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Abstract

This paper develops an analogy between the cycle structure of, on the one hand,
random permutations with cycle lengths restricted to lie in an infinite set S with
asymptotic density σ and, on the other hand, permutations selected according to
the Ewens distribution with parameter σ. In particular we show that the asymptotic
expected number of cycles of random permutations of [n] with all cycles even, with
all cycles odd, and chosen from the Ewens distribution with parameter 1/2 are all
1
2 log n + O(1), and the variance is of the same order. Furthermore, we show that
in permutations of [n] chosen from the Ewens distribution with parameter σ, the
probability of a random element being in a cycle longer than γn approaches (1−γ)σ

for large n. The same limit law holds for permutations with cycles carrying multi-
plicative weights with average σ. We draw parallels between the Ewens distribution
and the asymptotic-density case and explain why these parallels should exist using
permutations drawn from weighted Boltzmann distributions.

1 Introduction

In this paper we study the cycle structure of random permutations in which the lengths
of all cycles are constrained to lie in some infinite set S, and permutations may be made
more or less likely to be chosen through multiplicative weights placed on their cycles.
Cycle structures viewed in this manner are a special case of certain measures on Sn which
are conjugation-invariant and assign a weight to each element of Sn based on its cycle
structure.

Definition 1.1. Let ~σ = (σ1, σ2, . . .) be an infinite sequence of nonnegative real numbers.
Then the weight of the permutation π ∈ Sn, with respect to ~σ, is

w~σ(π) =

n
∏

i=1

σ
ci(π)
i

where ci(π) is the number of cycles of length i in π.
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Informally, each cycle in a permutation receives a weight depending on its length, and
the weight of a permutation is the product of the weights of its cycles. The sequence ~σ is
called a weighting sequence.

For each positive integer n, let (Ω(n),F (n)) be a probability space defined as follows.
Take Ω(n) = Sn, the set of permutations of [n], and let F (n) be the set of all subsets of

Sn. Endow (Ω(n),F (n)) with a probability measure P
(n)
~σ for each weighting sequence ~σ as

follows. Let P
(n)
~σ (π) = w~σ(π)/

∑

π′∈Sn
w~σ(π

′); that is, each permutation has probability

proportional to its weight. Extend P
(n)
~σ to all subsets of Sn by additivity. To streamline the

notation, we will sometimes write P~σ(π) for P
(n)
~σ (π). The sum of the weights of ~σ-weighted

permutations of [n] is

∑

π∈Sn

w~σ(π) = n![zn] exp

(

∑

k>1

σkz
k/k

)

by the exponential formula for labelled combinatorial structures.
We fix some notation. Define the random variable X

(n)
k : Ω(n) → Z

+ by setting X
(n)
k (π)

equal to the number of k-cycles in the permutation π. Let X(n)(π) =
∑n

k=1X
(n)
k (π) be

the total number of cycles. We will often suppress π and (n) in the notation, and we

will write (for example) P~σ(X1 = 1) as an abbreviation for P~σ({π : X
(n)
1 (π) = 1}). Let

Yk = kXk. We define Yk in order to simplify the statement of some results.
This model incorporates various well-known classes of permutations, including gener-

alized derangements (permutations in which a finite set of cycle lengths is prohibited),
and the Ewens sampling formula from population genetics [8], which corresponds to the
weighting sequence (σ, σ, σ, . . .). If ~σ is a 0-1 sequence with finitely many 1s, then this
model specializes to random permutations of which all cycle lengths lie in a finite set.
These have a fascinating structure studied by Benaych-Georges [4] and Timashev [25]; a
typical permutation of [n] with cycle lengths in a finite set S has about 1

k
nk/ max S k-cycles,

for each k in S. In particular, most cycles are of length maxS, which may be unexpected
at first glance. Analytically, this situation is studied via the asymptotics of [zn]eP (z) where
P is a polynomial, as done by Wilf [28]. Yakymiv [29] has studied the case, alluded to by
Bender [5], in which ~σ is a sequence of 0s and 1s with a fixed density σ of 1s; the behavior
of such permutations is in broad outline similar to that of the Ewens sampling formula
with parameter σ. An “enriched” version of the model has been studied by Ueltschi and
coauthors [15, 26]. In their model, permutations are endowed with a spatial structure.
Each element of the ground set of the permutation is a point in the plane, and weights
involve distances between points. Their “simple model of random permutations with cycle
weight” [26, Sec. 2] is the model used here, where σi = e−αi.

There are other combinatorially interesting conjugation-invariant measures on Sn, in-
cluding permutations with all cycle lengths distinct [16], and permutations with kth roots
for some fixed k [10, 22]. However the generating functions counting these classes are not
exponentials of “nice” functions and thus different techniques are required.

Throughout this paper, we often implicitly assume that permutations under the uni-
form measure on Sn are the “primitive” structure, and weighted permutations are a pertur-
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bation of these. Here we follow Arratia et al. in [1, 2], in embracing a similar philosophy
and viewing the permutation as the archetype of a class of “logarithmic combinatorial
structures”, and Flajolet and Soria’s definition of functions of logarithmic type [14].

It will be convenient to use bivariate generating functions which count permutations
by their size and number of cycles. In general, we take F (z, u) =

∑

n,k fn,k
zn

n!
uk to be the

bivariate generating function, exponential in z and ordinary in u, of a combinatorial class
F , where fn,k is the number of objects in F of size n and with a certain parameter equal to
k. In our case n will be the number of elements of a permutation, and k the total number
of cycles or the number of cycles of a specified size. Then [zn] ∂

∂u
F (z, u)

∣

∣

u=1
/[zn]F (z, 1)

gives the expected value of the parameter k for an object of size n selected uniformly
at random. The following lemma will frequently be useful, as it reduces the bivariate
analysis to a univariate analysis.

