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Abstract

Using resolutions of singularities introduced by Cortez and a method for calcu-
lating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Bil-
ley and Braden characterizing permutations w with Kazhdan-Lusztig polynomial
Pid,w(q) = 1 + qh for some h.
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1 Introduction

Kazhdan-Lusztig polynomials are polynomials Pu,w(q) in one variable associated to each
pair of elements u and w in the symmetric group Sn (or more generally in any Coxeter
group). They have an elementary definition in terms of the Hecke algebra [24, 21, 9]
and numerous applications in representation theory, most notably in [24, 1, 13], and the
geometry of homogeneous spaces [25, 17]. While their definition makes it fairly easy
to compute any particular Kazhdan-Lusztig polynomial, on the whole they are poorly
understood. General closed formulas are known [5, 12], but they are fairly complicated;
furthermore, although they are known to be positive (for Sn and other Weyl groups),
these formulas have negative signs. For Sn, positive formulas are known only for 3412
avoiding permutations [27, 28], 321-hexagon avoiding permutations [7], and some isolated
cases related to the generic singularities of Schubert varieties [8, 31, 16, 34].

One important interpretation of Kazhdan-Lusztig polynomials is as local intersection
homology Poincaré polynomials for Schubert varieties. This interpretation, originally
established by Kazhdan and Lusztig [25], shows, in an entirely non-constructive manner,
that Kazhdan-Lusztig polynomials have nonnegative integer coefficients and constant term
1. Furthermore, as shown by Deodhar [17], Pid,w(q) = 1 (for Sn) if and only if the Schubert
variety Xw is smooth, and, more generally, Pu,w(q) = 1 if and only if Xw is smooth over
the Schubert cell X◦

u.
The purpose of this paper is to prove Theorem 1.1, for which we require one preliminary

definition. A 3412 embedding is a sequence of indices i1 < i2 < i3 < i4 such that
w(i3) < w(i4) < w(i1) < w(i2), and the height of a 3412 embedding is w(i1) − w(i4).

Theorem 1.1. The Kazhdan-Lusztig polynomial for w satisfies Pid,w(1) = 2 if and only
if the following two conditions are both satisfied:

• The singular locus of Xw has exactly one irreducible component.

• The permutation w avoids the patterns 653421, 632541, 463152, 526413, 546213,
and 465132.

More precisely, when these conditions are satisfied, Pid,w(q) = 1 + qh where h is the
minimum height of a 3412 embedding, with h = 1 if no such embedding exists.
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Given the first part of the theorem, the second part can be immediately deduced
from the unimodality of Kazhdan-Lusztig polynomials [22, 11] and the calculation of
the Kazhdan-Lusztig polynomial at the unique generic singularity [8, 31, 16]. Indeed,
unimodality and this calculation imply the following corollary.

Corollary 1.2. Suppose w satisfies both conditions in Theorem 1.1. Let Xv be the singular
locus of Xw. Then Pu,w(q) = 1 + qh (with h as in Theorem 1.1) if u ≤ v in Bruhat order,
and Pu,w(q) = 1 otherwise.

The permutation v and the singular locus in general has a combinatorial description
given in Theorem 2.1, which was originally proved independently in [8, 16, 23, 30].

Theorem 1.1 was conjectured by Billey and Braden [6]. They claim in their paper
to have a proof that Pid,w(1) = 2 implies the given conditions. An outline of this proof
is as follows. If Pid,w(1) = 1 then Xw is nonsingular [17]. The methods for calculating
Kazhdan-Lusztig polynomials due to Braden and MacPherson [11] show that whenever
Pid,w(1) ≤ 2 the singular locus of Xw has at most one component. That Pid,w(1) ≤ 2
implies the pattern avoidance conditions follows from [6, Thm. 1] and the computation
of Kazhdan-Lusztig polynomials for the six pattern permutations.

While this paper was being written, Billey and Weed found an alternative formulation
of Theorem 1.1 purely in terms of pattern avoidance, replacing the condition that the
singular locus of Xw have only one component with sixty patterns. They have graciously
agreed to allow their result, Theorem A.1, to be included in an appendix to this paper.
Theorem A.1 also provides an alternate method for proving that Pid,w(2) = 1 implies the
given conditions using only [6, Thm. 1] and bypassing the methods of [11].

