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Let A be a finite simplicial complex with vertex set V = {vy, ..
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Abstract

Shellability is a well-known combinatorial criterion on a simplicial complex A
for verifying that the associated Stanley-Reisner ring k[A] is Cohen-Macaulay. A
notion familiar to commutative algebraists, but which has not received as much
attention from combinatorialists as the Cohen-Macaulay property, is the notion of
a Golod ring. Recently, Jollenbeck introduced a criterion on simplicial complexes
reminiscent of shellability, called the strong gcd-condition, and he together with the
author proved that it implies Golodness of the associated Stanley-Reisner ring. The
two algebraic notions were earlier tied together by Herzog, Reiner and Welker, who
showed that if k[AV] is sequentially Cohen-Macaulay, where AV is the Alexander
dual of A, then k[A] is Golod. In this paper, we present a combinatorial companion
of this result, namely that if AV is (non-pure) shellable then A satisfies the strong
ged-condition. Moreover, we show that all implications just mentioned are strict in
general but that they are equivalences if A is a flag complex.

To Anders Bjorner on his sixtieth birthday

Introduction

Recall that the Stanley-Reisner ring associated to A is the quotient

where I is the ideal in the polynomial ring k[zy, ..
T, .. x4, for which {v;, ..

E[A] = klxy, ... 2,/ 1A,
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., U, } and let k be a field.

., Z,] generated by the monomials
U, } € A. The Cohen-Macaulay property of Stanley-Reisner



rings has been intensely studied, and this has led to several important results in com-
binatorics. See the book [12] for an overview. The generalized concept of sequentially
Cohen-Macaulay rings will play a role here, for the definition see [12, Definition I11.2.9].

A ring of the form R = klzy,...,x,]/I, where [ C (x1,...,7,)?% is called a Golod
ring if all Massey operations on the Koszul complex K(x1,...,2,, R) ([12, Definition
2.39]) vanish, see [7, Definition 4.2.5]. There are several equivalent but differently flavored
characterizations of Golod rings, see Sections 5.2 and 10.3 in [1] and the references therein.
One is that R is Golod if the ranks of the modules in a minimal free resolution of the
R-module k = R/(x1,...,z,) have the fastest possible growth, see [1, p.42]. A reason
for being interested in knowing that a ring R is Golod is that then one can write down
explicitly a minimal free resolution of k, see [1, Theorem 5.2.2]. Golodness of Stanley-
Reisner rings can be characterized in terms of poset homology, see [2, Theorem 3]. See
also [3], [4] for some recent work on the Golod property of Stanley-Reisner rings.

We will say that a simplicial complex A is sequentially Cohen-Macaulay, or Golod, if
the Stanley-Reisner ring k[A] has that property. Not much more will be said about these
algebraic notions, but we will be interested in their combinatorial companions: shellability
and the strong ged-condition. Let us begin by recalling their definitions. If Fy, ..., F. CV
then let

(Fy,...,F.)

denote the simplicial complex generated by Fi, ..., F,.. It consists of all subsets FF C V
such that I C F; for some 1.

Definition 1 (Bjorner, Wachs [5]). A (not necessarily pure) simplicial complex A is
called shellable if the facets of A admit a shelling order. A shelling order is a linear order,
Fy, ..., F,, of the facets of A such that for 2 < i < r, the simplicial complex

(Fy) N (Fy, ..., Fiq)
is pure of dimension dim(F;) — 1.

As is well-known and widely exploited, shellability is a combinatorial criterion for
verifying that a pure complex is Cohen-Macaulay. The notion of sequentially Cohen-
Macaulay complexes, due to Stanley, was conceived as a non-pure generalization of the
notion of Cohen-Macaulay complexes that would make the following proposition true:

Proposition 2 (Stanley [12]). Every shellable simplicial complez is sequentially Cohen-
Macaulay.

We now move to the strong gcd-condition.

Definition 3 (Jollenbeck [10]). A simplicial complex A is said to satisfy the strong
gcd-condition if the set of minimal non-faces of A admits a strong gcd-order. A strong
gcd-order is a linear order, My, ..., M,, of the minimal non-faces of A such that whenever
1<i<j<rand M;NM,; =0, there is a k with i < k # j such that M, C M; U M;.
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The strong ged-condition was introduced because of its relation to the Golod property.
In [10], J6llenbeck made a conjecture a consequence of which was that the strong gcd-
condition is sufficient for verifying that a complex is Golod. One of the main results
of the paper [4] was a proof of that conjecture, thus establishing the truth of the next
proposition.

Proposition 4 (Berglund, Jollenbeck [4]). A simplicial complex satisfying the strong
gcd-condition is Golod.

The following result ties together the notions of sequentially Cohen-Macaulay rings
and Golod rings, via the Alerander dual. Recall that the Alexander dual of A is the
simplicial complex

AV ={F CV|F°¢gA}.
Here and henceforth F¢ denotes the complement of F' in V. The facets of AV are the
complements in V' of the minimal non-faces of A.