Lemma 1.2. Let f(z) be the exponential generating function of permutations with weight
sequence ~σ. Then the expected number of k-cycles in a permutation chosen according to
the measure P

(n)
~σ is

E
(n)
~σ Xk =

σk

k

[zn−k]f(z)

[zn]f(z)
.

Proof. The bivariate generating function counting the cycles of such permutations is

σ1z + σ2
z2

2
+ · · ·+ σk−1

zk−1

k − 1
+ uσk

zk

k
+ σk+1

zk+1

k + 1
+ · · ·

and this can be rewritten as (u−1)σkzk

k
+
∑

j>1
σjzj

j
. Thus, from the exponential formula,

the bivariate generating function counting such permutations is

P (z, u) = exp

(

(u− 1)
σkz

k

k
+
∑

j>1

σjz
j

j

)

.

The expected number of cycles in a random permutation is [zn]Pu(z, 1)/[zn]P (z, 1), giving
the result.

The structure of this paper is as follows. In Section 2 we give exact formulas and
asymptotic series (Propositions 2.2 and 2.3) for the mean and variance of the number of
cycles of permutations chosen from the Ewens distribution. We also consider the average
number of k-cycles in such permutations of [n] for fixed k (Propositions 2.4 and 2.5) and
for k = αn (Proposition 2.6). An “integrated” version of these results, Theorem 2.7, is
one of the main results; this is a limit law for the probability that a random element
of a weighted permutation is in a cycle within a certain prescribed range of lengths. In
Section 3 we derive similar results for permutations in which all cycle lengths have the
same parity. In addition, we determine the mean and variance of the number of cycles
of such permutations (Theorem 3.6 treats the odd case, and Theorem 3.8 treats the
even case). In Section 4 we explore connections to the generation of random objects by
Boltzmann sampling. The main theorem of this section, Theorem 4.3, states that the
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Boltzmann-sampled permutations of a certain class of approximate size n, including the
Ewens and parity-constrained cases, have their number of cycles distributed with mean
and variance approximately a constant multiple of logn.

2 The Ewens sampling formula and Bernoulli decom-

position

The Ewens distribution [8] on permutations of [n] with parameter σ gives to each permu-
tation π probability proportional to σX(π). This corresponds to the weighting sequence
~σ = (σ, σ, σ, . . .); we will write P

(n)
σ ,E

(n)
σ for P

(n)
~σ ,E

(n)
~σ , and call a random permutation

selected in this manner a σ-weighted permutation. In this section we derive formulas for
the mean and variance of the number of cycles of permutations chosen from the Ewens
distribution. Note that the number of cycles can be decomposed into a sum of indepen-
dent Bernoulli random variables. Similar decompositions are due to Arratia et al. in [2,
Sec. 5.2] for general σ, and Feller [9, (46)] for σ = 1; the fact that the number of cycles
is normally distributed is seen in [14, Example 1]. Thus this section is largely expository;
the proofs are provided for the purpose of comparison with other proofs to be given below.
The asymptotic series for E

(n)
σ and V

(n)
σ appear to be new.

Theorem 2.1. [20, Exercise 3.2.3] The distribution of the random variable X under the

measure P
(n)
σ is that of the sum

∑n
k=1 Zk, where the Zk are independent random variables

and Zk has the Bernoulli distribution with mean σ/(σ + k − 1).

Proof. The generating function of permutations of [n] counted by their number of cycles
is
∑n

k=1 S(n, k)uk = u(u + 1)(u + 2) · · · (u + n − 1), where S(n, k) are the Stirling cycle
numbers. Replacing u with σu and normalizing gives the probability generating function
for the number of cycles,

n
∑

k=1

S(n, k)σkuk =
σu

σ

σu+ 1

σ + 1
· · · σu+ n− 1

σ + n− 1
,

and each factor is the probability generating function for a Bernoulli random variable.

Combinatorially, we can envision this Bernoulli decomposition as follows. We imagine
forming a permutation of [n] by placing the elements 1, . . . , n in cycles in turn. When
the element k is inserted, with probability σ/(σ + k − 1) it is placed in a new cycle,
and with probability 1/(σ + k − 1) it is placed after any of 1, 2, . . . , k − 1 in the cycle
containing that element. Then the probability of obtaining any permutation with c cycles
is σc/(σ(σ + 1) · · · (σ + n − 1)), which is exactly the measure given to this permutation

by P
(n)
σ . This is an instance of the Chinese Restaurant Process [20, Sec. 3.1].

From this decomposition into Bernoulli random variables, we can derive formulas for
the mean and variance of the number of cycles under the measure P

(n)
σ . In particular we

note that since X is a sum of Bernoulli random variables with small mean, the variance of
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X is very close to its mean. Let ψ denote the digamma function ψ(z) = Γ′(z)/Γ(z); this
has an asymptotic series ψ(z) = log z− 1

2
z−1− 1

12
z−2+O(z−4) as z → ∞. Let Hn =

∑n
k=1

1
k

be the nth harmonic number and let γ = 0.57721 . . . be the Euler-Mascheroni constant.

Proposition 2.2. The expected number of cycles of a random σ-weighted permutation of
[n] is E

(n)
σ X = σ(ψ(n+ σ) − ψ(σ)); in particular if σ is a positive integer we have

E
(n)
σ X = σ logn + (σγ − σHσ−1) + (σ2 − σ/2)n−1 +O(n−2). (1)

Proof. From Theorem 2.1 we have

E
(n)
σ X =

n
∑

k=1

σ

σ + k − 1
= σ

n
∑

k=1

1

σ + k − 1
.

Now, ψ(z + 1) − ψ(z) = 1/z; thus

ψ(n + σ) − ψ(σ) = (ψ(n+ σ) − ψ(n+ σ − 1)) + · · ·+ (ψ(σ + 1) − ψ(σ))

=
1

n+ σ − 1
+

1

n+ σ − 2
+ · · · + 1

σ

=

n
∑

k=1

1

σ + k − 1
.