To prove Theorem 1.1, we study resolutions of singularities for Schubert varieties
that were introduced by Cortez [15, 16] and use an interpretation of the Decomposition
Theorem [2] given by Polo [32] which allows computation of Kazhdan-Lusztig polynomials
Pv,w (and more generally local intersection homology Poincaré polynomials for appropriate
varieties) from information about the fibers of a resolution of singularities. In the 3412-
avoiding case, we use a resolution of singularities from [15] and a second resolution of
singularities which is closely related. An alternative approach which we do not take here
would be to analyze the algorithm of Lascoux [27] for calculating these Kazhdan-Lusztig
polynomials. For permutations containing 3412, we use one of the partial resolutions
introduced in [16] for the purpose of determining the singular locus of Xw. Under the
conditions described above, this partial resolution is actually a resolution of singularities,
and we use Polo’s methods on it.

Though we have used purely geometric arguments, it is possible to combinatorialize
the calculation of Kazhdan-Lusztig polynomials from resolutions of singularities using a
Bialynicki-Birula decomposition [3, 4, 14] of the resolution. See Remark 4.7 for details.

Corollary 1.2 suggests the problem of describing all pairs u and w for which Pu,w(1) =
2. It seems possible to extend the methods of this paper to characterize such pairs;
presumably Xu would need to lie in no more than one component of the singular locus
of Xw, and [u, w] would need to avoid certain intervals (see Section 2.3). Any further
extension to characterize w for which Pid,w(1) = 3 is likely to be extremely combinatorially
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intricate. An extension to other Weyl groups would also be interesting, not only for its
intrinsic value, but because methods for proving such a result may suggest methods for
proving any (currently nonexistent) conjecture combinatorially describing the singular
loci of Schubert varieties for these other Weyl groups.

I wish to thank Eric Babson for encouraging conversations and Sara Billey for helpful
comments and suggestions on earlier drafts. I used Greg Warrington’s software [33] for
computing Kazhdan-Lusztig polynomials in explorations leading to this work.

2 Preliminaries

2.1 The symmetric group and Bruhat order

We begin by setting notation and basic definitions. We let Sn denote the symmetric
group on n letters. We let si ∈ Sn denote the adjacent transposition which switches i
and i + 1; the elements si for i = 1, . . . , n − 1 generate Sn. Given an element w ∈ Sn, its
length, denoted ℓ(w), is the minimal number of generators such that w can be written
as w = si1si2 · · · siℓ . An inversion in w is a pair of indices i < j such that w(i) > w(j).
The length of a permutation w is equal to the number of inversions it has.

Unless otherwise stated, permutations are written in one-line notation, so that w =
3142 is the permutation such that w(1) = 3, w(2) = 1, w(3) = 4, and w(4) = 2.

Given a permutation w ∈ Sn, the graph of w is the set of points (i, w(i)) for i ∈
{1, . . . , n}. We will draw graphs according to the Cartesian convention, so that (0, 0) is
at the bottom left and (n, 0) the bottom right.

The rank function rw is defined by

rw(p, q) = #{i | 1 ≤ i ≤ p, 1 ≤ w(i) ≤ q}

for any p, q ∈ {1, . . . , n}. We can visualize rw(p, q) as the number of points of the graph
of w in the rectangle defined by (1, 1) and (p, q). There is a partial order on Sn, known
as Bruhat order, which can be defined as the reverse of the natural partial order on the
rank function; explicitly, u ≤ w if ru(p, q) ≥ rw(p, q) for all p, q ∈ {1, . . . , n}. The Bruhat
order and the length function are closely related. If u < w, then ℓ(u) < ℓ(w); moreover,
if u < w and j = ℓ(w) − ℓ(u), then there exist (not necessarily adjacent) transpositions
t1, . . . , tj such that u = tj · · · t1w and ℓ(ti+1 · · · t1w) = ℓ(ti · · · t1w) − 1 for all i, 1 ≤ i < j.

2.2 Schubert varieties

Now we briefly define Schubert varieties. A (complete) flag F• in C
n is a sequence of

subspaces {0} ⊆ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn, with dim Fi = i. As a set, the
flag variety Fn has one point for every flag in Cn. The flag variety Fn has a geometric
structure as GL(n)/B, where B is the group of invertible upper triangular matrices, as
follows. Given a matrix g ∈ GL(n), we can associate to it the flag F• with Fi being the
span of the first i columns of g. Two matrices g and g′ represent the same flag if and
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only if g′ = gb for some b ∈ B, so complete flags are in one-to-one correspondence with
left B-cosets of GL(n).

Fix an ordered basis e1, . . . , en for Cn, and let E• be the flag where Ei is the span of
the first i basis vectors. Given a permutation w ∈ Sn, the Schubert cell associated to
w, denoted X◦

w, is the subset of Fn corresponding to the set of flags

{F• | dim(Fp ∩ Eq) = rw(p, q) ∀p, q}. (2.1)

The conditions in 2.1 are called rank conditions. The Schubert variety Xw is the
closure of the Schubert cell X◦

w; its points correspond to the flags

{F• | dim(Fp ∩ Eq) ≥ rw(p, q) ∀p, q}.