Proposition 5 (Herzog, Reiner, Welker [9]). If the Alexander dual AV is sequentially
Cohen-Macaulay then A is Golod.

What we have said so far can be summarized by the following diagram of implications:

AV shellable === A strong gcd

| ﬂ

AY seq. CM == A Golod

This diagram seems to indicate that the strong gcd-condition plays the same role
for the Golod property as shellability does for the property of being sequentially Cohen-
Macaulay. What we wish to do next is to tie together the accompanying combinatorial
notions by proving the implication represented by the dashed arrow. After that, we will
give examples of simplicial complexes, A;, Ay and As, having the following configurations
of truth values in the diagram:

Ay JAD) As
F T F T FF
F T T T F T

In particular, all implications in the diagram are strict. However, we will finish by proving
that if A is a flag complex, then all arrows are in fact equivalences.

2 Weak shellability

We think of the set of vertices V' as part of the data in specifying a simplicial complex,
so potentially there could be ‘ghost vertices’, i.e., vertices v € V such that {v} & A.
Requiring that A has no ghost vertices is equivalent to requiring that |F| < |[V| — 2 for
all facets F' of AY. The Stanley-Reisner ring k[A] does not see ghost vertices in the sense
that k[A] = k[A’], where A’ is the complex A with ghost vertices removed.
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Proposition 6. Let A be a simplicial complex without ghost vertices. If AV is shellable
then A satisfies the strong gcd-condition.

Proof. Let FY,...,F, be a shelling order of the facets of AY. The minimal non-faces of
A are then F1¢, ..., F.°. We claim that the reversed order, F,¢, ..., Fi¢ is a strong gcd-
order for A. By the assumption that A has no ghost vertices, |F;°| > 2, or in other words
|F;| < |V|—2, for all i.

Let 1 < i < j <r and suppose that F;°NF; = (). We must produce a k with i # k < j
such that Fi,© C F;°U F;°. The assumption means that F; U F; = V. Combining this with
the fact |F;| < |V|— 2, we get

FNF)| < |F)| -2
Since FY, ..., F, is a shelling order, the complex
(F)) N (Fy, ..., Fiq)

is pure of dimension dim(F;) — 1. Of course, F; N Fj is contained in this complex. Let
H be a facet of the complex containing F; N F;. Then |H| = |F;| — 1. If H C F}, then
H C F;N Fj;, but this is impossible since |F; N F;| < |F;| —2. Therefore, H is contained in
some Fj, where i # k < j. Hence, F; N F; C H C Fj, which implies that F},“ C F;“ U F}*.
This finishes the proof. O

By using the correspondence between minimal non-faces of A and facets of AY, one
can rephrase the strong ged-condition as a property of AY in the following way:

Definition 7. A simplicial complex A is called weakly shellable if the facets of A admit
a weak shelling order. A weak shelling order is a linear order, F}, ..., F, of the facets of
A such that if 1 <7 < j <rand F;UF; =V then there is a k with ¢ # k < j such that
F,NF; CF.

Then the following is clear by definition:

Proposition 8. Let A be a simplicial complex and let M, ..., M, be its minimal non-
faces. Then the facets of AV are F; = M, i = 1,...,r, and the order M,..., M, is a
strong ged-order if and only if ., F,._1,..., Fy is a weak shelling order.

In fact, the proof of Proposition 6 shows the following:

Proposition 9. Let A be a simplicial complex such that |F| < |V| — 2 for all F € A.
Then any shelling order of the facets of A is a weak shelling order.

Remark 10. Note that if A is a d-dimensional simplicial complex with |V'| > 2d+ 3, then
A is automatically weakly shellable because in this case |F'UG| < |V| for all faces F, G €
A. In particular, by subdividing an arbitrary simplicial complex A enough times one
obtains a weakly shellable complex whose geometric realization is homeomorphic to the
one of A. Thus, any triangulable space can be triangulated by a weakly shellable simplicial
complex. This is in contrast to the well-known fact that the geometric realization of a
shellable simplicial complex is homotopy equivalent to a wedge of spheres. However, one
might ask whether or not weakly shellable complexes with |V| < 2d + 3 have some special
topological property.
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3 Examples

Example 11. Let A; be the simplicial complex with vertex set {1,2,3,4,5,6} and min-
imal non-faces {1,2,3}, {1,2,6}, {4,5,6}. The Alexander dual A} has facets {1,2, 3},
{3,4,5}, {4,5,6}, and it is not Cohen-Macaulay because the link of the vertex 3 is one-
dimensional but not connected. However, the order in which the minimal non-faces of A;
appear above is in fact a strong ged-order.

Example 12. Let Ay be the triangulation of the ‘dunce hat’ with vertices 1,2, ..., 8 and
facets

{1,2,4},{1,2,7},{1,2,8},{1,3,4},{1,3,5},{1,3,6},{1,5,6},{1,7,8},{2,3,5},
{2,3,7},{2,3,8},{2,4,5},{3,4,8},{3,6,7},{4,5,6},{4,6,8},{6,7,8}.