This proves that E
(n)
σ X = σ(ψ(n+σ)−ψ(σ)). The asymptotic series follows from that for

ψ(z) where we have used the fact that ψ(n) = Hn−1 − γ when n is a positive integer.

Proposition 2.3. The variance of the number of cycles of a random σ-weighted permu-
tation of [n] is

σ2 (ψ′(n+ σ) − ψ′(σ)) + σ(ψ(n+ σ) − ψ(σ)); (2)

this has an asymptotic series,

V
(n)
σ X = σ log n+ (−σ2ψ′(σ) − σψ(σ)) +

4σ2 − 1

2
n−1 +O(n−2) (3)

The proof is similar to that of the previous proposition, noting that the variance of a
Bernoulli random variable with mean p is p− p2.

From (3) we can also derive for integer σ the explicit formula (not involving ψ)

V
(n)
σ X = −σ2

σ+n−1
∑

j=σ

1

j2
+ σ (log n+ γ −Hσ−1) +O(1/n)

which holds as n→ ∞. It suffices to show that

ψ′(n+ σ) − ψ′(σ) = −
σ+n−1
∑

j=σ

1

j2
. (4)
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To see this, recall the identity ψ(x+1)−ψ(x) = 1/x; differentiating gives ψ′(x+1)−ψ′(x) =
−1/x2. Summation over x = σ, σ + 1, . . . , σ + n− 1 gives (4).

Finally, we recall a normal distribution result for the total number of cycles [2, (5.22)].

Let X̂ = X−σ log n√
σ log n

be the standardization of X. Then limn→∞ P
(n)
σ (X̂ 6 x) = Φ(x), where

Φ(x) is the cumulative distribution function of a standard normal random variable. This
follows from Theorem 2.1 and the Lindeberg-Feller central limit theorem.

We have thus far looked at the total number of cycles of σ-weighted permutations.
These distributions, suitably scaled, are continuous in the large-n limit. In contrast, look-
ing at each cycle length separately, we approach a discrete distribution. More specifically,
the number of k-cycles of σ-weighted permutations of [n], for large n, converges in distri-
bution to P(σ/k), where P(λ) denotes a Poisson random variable with mean λ; here we

consider how quickly E
(n)
σ Xk approaches σ/k. Recall that Xk is a random variable, with

Xk(π) the number of k-cycles of a permutation π.

Proposition 2.4. [3, (37)][27] The average number of k-cycles in a σ-weighted permu-
tation of [n] is

E
(n)
σ Xk =

σ

k

(n)k

(n+ σ − 1)k
(5)

where (n)k = n(n− 1) . . . (n− k + 1) is the “falling power”.

We provide a new proof in terms of generating functions.

Proof. The bivariate generating function counting σ-weighted permutations by their size
and number of k-cycles is P (z, u) = (1 − z)−uσ exp(σ(u − 1)zk/k). The mean number of
k-cycles is given by

[zn] ∂uP (z, u)|u=1

[zn]P (z, 1)
=

[zn]σzk

k
(1 − z)−uσ

[zn](1 − z)−σ
=
σ

k

[zn−k](1 − z)−σ

[zn](1 − z)−σ

and the binomial formula gives (5).

When σ is an integer, a combinatorial proof can be obtained by considering σ-weighted
permutations as permutations where each cycle is colored in one of σ colors.

Proposition 2.5. There is an asymptotic series for E
(n)
σ Xk,

E
(n)
σ Xk =

σ

k

(

1 − (σ − 1)k

n
+O(n−2)

)

.

Proof. The numerator and denominator of (5) are polynomials in n of degree k; write the
two highest-degree terms of each explicitly and divide.

Proposition 2.6. Fix 0 < α 6 1. The expected number of elements in αn-cycles of a
random σ-weighted permutation satisfies, as n→ ∞,

E
(n)
σ Yαn = σ(1 − α)σ−1 +O(n−1)
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(Here we have assumed for simplicity that αn is an integer.)

Proof. Let β = 1 − α. We have from Proposition 2.4 that

E
(n)
σ Yαn = σ

(n)αn

(n+ σ − 1)αn

= σ
n!(βn+ σ − 1)!

(βn)!(n+ σ − 1)!
= σ

n!

(n+ σ − 1)!

(βn+ σ − 1)!

(βn)!

We now note that (n+ r)!/n! = nr(1 +O(n−1)), for constant r as n→ ∞, from Stirling’s
formula. Applying this twice with r = σ − 1 gives the result.

It would be of interest to determine the limiting distribution of the number of cycles
with length between γn and δn for constants γ and δ. There can be at most ⌊γ−1⌋ such
cycles, so this random variable is supported on 0, 1, . . . , ⌊γ−1⌋. Thus to determine the
limiting distribution it suffices to determine the 0th through ⌊γ−1⌋th moments of this
random variable. The σ = 1 case will be treated in [19].

We can essentially integrate the result of Proposition 2.5 to determine the number
of elements in cycles with normalized length in a specified interval. However, this can
be done in a more general framework. Following [13, Thm. VI.1] and [12, Thm. 1], for
constants R > 1 and φ > 0 we define a ∆-domain as a set of the form

∆(φ,R) = {z : |z| < R, z 6= 1, | arg(z − 1)| > φ}.

Theorem 2.7. Let
∑

k σkz
k/k = σ log 1

1−z
+ K + o(1) be analytic in its intersection

with some ∆-domain, for some constants σ and K. Then the probability that a uniformly
chosen random element of a random ~σ-weighted permutation of [n] lies in a cycle of length
between γn and δn approaches (1 − γ)σ − (1 − δ)σ as n→ ∞.

Note that analyticity in the slit plane suffices; this is the case φ = 0. We begin by
stating two lemmas needed in the proof.

Lemma 2.8. Let {σk}∞k=1 be a sequence of nonnegative real numbers with mean σ. Fix
constants 0 6 γ < δ < 1. Then

lim
n→∞

1

n

⌊δn⌋
∑

k=⌈γn⌉
σk

(

1 − k

n

)σ−1

= (1 − γ)σ − (1 − δ)σ.