Bruhat order has an alternative definition in terms of Schubert varieties; the Schubert
variety Xw is a union of Schubert cells, and u ≤ w if and only if X◦

u ⊂ Xw. In each
Schubert cell X◦

w there is a Schubert point ew, which is the point associated to the

permutation matrix w; in terms of flags, the flag E
(w)
• corresponding to ew is defined by

E
(w)
i = C{ew(1), . . . , ew(i)}. The Schubert cell X◦

w is the orbit of ew under the left action
of the group B.

Many of the rank conditions in (2.1) are actually redundant. Fulton [20] showed that
for any w there is a minimal set, called the coessential set1, of rank conditions which
suffice to define Xw. To be precise, the coessential set is given by

Coess(w) = {(p, q) | w(p) ≤ q < w(p + 1), w−1(q) ≤ p < w−1(q + 1)},

and a flag F• corresponds to a point in Xw if and only if dim(Fp ∩ Eq) ≥ rw(p, q) for all
(p, q) ∈ Coess(w).

While we have distinguished between points in flag and Schubert varieties and the flags
they correspond to here, we will freely ignore this distinction in the rest of the paper.

2.3 Pattern avoidance and interval pattern avoidance

Let v ∈ Sm and w ∈ Sn, with m ≤ n. A (pattern) embedding of v into w is a set of
indices i1 < · · · < im such that the entries of w in those indices are in the same relative
order as the entries of v. Stated precisely, this means that, for all j, k ∈ {1, . . . , m},
v(j) < v(k) if and only if w(ij) < w(ik). A permutation w is said to avoid v if there are
no embeddings of v into w.

Now let [x, v] ⊆ Sm and [u, w] ⊆ Sn be two intervals in Bruhat order. An (interval)
(pattern) embedding of [x, v] into [u, w] is a simultaneous pattern embedding of x into
u and v into w using the same set of indices i1 < · · · < im, with the additional property

1Fulton [20] indexes Schubert varieties in a manner reversed from our indexing as it is more convenient
in his context. As a result, his Schubert varieties are defined by inequalities in the opposite direction,
and he defines the essential set with inequalities reversed from ours. Our conventions also differ from
those of Cortez [15] in replacing her p − 1 with p.
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that [x, v] and [u, w] are isomorphic as posets. For the last condition, it suffices to check
that ℓ(v) − ℓ(x) = ℓ(w) − ℓ(u) [35, Lemma 2.1].

Note that given the embedding indices i1 < · · · < im, any three of the four permuta-
tions x, v, u, and w determine the fourth. Therefore, for convenience, we sometimes drop
u from the terminology and discuss embeddings of [x, v] in w, with u implied. We also say
that w (interval) (pattern) avoids [x, v] if there are no interval pattern embeddings of
[x, v] into [u, w] for any u ≤ w.

2.4 Singular locus of Schubert varieties

Now we describe combinatorially the singular loci of Schubert varieties. The results of
this section are due independently to Billey and Warrington [8], Cortez [15, 16], Kassel,
Lascoux, and Reutenauer [23], and Manivel [30].

Stated in terms of interval pattern embeddings as in [35, Thm. 6.1], the theorem is
as follows. Permutations are given in 1-line notation. We use the convention that the
segment “j · · · i” means j, j − 1, j − 2, . . . , i + 1, i. In particular, if j < i then the segment
is empty.

Theorem 2.1. The Schubert variety Xw is singular at eu′ if and only if there exists u with
u′ ≤ u < w such that one of the following (infinitely many) intervals embeds in [u, w]:

I:
[

(y + 1)z · · · 1(y + z + 2) · · · (y + 2), (y + z + 2)(y + 1)y · · · 2(y + z + 1) · · · (y + 2)1
]

for some integers y, z > 0.

IIA:
[

(y + 1) · · ·1(y + 3)(y + 2)(y + z + 4) · · · (y + 4), (y + 3)(y + 1) · · ·2(y + z + 4)1(y +
z + 3) · · · (y + 4)(y + 2)

]

for some integers y, z ≥ 0.

IIB:
[

1(y + 3) · · · 2(y + 4), (y + 3)(y + 4)(y + 2) · · ·312
]

for some integer y > 1.

Equivalently, the irreducible components of the singular locus of Xw are the subvarieties
Xu for which one of these intervals embeds in [u, w].

We call irreducible components of the singular locus of Xw type I or type II (or IIA
or IIB) depending on the interval which embeds in [u, w], as labelled above.

We also wish to restate this theorem in terms of the graph of w, which is closer in
spirit to the original statements [8, 16, 23, 30].

