ka+ (A, U{0})), A, € A,, B, C B,
is a disjoint union, and thus
f(S) =2 |Aa| + |Bal + |Cu| + Al +1 21 —-34+3(n—2) =4n —9.
If g; € —2b+ (a), then g; = —2b + ka for some k € Z and
> (S)2 A, U(b+B,)U(2b+Co) U (=b+ka+ B,), A, C A, B, C B,
is a disjoint union, and thus
f(S) 2 |Au|l + |Ba|l + |Ca| +|Bal 2 n—343(n—2) =4n — 9.

If g; # g; and g; # gx and AN B =, then > (S) = AU{¢g;} UB, B= (g, +A) isa
disjoint union, hence

f(S)=22n—=3)+4n—2)+1>4n-9.

Case 4: > (Sg; ') = A,U(b+B,)U(=b+C,) := A for some 1 < i < n. Then g; & (a)
since >_(S) # A,U(b+B,)U(=b+C,). By the definitions of > (Sg; '), we may assume that
Sgit = (S(9i9;9%) " )gigr: 95 =b+1a & (a), g = —b+ha & (a), (S(gig;gr)") C (a) and
j # k #i. 1t follows that >-(Sg; ") = (32(S(gigs96) ™ (1 4+ 1)a)) U (b+ (X2 (S(gig9) ™) U
{01) U (=b+ (O2(S(gigigr) ) U{0}) :== A, (O2(S(g:959r)"") C (a) is a disjoint union
and |S(gigj9x) "' =n — 3. And

D (8)=AU{g}UB, B=(g:+A).
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The remaining proof of this case is similar to the proof of the case 3, we omit the detail.
Case 5: If the theorem holds for all Sg;*,1 <7< n. Let A= Z( ) € G. Then for
any i we have > (Sg; ") C (A —g;) N A, so

(A= gN\AI <[ () =D (597" <4n =10 (4(n— 1) —9) = 3.

It is easy to see that S satisfies all the conditions of Lemma 2.9 by the assumptions.
Applying Lemma 2.9 to A C G with generating set S, we obtain that either A or G\ A
has cardinality at most 9.

We now consider the two cases. If |G\A| =1, thenn < D(G)—1 < % + 3, and hence

Gl =|A|+1<4n—10+1< —|G|+3 G| -1

since |G| > 25, which is a contradiction.
Otherwise, there is some nonzero element y € G\ A, and S is still zero-sum free after

appending —y, son < D(G) — 2 < @ + 2, and thus
4
G| <|Al+9<4n—1049 < 5|G|+7< |G| —1

when |G| > 50, which is again a contradiction.

The only left case is that G = Cs®C5. If n =8 = D(G)—1then f(S) =24 > 4x8-9.
The case that n = 7 follows from [6] Lemma 4.5. The case that n = 6 follows from the
proof of the above case 5 since f(S) = |A| > |G| —9 > 4 x 6 — 9. The case that n = 5
follows from Theorem 1.1 since f(S) >3 x5—-4=11=4x5-09.

]

Proof of Theorem 1.3:
Proof. If there exists some integer 4,1 < i < n such that the rank of (Sg; 1> is two and
f(Sg;Y) =2|Sg; | — 1, then by Theorem C we have Sg;* = a®(a + g)¥, a%(a + g)Yg, a®b,

where a,b, g are elements of G with ord(g) = 2. Tt follows from our assumption that
g; € (Sg; "), and thus

f(S)=2f(Sz;)+1=22n—-3) +1=14dn—5.
If rank(Sg; ') =2 and f(Sg; ') > 2|Sg;!|, then
f(S)=2f(Sg;" ) +1=2(2n—2)+1=4n—3.

If (Sg;') =2 Cy ® Cy @ Copy, for some i,1 < i < n, then g; ¢ (Sg; ') since (S) 2
Cy @ Cy @ Oy, and so

f(S)=2f(Sg;")+1=24(n—-1)—-5)+1=8n—17>4n — 3

since n > 4, as desired.
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Now we suppose that for all 4,1 < i < n, (Sg; ') is an abelian group of rank greater
than 2 and (Sg; ") % Co @ Cy @ Oy,

First we will show that the theorem holds for n = 4. Let S = abed such that
rank{abc) = rank{abd) = rank{acd) = rank(bcd) = 3, then a, b, ¢, a+b, a+c,b+c,a+b+c
are distinct elements in Y (abed) since rank{abc) = 3. The case that rank{a,b,c,d) =4
is trivial since f(abed) = 15 in this case. It is easy to see that d & {a,b,c,a+b,a+c, b+c}
and a +d & {a,b,c,a+b,a+c,a+ b+ c}.

() Ifd=a+b+cd+a=>b+cand d+b = a+ ¢, then 2a = 2b = 0 and
(S) = Cy @ Cy @ Oy, a contradiction.