Proof. We rewrite the sum as an integral,

⌊δn⌋
∑

k=⌈γn⌉
σk

(

1 − k

n

)σ−1

=

∫ δn

γn

(

1 − k

n

)σ−1

dµ(k)

where µ(x) =
∑⌊x⌋

j=1 σj . Integrating by parts gives

(1 − δ)σ−1µ(δn) − (1 − γ)σ−1µ(γn) −
∫ δn

γn

µ(k)d

(

1 − k

n

)σ−1

. (6)
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Differentiation allows us to rewrite the integral in (6) as a Riemann integral,

∫ δn

γn

µ(k)d

(

1 − k

n

)σ−1

=
1 − σ

n

∫ δn

γn

µ(k)

(

1 − k

n

)σ−2

dk. (7)

Let τ(k) = µ(k) − σk. Then the integral on the right-hand side of (7) becomes

1 − σ

n

(

∫ δn

γn

σ

(

1 − k

n

)σ−2

dk +

∫ δn

γn

τ(k)

(

1 − k

n

)σ−2
)

dk. (8)

We perform the first integral in (8) and note that µ(δn) ∼ σ · δn, µ(γn) ∼ σ · γn in (6).
This gives

1

n

∑

k

(

1 − k

n

)σ−1

∼ (1 − γ)σ − (1 − δ)σ +
1 − σ

n2

∫ δn

γn

τ(k)

(

1 − k

n

)σ−2

dk. (9)

So it suffices to show that the final term in (9) is negligible, i. e.

∫ δn

γn

τ(k)

(

1 − k

n

)σ−2

dk = o(n2).

Since {σk}∞k=1 has mean σ, we have
∑n

k=1 σk = σn+ o(n). Thus τ(k) = o(n). On [γn, δn],
(1 − k/n)σ−2 is bounded. So the integrand above is o(n), and the integral is o(n2) as
desired.

Lemma 2.9. Say [zn]P (z) = Cnσ−1(1+o(1)) uniformly in n, for some positive constants
C, σ. Then

⌊δn⌋
∑

k=⌈γn⌉
σk

[zn−k]P (z)

[zn]P (z)
∼

⌊δn⌋
∑

k=⌈γn⌉
σk

(

1 − k

n

)σ−1

as n→ ∞, for any 0 6 γ < δ < 1.

Proof. From the hypothesis that [zn]P (z) ∼ Cnσ−1, we get

[zn−k]P (z)

[zn]P (z)
∼ C(n− k)σ−1

Cnσ−1
=

(

1 − k

n

)σ−1

uniformly as n, k → ∞ with 0 6 k < δn. Therefore

⌊δn⌋
∑

k=⌈γn⌉
σk

[zn−k]P (z)

[zn]P (z)
=

⌊δn⌋
∑

k=⌈γn⌉
σk

(

1 − k

n

)σ−1

(1 + o(1))

=

⌊δn⌋
∑

k=⌈γn⌉
σk

(

1 − k

n

)σ−1

+

⌊δn⌋
∑

k=⌈γn⌉
σk · o(1) ·

(

1 − k

n

)σ−1

.
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The first sum in the previous equation is Θ(n). The second sum has Θ(n) terms; since
(1−k/n)σ−1 and σk can both be bounded above on the interval [γn, δn] each term is o(1).
Thus the second sum is o(n). So

⌊δn⌋
∑

k=⌈γn⌉
σk

[zn−k]P (z)

[zn]P (z)
=

⌊δn⌋
∑

k=⌈γn⌉

(

σk

(

1 − k

n

)σ−1
)

+ o(n)

=

⌊δn⌋
∑

k=⌈γn⌉

(

σk

(

1 − k

n

)σ−1
)

(1 + o(1))

as desired.

Proof of Theorem 2.7. This probability can be written as

lim
n→∞

1

n

⌊δn⌋
∑

k=⌈γn⌉
σk

[zn−k]P (z)

[zn]P (z)
.

Now, recall
∑

k

σkz
k/k = σ log

1

1 − z
+K + o(1)

by hypothesis. Thus the generating function P (z) of ~σ-weighted permutations is

P (z) = exp

(

∑

k

σkz
k/k

)

= exp

(

σ log
1

1 − z
+K + o(1)

)

= (1 − z)−σeK(1 + o(1)).

Applying the Flajolet-Odlyzko transfer theorem [12], [zn]P (z) = Cnσ−1(1+o(1)) for some
positive real constant C. Thus P (z) satisfies the hypotheses of Lemma 2.9. Applying that

lemma, we see that this sum is asymptotic to n−1
∑⌊δn⌋

k=⌈γn⌉ σk(1 − k/n)σ−1; the desired
result then follows from Lemma 2.8.

The hypotheses, and hence the conclusions, of Theorem 2.7 hold for many weight
sequences σ1, σ2, . . . with limn→∞

1
n

∑n
k=1 σk = σ; that is, for weight sequences averaging

σ. In particular, we have the following special case.

Corollary 2.10. Fix constants 0 6 γ 6 δ 6 1. Let pσ(n; γ, δ) be the probability that
the element 1, in a σ-weighted permutation of [n], lies in a cycle of length in the interval
[γn, δn]. Then

lim
n→∞

pσ(n; γ, δ) = (1 − γ)σ − (1 − δ)σ.

Proof. We have the cycle generating function
∑∞

k=1 σz
k/k = σ log 1

1−z
; apply Theorem

2.7.
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For example, setting σ = 1/2, γ = 0.99, δ = 1, we see that for large n, 10% of elements
of 1/2-weighted permutations are in cycles of length at least 0.99n. If we define the
“co-length” of a cycle of a permutation to be the number of elements not in that cycle,
a cleaner statement of the theorem becomes possible. The proportion of elements of
σ-weighted permutations in cycles of co-length at most ζn is ζσ.