It is well-known that any triangulation of the dunce hat is Cohen-Macaulay but not
shellable. Furthermore, for this particular triangulation, |V| =8 > 7 = 2dim(AY) + 3,
so AJ is automatically weakly shellable, which means that A, satisfies the strong gcd-
condition.

Example 13. Let Aj be the simplicial complex with vertices 0,1,...,9 and minimal
non-faces

{0,1,5,6},{1,2,6,7},{2,3,7,8},{3,4,8,9},{0,4,5,9}, {5,6,7,8,9}.

One can check by a direct computation that this simplicial complex is Golod. However,
the strong ged-condition is violated because for each 3-dimensional minimal non-face M
there are two 3-dimensional minimal non-faces M’ and M"” with M’ N M"” = () and such
that M is the unique minimal non-face different from M’ and M"” with M C M'UM". In
other words, there is no way of deciding which of these M should come first in a strong
gcd-order.

Next, if the dual complex Ay were sequentially Cohen-Macaulay, then by [12, Propo-
sition I11.2.10] the pure subcomplex I' generated by the facets of maximum dimension
would be Cohen-Macaulay. However, I has facets

{0,1,2,5,6,7},{0,1,4,5,6,9},{0,3,4,5,8,9},{2,3,4,7,8,9},

and the link L = lkp{0,1,5,6} has facets {2, 7} and {4,9}, so L is one-dimensional but
disconnected, and therefore I' is not Cohen-Macaulay.

The reader might wonder why we have not provided an example with the table

FF
T T

The Alexander dual of a simplicial complex having this table would need to be a non-
shellable sequentially Cohen-Macaulay complex with |V| < 2d + 3. Already finding com-
plexes meeting these specifications seems difficult: All but one of the examples of non-
shellable Cohen-Macaulay complexes found in [8] satisfy |V| > 2d + 3, and are therefore
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weakly shellable for trivial reasons. The exception is the classical 6-vertex triangulation
of the real projective plane, which is however easily seen to be weakly shellable. Also,
Grébe’s example [6] of a complex which is Gorenstein when the characteristic of the field
k is different from 2 but not Gorenstein otherwise is weakly shellable. It has been shown
that all 3-balls with fewer than 9 vertices are extendably shellable, and that all 3-spheres
with fewer than 10 vertices are shellable, see [11], so there is no hope in finding an example
there. The author would however be very surprised if no example existed.

Problem 14. Find a sequentially Cohen-Macaulay complex which is not weakly shellable.

4 Flag complexes

Recall that a flag complex is a simplicial complex all of whose minimal non-faces have two
elements. Order complexes associated to partially ordered sets are important examples
of flag complexes. Note that the Alexander dual of a flag complex is pure, and for pure
complexes sequentially Cohen-Macaulay means simply Cohen-Macaulay.

Proposition 15. Suppose that A is a flag complex. Then the following are equivalent:

1) AV is shellable.

2) A satisfies the strong ged-condition.

3) AV is Cohen-Macaulay.

4

(
(
(
(4) A is Golod.

)
)
)
)

Proof. For the equivalence of (2), (3) and (4), see [4, Theorem 4]. The implication (1) =
(2) follows from Proposition 6. What remains to be verified is the implication (2) = (1)
and this is contained in the next proposition. O

Proposition 16. If A is a flag complex then any weak shelling order of the facets of AV
15 a shelling order.

Proof. Let Fy,...,F, be a weak shelling order of the facets of AY. The complements
F¢ ..., F.° are the minimal non-faces of the flag complex A, so |F;°| = 2 and |F}| = |V|—2
for all 7. Let 7 > 2 and consider the complex

(F) N {(F, ... Fi_1).

We want to show that it is pure of dimension dim(F}) — 1 = |V| — 4. The facets therein
are the maximal elements in the set of all intersections F; N Fj, where i < j. Clearly,
|F; N F;| < |V| — 3, since otherwise F; = F; N F; = F;. Suppose that |F; N F;| < |[V] —4.
We will show that F; N F} is not maximal. Indeed, we have that

VI=4 = |0 E| = [F]+ [F] - [FUF] =2|V|-4-[FUF
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which implies that |F; U F;| > |V|, whence F; U F; = V. By the definition of a weak
shelling order, there is a k with ¢ # k < j such that F; N F; C Fy. Say F;° = {v;, w;},
F;¢ = {v;,w;} and F° = {vg, wi}. Then {vg, wi} C {v;, w;, v, w;}. Since the facets F;
and F}, are distinct either vy, or wy, is in {v;, w;}. This means that |F,“U F;¢| < 3, that is,
|Fi N F;| > |V|—3. Hence F; N Fj is a proper subset of Fj, N Fj, so it is not maximal. [
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