(i) If d = a+b+c,c = a+b+d and b = a+c+d, then 2(a+b) = 2(a+d) = 2(a+c) = 0.
Let b= —a+gi,c = —a+ g2,d = —a+gs,0(q1) = 0(g2) = o(g3) = 2, then g3 = g1 + go,
and thus (S) = Cy @ Cy @ Cyyy.

(i) fd+a=b+c,d+b=a+cand d+c=a+b, then 2a = 2b = 2¢ = 2d. Let
b=a+gi,c=a+gyd=a+gso(g) = o(g2) = o(gs) = 2, then g3 = g1 + g> and so
(S) = Cy @ Cy @ Copy,.

(iv) fIfd=a+b+c,c=a+b+dand b+a = c+d, then 2¢c =2d =0,2(a+b) = 0.
Let b = —a + g1,¢ = g2,d = g3,0(91) = 0(g2) = o(g3) = 2, then g1 = g» + g3, and thus
(S) =2 Cy @ Cy @ Cypy.

By symmetry, we conclude that (S) = Co@®Co@® sy, whenever there are three relations.
If there are precisely two relations, then f(abed) = 13; If there is only one relation, then
f(abed) = 14; If there is no relations between a, b, cd , then f(abed) = 15. Therefore the
theorem holds for n = 4.

Suppose for contradiction that the theorem holds for some abelian group G of minimum
size. Choose S = (g;)I, to be a counterexample sequence of minimum length n > 5,
so f(S) < 4n — 4. Also S must generate G by minimality of |G|, rank(G) = 3 and
G %2 Cy @ Cy @ Csy,. Moreover, by the minimality of n > 5, we have that the theorem
holds for Sg; .

Let A=Y (S) C G, then > (Sg;") € (A—g;) N A, and thus [(A — g;)\A| < |A] —
f(Sg7Y) <4n —4 — (4n —7) = 3. It follows from Lemma 2.6 that min{|A|, |G\A|} < 5.
Since |A| > 2|S| —1 > 9, then we have

|G\A| < 5.
If |G\A| =1, then n < D(G) — 1 < ‘C;'T_z by Lemma 2.5, and hence
|G| =]Al+1<4n—4+1< |G| -5,

is a contradiction. Otherwise, there is some nonzero element y € G\ A, and X is still
zero-sum-free after appending —y, so n < D(G) —2 < ‘G[T_(i. Therefore

G| <Al +5<4n+1< |G| -1,

is again a contradiction. O
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4 Proof of Theorem 1.4

Now we are in a position to prove Theorem 1.4.

Proof. If rank(S) > 3, then f(S) > 4|S| —5=4(n.+2) =5 > 4n, — 1. If rank(S) = 2,
since |S| =n, + 2 < D(<S>) — 1, then <S> ’7\—£ 02 D Cgm,03 D Cgm. If <S> = 04 D C4m,
then |S| = D(G) — 1 and thus f(S) = [(S)] — 1 = 4n, — 1. If (S) 22 C4 & Cyy, then
f(S) = 4]S| —9 = 4n, — 1 by Theorem 1.2. We are done. O

Similarly, by Theorem 1.1, we can prove the following theorem in [6].

Theorem 4.1 ([6] Theorem 1.1) Let G = C,,, & ... & C,,. be a finite abelian group with
1 <mng|...|n.. Ifr > 2 and n,_; > 3, then every zero-sum free sequence S over G of
length |S| = n, + 1 satisfies f(S) > 3n, — 1.

Proof. If rank(S) > 3, then f(S) > 4|S| —5=4(n,+1) =5 > 3n, — 1. If rank(S) = 2,
since |S| = n, +1 < D((S)) — 1, then (S) 2 Cy & Cyy,. Therefore f(S) > 3|S| —4 >
3(n, +1) —4=3n, —1 by Theorem 1.1. We are done. O

We recall a conjecture by Bollobas and Leader, stated in [2].

Conjecture 4.1 Let G = C, @ C,, with n > 2 and let (e1,e3) be a basis of G. If
ke[0,n—2] and
S =e e e F(G).

Then we have f(G,n+k) = f(S) = (k+2)n— 1.

By a main result of [6] and Theorem 1.4, the conjecture holds for k£ € {0,1,2,n — 2}.
Moreover, the following general conjecture stated in [6] holds for k = 2.

Conjecture 4.2 Let G = C,, & ... & C,, be a finite abelian group with r > 2 and
1 <ny|...|n.. Let(e1,...,e) be a basis of G with ord(e;) = n; for alli € [1,r],k €
0,n,_1 — 2] and

S = el e F(G).

T

=e
Then we have f(G,n, + k) = f(S) = (k+2)n, — 1.
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