It would be desirable to replace the condition in the hypothesis of Theorem 2.7 with
the less restrictive

∑

k

σkz
k

k
= σ log

1

1 − z
· (1 + o(1));

it seems likely that this suffices to prove a limit law but the proof does not easily adapt
to that case.

3 Permutations with all cycle length of the same par-

ity

This section is devoted to results on random permutations in which all cycle lengths have
the same parity; that is, they are either all even or all odd. We adopt the notation P

(n)
e

for the family of measures P
(n)
~σ where ~σ = (0, 1, 0, 1, . . .), and similarly P

(n)
o for the family

with ~σ = (1, 0, 1, 0, . . .); these are the measures corresponding to permutations with all
cycle lengths even and with all cycle lengths odd, respectively.

The results obtained here resemble those for the Ewens sampling formula with pa-
rameter 1/2. A heuristic explanation for this phenomenon is as follows. Let us produce
a permutation of [n] from the Ewens distribution with parameter 1/2 by first picking a
permutation π uniformly at random from Sn, and then flipping a fair coin for each cycle of
π. If all the coins come up heads we keep π; otherwise we “throw back” the permutation
π and repeat this process until we have a trial in which all coins come up heads. The
number and normalized size of cycles of permutations obtained in this manner should be
similar to those of permutations with all cycle lengths even, since for large permutations
the parity constraint is essentially equivalent to a coin flip.

Proposition 3.1. The expected number of elements in k-cycles of a permutation of [n]
with all cycle lengths even is

E
(n)
e Yk =

n(n− 2) · · · (n− k + 2)

(n− 1)(n− 3) · · · (n− k + 1)

if k is even, and 0 if k is odd.

Proof. By Lemma 1.2, we have E
(n)
e Yk = [zn−k](1 − z2)−1/2/[zn](1 − z2)−1/2; we apply the

binomial theorem and simplify.

For example, when n = 10 we have
(

E
(10)
e Y2,E

(10)
e Y4, . . . ,E

(10)
e Y10

)

= (10/9, 80/63, 32/21, 128/63, 256/63)

≈ (1.11, 1.27, 1.52, 2.03, 4.06)
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Figure 1: E
(100)
e Yk for k = 2, 4, . . . , 100.

and we observe that most entries are in the longer cycles. For n = 100 this is illustrated
in the figure above.

Proposition 3.2. The expected number of elements in k-cycles of a random permutation
of [n] with all cycle lengths odd is

E
(n)
o Yk =

{

n(n−2)···(n−k+1)
(n−1)(n−3)···(n−k)

, n even
(n−1)(n−3)···(n−k+2)
(n−2)(n−4)···(n−k+1)

, n odd

Proof. The generating function of permutations with all cycle lengths odd, counted by
their number of cycles, is P (z, u) = ((1 + z)/(1 − z))u/2. We use Lemma 1.2 to see that

the mean number of elements in k-cycles is given by E
(n)
o Yk = [zn−k]

√

1+z
1−z

/[zn]
√

1+z
1−z

.

We recall that [zn]
√

1+z
1−z

is (n−1)!!2

n!
if n is even and n!!(n−2)!!

n!
if n is odd; substituting and

simplifying gives the result.

By similar methods, we can obtain formulas for the exact number of permutations of
[n] with all cycle lengths divisible by a, and the exact expected number of k-cycles in such
permutations for integers k which are divisible by a. These permutations have exponential
generating function (1− za)−1/a. Permutations with all cycle lengths congruent to k mod
a for some nonzero k are more difficult to deal with, as it appears that the generating
function cannot be written in an elementary form except when a is even and k = a/2.
(See [23, Sec. 5.0.3] for the relevant generating functions.)
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Proposition 3.3. (a) The number of elements of k-cycles in a permutation of [n] with

all cycle lengths odd, for fixed odd k, satisfies E
(n)
o Yk = 1 + k+1

2n
+ O(n−2) as n

approaches ∞ through even values, and E
(n)
o Yk = 1 + k−1

2n
+O(n−2) as n approaches

∞ through odd values.

(b) The number of elements of k-cycles in a permutation of [n] with all cycle lengths

even, for fixed even k, satisfies E
(n)
e Yk = 1 + k

2n
+ O(n−2) as n approaches infinity

through even values.

Proof. To prove (a), from Proposition 3.2 we have previous formulas for E
(n)
o Yk depending

on the parity of n. These are fractions which have numerators and denominators which
are polynomials in n; we can write out the two highest-degree terms of each polynomial
and simplify. To prove (b) we proceed similarly from Proposition 3.1.

Note that the expected number of elements in k-cycles of permutations with all cycle
lengths even (or odd) approaches 1 as n gets large, if k has the appropriate parity. Assume
we are dealing with permutations with all cycle lengths even. Naively, we might add the
limits of the expected number of elements in 2-cycles, 4-cycles, . . . , n-cycles, and expect
to get n. But these are each 1; their sum is n/2. Since each element is in a cycle, we

must have
∑n

k=1 E
(n)
e Yk = n. The difficulty is that the convergence of E

(n)
e Yk as n→ ∞ is

not uniform over k. Under the correct scaling, then, subtler phenomena can be seen; the
“missing” elements end up disproportionately in the longer cycle lengths for permutations
with all cycle lengths even. We note that similar phenomena of nonuniform convergence
have previously been observed in random mappings, for example in [11].

Proposition 3.4. Fix ǫ ∈ (0, 1). The expected number of elements in k-cycles in a
random permutation of [n] with all cycle lengths even satisfies uniformly

E
(n)
e Yk →

(

1 − k

n

)1/2

as k, n→ ∞ with 0 < k/n < 1 − ǫ.

Proof. The result of Proposition 3.1 can be rewritten in terms of factorials as

E
(n)
e Yk = 2k

(

(n/2)!

((n− k)/2)!

)2
(n− k)!

n!

and by Stirling’s approximation and routine simplifications, we have

E
(n)
e Yk =

(

1 − k

n

)−1/2 1 + 1
4n

+O(n−2)

1 + 1
4(n−k)

+O((n− k)−2)
. (10)

Let n, k → ∞ with 0 < k/n < 1 − ǫ. Then we have 1/(4(n − k)) ∈ [(4n)−1, (4ǫn)−1)],
and so O((n − k)−2) = O(n−2). Furthermore 1/(4(n − k)) = O(n−1), with the constant
implicit in the O-notation being (4ǫ)−1. Therefore

E
(n)
e Yk =

(

1 − k

n

)−1/2

(1 +O(n−1))
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uniformly, as k, n→ ∞ with 0 < k/n < 1 − ǫ.

Furthermore, we can essentially integrate the result of Proposition 3.4 to determine the
cumulative distribution function of the length of the cycle containing a random element
of a random permutation with all cycle lengths even (or odd). This is the content of the
next theorem.

Theorem 3.5. Fix constants 0 6 γ 6 δ 6 1. Let pe(n; γ, δ) be the probability that 1 is
contained in a cycle of length between γn and δn of a permutation chosen uniformly at
random from all permutations of [n] with all cycle lengths even. Then

lim
n→∞

pe(n; γ, δ) =
√

1 − γ −
√

1 − δ.

Since the measure Pe is invariant under conjugation, this is the probability that an
element of [n] chosen uniformly at random is in a cycle of length between γn and δn in a
random permutation of [n] with all cycle lengths even.

Proof. Note that

∑

2|k

zk

k
=

1

2
log

1 + z

1 − z
=

1

2
log

1

1 − z
+ log 2 + o(1)

and apply Theorem 2.7.

The same is true for permutations with all cycle lengths odd; like those with all cycle
lengths even they fall in the “σ = 1/2 class”.

We now move to consider the mean and variance of the total number of cycles of all
lengths.

Theorem 3.6. The mean number of cycles of a randomly chosen permutation of [n] with
all cycle lengths odd is, as n→ ∞,

1

2
logn +

γ + 3 log 2

2
± γ + log n

8n
+O

(

logn

n2

)

where we take the + sign if n is odd and the − sign if n is even. The variance of the
number of cycles is, as n→ ∞,

1

2
log n+

γ + 3 log 2 − 4π2

8
+O

(

log2 n

n

)

.

Proof. We have the exponential generating function counting such permutations by size

and number of cycles,
(

1+z
1−z

)u/2
. We can differentiate to obtain the mean and variance of

the number of cycles. These are given by

µn :=
[zn]1

2

√

1+z
1−z

log 1+z
1−z

[zn]
√

1+z
1−z

, σ2
n :=

[zn]1
4

√

1+z
1−z

log2 1+z
1−z

[zn]
√

1+z
1−z

+ µn − µ2
n.
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Let fr(z) =
√

1+z
1−z

logr 1+z
1−z

for r = 0, 1, 2 and let ar(n) = [zn]fr(z) for r = 0, 1, 2. Then we

have

µn =
a1(n)

2a0(n)
, σ2

n =
a2(n)

4a0(n)
+ µn − µ2

n (11)

and we need to find asymptotic series for the ar(n) as n→ ∞. We observe that a0(n) is the
number of permutations of [n] with all cycle lengths odd, which is (n−1)!!2/n! if n is even
and n!!(n−2)!!/n! if n is odd; Stirling’s formula gives an asymptotic expansion, depending

on the parity of n. To find a series for a1(n) as n → ∞, we expand f1(z) =
√

1+z
1−z

in a

series with terms which are half-integral powers of 1 − z. From this we derive a series

for
√

1+z
1−z

log 1+z
1−z

with terms of the form (1 − z)i−1/2Lj where L = log 1/(1 − z). The

function being expanded is analytic in the complex plane slit along the real half-line
{z ∈ R : z > 1}; by [13, Thm. VI.3], an error of O((1 − z)i−1/2L) in the series for
f1(z) leads to an error O(n−i−1/2 log n) in the series for a1(n). We can thus transfer an
asymptotic expansion for f1(z) near z = 1 to give an expansion for a1(n) as n → ∞,
and similarly for f2(z) and a2(n). Combining these series as specified by (11) gives the
result.

We observe that this is (log 2)+o(1) more than the number of cycles of a permutation
of [n] with all cycle lengths even.

The following two results give a decomposition of the number of cycles of permutations
with all cycle lengths even into a sum of Bernoulli random variables.

Theorem 3.7. The generating function of permutations of [2n] with all cycle lengths
even, counted by their number of cycles, is

p2n(u) = [u(u+ 2)(u+ 4) · · · (u+ (2n− 2))] · (2n− 1)!! (12)

Proof. The bivariate generating function for permutations with all cycle lengths even,
counted by their size and number of cycles, is (1 − z2)−u/2. Let pk(u) be the desired
generating function. Then we have

(1 − z2)−u/2 = p0(u) + p1(u)z + p2(u)
z2

2!
+ · · ·

and it is clear that pk is the zero polynomial for odd k. For even k, the binomial theorem
gives

(1 − z2)−u/2 = 1 +

(−u/2
1

)

(−z2) +

(−u/2
2

)

(−z2)2 + · · ·

and so we have p2n(u) = (2n)!
(−u/2

n

)

by comparing coefficients; this can be expanded to
give the expression above.

A combinatorial proof is also possible. Recall that we can write a permutation π of
[n] in terms of its inversion table, a sequence of integers a1, a2, . . . , an, with ai = |{j :
j < i, π(j) > π(i)}|. The number of zeros in the sequence (a1, . . . , an) is the number
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of left-to-right maxima of π. The “fundamental correspondence” between permutations
written in cycle notation and in one-line notation takes permutations with k cycles to
those with k left-to-right maxima; furthermore, permutations with all cycle lengths even
are taken to those with all left-to-right maxima in odd positions, and conversely. Thus it
suffices to show that pn(u) is the generating function of permutations with all left-to-right
maxima in odd positions, counted by their number of maxima; this is done by considering
the inversion table.

Theorem 3.8. The number of cycles Cn of a random permutation of [2n] with all cycle
lengths even, as n→ ∞, is asymptotically normally distributed with

E(Cn) =
1

2
log n+

(

1

2
γ + log 2

)

+O(n−1) (13)

and

V(Cn) =
1

2
logn +

(

1

2
γ + log 2 − π2

8

)

+O(n−1) (14)

Proof. Let n = 2m. From Theorem 3.7, we have Cm =
∑m

k=1Xm,k where the Xm,k are
independent Bernoulli random variables with P(Xm,k = 1) = 1/(2k − 1). The formula
(13) for the expectation follows from the asymptotic series for the harmonic numbers.
The variance is given by

VCm =

m
∑

k=1

(

1

2k − 1
−
(

1

2k − 1

)2
)

= ECm −
m
∑

k=1

1

(2k − 1)2
.

and we need to consider the second sum. We have
∑m

j=1
1
j2 = −ψ′(m+ 1) + π2/6, so

VCm = ECm −
(

−ψ′(2n+ 1) +
1

4
ψ′(n+ 1) +

π2

8

)

.

But ψ′(m) = O(m−1), so in fact we get VCm = ECm− π2

8
+O(1/m); from this and (13) we

get (14). Asymptotic normality follows from the Lindeberg-Feller central limit theorem
[7].

There is not such a simple decomposition for permutations with all cycle lengths odd.
However, it appears that the polynomials counting permutations of [n] with all cycle
lengths odd by their number of cycles have only pure imaginary roots. If this is true, then
the number of cycles of a random permutation of [n] with all cycle lengths odd can be
decomposed into a sum of ⌊n/2⌋ independent {0, 2}-valued random variables, plus 1 if n
is odd. It may be of interest to study the zeros of these polynomials.

4 Boltzmann sampling

We have at this point seen substantial similarities between permutations with all cycle
lengths having the same parity and permutations with cycle weights 1/2. This suggests
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that an average of weights is in some sense a more fundamental parameter than the
individual weights. This has been anticipated by the notion of a function of logarithmic
type [14], which has been used in the study of permutations [17]. Let ∆0(ρ, η) = {z : |z| <
ρ+ η, z 6∈ [ρ, ρ+ η]}. A function G(z) is called logarithmic if it is of the form

G(z) = a log
1

1 − z/ρ
+R(z)

for some constant multiplier a and function R(z), where R(z) is analytic in ∆0 and satisfies
R(z) = K + o(1) for some constant K as z → ρ in ∆0, and ρ is the unique dominant
singularity of G on its circle of convergence. In [14, Prop. 1] structures having components
enumerated by a function of logarithmic type G(z) are considered; for such structures of
size n, the expected number of cycles is a logn + O(1), as is the variance. However, the
structures considered in this paper have not all had components counted by functions
of logarithmic type. For example, the components of permutations with all cycle lengths
even are counted by the exponential generating function 1

2
log 1

1−z2 , which has singularities
at z = ±1 and thus does not have a unique dominant singularity.

The following conjecture, in the light of these averaging phenomena, seems natural.
It is supported by Theorem 4.3, an analogous result on “Boltzmannized” permutations.

Conjecture 4.1. Let ~σ = (σ1, σ2, . . .) be a sequence of nonnegative real numbers with
mean α, that is, with limn→∞

1
n

(
∑n

k=1 σk) = α. Then permutations of [n] selected accord-
ing to the weights ~σ have an asymptotically Gaussian number of cycles as n → ∞, with
mean and variance asymptotic to α log n.

Definition 4.2. Let ~σ = (σ1, σ2, . . .) be a weighting sequence, and let x be a positive
real parameter. Let |π| denote the size of the ground set of a permutation π. Then we
define the ~σ-weighted Boltzmann measure with parameter x on permutations, a probability
measure on

⋃∞
k=0 Sk, by

P~σ,x(π) =
w~σ(π) · x|π|

|π|!

exp
(
∑

k>1 σkxk/k
)

(See Definition 1.1 for the weight w~σ(π).)
For any choice of ~σ and x, P~σ,x is a probability measure. It suffices to show that P~σ,x has

total mass 1. But
∑

k>1 σkx
k/k is the weighted generating function of cycles, and we can

apply the exponential formula. Thus P~σ,x is a straightforward weighted generalization of
the Boltzmann measure on labelled objects studied in [6, 10]. We also retain the formulas
from [6, Thm 2.1] for the expected size and the variance of the size of the objects chosen
according to this measure. Let C(x) be the exponential generating function of a labelled
combinatorial class, and N the size of a random object chosen from that class according
to the Boltzmann measure. Then

E~σ,x(N) =
x d

dx
C(x)

C(x)
,E~σ,x(N

2) =

(

x d
dx

)2
C(x)

C(x)
.

We now assemble a sequence of lemmas. These lemmas will be used to prove the
following theorem, which is the main result of this section.
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Theorem 4.3. Let ~σ = (σ1, σ2, . . .) be a weighting sequence with mean α. Let x = x(µ)
be chosen so that E~σ,x(N) = µ. Let X be a random variable denoting the number of cycles
of a permutation. Then E~σ,x(X) = V~σ,x(X) ∼ α log µ as x→ 1− or µ→ ∞.

The main analytic result needed follows.

Lemma 4.4. [21, Exercise I.88] Let b0, b1, . . . be positive real numbers, such that
∑∞

n=0 bn
is divergent, and

∑

k>0 bkt
k is convergent for 0 6 t < 1. Then

lim
n→∞

a0 + a1 + · · · + an

b0 + b1 + · · · + bn
= s implies lim

t→1−

∑

k>0 akt
k

∑

k>0 bkt
k

= s.

Lemma 4.5. Let σ1, σ2, σ3, . . . be a sequence of real numbers such that

lim
n→∞

1

n

n
∑

k=1

σk = α.

Then
∑∞

k=1 σkx
k = α

1−x
+ o((1 − x)−1).

Proof. Apply Lemma 4.4 with ak = σk, bk = 1.

Lemma 4.6. Let {σk}∞k=1 be a sequence of nonnegative real numbers, bounded above, such
that

∑n
k=1 σk ∼ αn as n → ∞, for some constant α > 0. Then

∑n
k=1

σk

k
∼ α log n as

n→ ∞.

Proof. We begin by showing that if
∫ n

1
f(x)dx ∼ n as n→ ∞ for some function f such that

f(x)/x is integrable on [1,∞), then
∫ n

1
f(x)

x
dx ∼ log n as n→ ∞. Let F (x) =

∫ n

1
f(x)dx.

We integrate
∫ n

1
f(x)

x
dx by parts, getting

∫ n

1

f(x)

x
dx =

F (n)

n
− F (1)

1
+

∫ n

1

F (x)

x2
dx.

Clearly F (1) = 0, and F (n) ∼ n by assumption, so
∫ n

1

f(x)

x
dx = 1 +

∫ n

1

F (x)

x2
dx+ o(1)

Since F (x) ∼ x as x→ ∞, the integrand satisfies F (x)/x2 ∼ 1/x, and so
∫ n

1

F (x)

x2
dx ∼

∫ n

1

1

x
dx = log n,

proving the claim.
Now, we need to check that this statement about integrals translates into an analogous

one about sums. Let {σk}∞k=1 be as in the hypothesis, and let f(x) = σ⌊x⌋. Then we want
to show that

∫ n+1

1

f(x)

x
dx−

n
∑

k=1

σk

k
= o(logn)
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as n→ ∞. We have

∫ n+1

1

f(x)

x
dx−

n
∑

k=1

f(k)

k
=

n
∑

k=1

(
∫ k+1

k

f(x)

x
dx− f(k)

k

)

=
n
∑

k=1

f(k)

(

log

(

1 +
1

k

)

− 1

k

)

and so, since | log(1 + 1/k) − 1/k| 6 1/2k2 for positive integer k,
∣

∣

∣

∣

∣

∫ n+1

1

f(x)

x
dx−

n
∑

k=1

f(k)

k

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

n
∑

k=1

f(k)

2k2

∣

∣

∣

∣

∣

.

Since {f(k)}∞k=1 is bounded, the sum on the right-hand side is convergent. We have
∫ n+1

1
f(x)/x dx ∼ logn, so

∑n
k=1 f(k)/k ∼ logn as well. Thus we have proven the lemma

for α = 1. Multiplying through by α gives the desired result.

Lemma 4.7. Let σ1, σ2, σ3, . . . be a sequence of positive real numbers such that
limn→∞

1
n

∑n
k=1 σk = α. Then

∞
∑

k=1

σkx
k

k
= α log

1

1 − x
+ o

(

log
1

1 − x

)

(15)

Proof. Applying Lemma 4.6 to the hypothesis, limn→∞
1

log n

∑n
k=1

σk

k
= α. We apply

Lemma 4.4 with ak = σk/k, bk = 1/k. This gives us

lim
n→∞

∑n
k=0 σk/k

1 +Hn
= lim

x→1−

∑

k>1 σkx
k/k

∑

k>1 x
k/k

.

Now,
∑

k>1 x
k/k = log(1/(1 − x)), and 1 +Hn ∼ log n, so we have

lim
n→∞

1

log n

n
∑

k=0

σk

k
= lim

x→1−

∑

k>1 σkx
k/k

log(1/(1 − x))
.

Thus the right-hand side here has value α, proving (15).

Proof of Theorem 4.3. Note that for the Boltzmann measure with parameter x and weight
sequence ~σ, we have C(x) = exp

(
∑

k>1 σkx
k/k
)

. Thus the distribution of sizes N under
this measure has expectation

E~σ,x(N) = x
d

dx

(

∑

k>1

σkx
k

k

)

=
∑

k>1

σkx
k

Furthermore, the Boltzmann distribution P~σ,x can be obtained by taking P(σkx
k/k) cycles

of length k for each k > 1 and forming uniformly at random a permutation with the
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resulting cycle type. The mean and variance of the number of cycles chosen from the
distribution P~σ,x is thus exactly

∑

k>1 σkx
k/k. Since we have Ex(N) ∼ α/(1 − x) as

x→ 1− by Lemma 4.5, we can solve for x to see that 1− α
Ex(N)

∼ x as x→ 1−. Therefore

∑

k>1

σkx
k/k ∼ α log

1

1 − x
∼ α log

1

1 −
(

1 − α
Ex(N)

) = α log
Ex(N)

α
∼ α log Ex(N)

which is the desired result.

It would be desirable to translate Theorem 4.3 into a result about permutations of a
fixed size selected uniformly at random; this is one possible way of proving Conjecture
4.1. Note that P~σ,x is a mixture of the various P

(n)
~σ . It is often possible to prove results

about a family of measures Pλ, parametrized by λ, which are mixtures of well-understood
measures P

(n), where we draw from P
(n) with probability e−λλn/n!; this goes by the name

of analytic de-Poissonization [18], [24, Ch. 10]. Informally, we pick from P
(N) where N is

Poisson with parameter λ. In the case described here we can get results on permutations
chosen from P

(N) where N is the size of objects from a Boltzmann distribution; thus
techniques of “analytic de-Boltzmannization” will be necessary to achieve this goal.
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suggestions and valuable support. I thank the anonymous referee for remarks concerning
the proof of Theorem 2.7.

References

[1] R. Arratia, A. D. Barbour, and S. Tavaré. Random combinatorial structures and
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