A type I component of the singular locus of Xw is associated to an embedding of
(y + z + 2)(y + 1)y · · · 2(y + z + 1) · · · (y + 2)1 into w. If we label the embedding by
i = j0 < j1 < · · · < jy < k1 < · · · < kz < m = kz+1, the requirement that these positions
give the appropriate interval embedding is equivalent to the requirement that the regions
{(p, q) | jr−1 < p < jr, w(jr) < q < w(i)}, {(p, q) | ks < p < ks+1, w(m) < q < w(ks)},
and {(p, q) | jy < p < k1, w(m) < q < w(i)} contain no point (p, w(p)) in the graph of
w for all r, 1 ≤ r ≤ y, and for all s, 1 ≤ s ≤ z. This is illustrated in Figure 1. We will
usually say that the type I component given by this embedding is defined by i, the set
{j1, . . . , jy}, the set {k1, . . . , kz}, and m.
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Figure 1: A type I embedding with y = 3, z = 1, defining a component of the singular
locus for w = 685392714. The shaded region is not allowed have points in the graph of w.

Every type II component of the singular locus Xw is defined by four indices i < j < k <
m which gives an embedding of 3412 into w. The interval pattern embedding requirement
forces the regions {(p, q) | i < p < j, w(m) < q < w(i)}, {(p, q) | j < p < k, w(i) < q <
w(j)}, {(p, q) | k < p < m, w(m) < q < w(i)}, and {(p, q) | j < p < k, w(k) < q < w(m)}
to have no points in the graph of w. We call these regions the critical regions of the 3412
embedding, and if they are empty, we call i < j < k < m a critical 3412 embedding
whether or not they are part of a type II component.

Given a critical 3412 embedding i < j < k < m, let B = {p | j < p < k, w(m) <
w(p) < w(i)}, A1 = {p | i < p < j, w(k) < w(p) < w(m)}, A2 = {p | k < p < m, w(i) <
w(p) < w(j)}, and A = A1 ∪ A2. We call these regions the A, A1, A2, and B regions
associated to our critical 3412 embedding. This is illustrated in Figure 2. If w(b1) > w(b2)
for all b1 < b2 ∈ B, we say our critical 3412 embedding is reduced. If a critical embedding
is not reduced, there will necessarily be at least one critical 3412 embedding involving i,
j, and two indices in B, and one involving two indices in B, k, and m; by induction each
will include at least one reduced critical 3412 embedding.

We associate one or two irreducible components of the singular locus of Xw to every
reduced critical 3412 embedding. If B is empty, then the embedding is part of a component
of type IIA. If A is empty, then the embedding is part of a component of type IIB. Note
that any type II component of the singular locus is associated to exactly one reduced
critical 3412 embedding. However, if both A and B are nonempty, then we do not have
a type II component. In this case, we can associate a type I component of the singular
locus to our reduced critical 3412 embedding i < j < k < m. When both A1 and B

the electronic journal of combinatorics 16(2) (2009), #R10 7



����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

A1

A2
i

j

B

m

k

Figure 2: A critical 3412 embedding in w = 2574136. The shaded regions are the critical
regions of the embedding.

are nonempty, then i, a nonempty subset of A1, B, and k define a type I component; in
this case w has an embedding of 526413. When both A2 and B are nonempty, then j,
B, a nonempty subset of A2, and m define a type I component; in this case w has an
embedding of 463152. When A1, A2, and B are all nonempty, we have two distinct type
I components associated to our 3412 embedding. Note that it is possible for a type I
component to be associated to more than one reduced critical 3412 embedding, as in the
permutation 47318625.

3 Necessity in the covexillary case

We begin with the case where w avoids 3412; such a permutation is commonly called
covexillary. We show here that, if w is covexillary, the singular locus of Xw has only
one component, and w avoids 653421 and 632541, then Pid,w(q) = 1 + q. Throughout this
section w is assumed to be covexillary unless otherwise noted.

3.1 The Cortez-Zelevinsky resolution

For a covexillary permutation, the coessential set has the special property that, for any
(p, q), (p′, q′) ∈ Coess(w) with p ≤ p′, we also have q ≤ q′. Therefore have a natural total
order on the coessential set, and we label its elements (p1, q1), . . . , (pk, qk) in order. We let
ri = rw(pi, qi); note that, by the definition of rw and the minimality of the coessential set,
ri < rj when i < j. When ri = min{pi, qi}, we call (pi, qi) an inclusion element of the
coessential set, since the condition it implies for Xw will either be Eqi

⊆ Fpi
(if ri = qi)

or Fpi
⊆ Eqi

(if ri = pi).
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Zelevinsky [36] described some resolutions of singularities of Xw in the case where w
has at most one ascent (meaning that w(i) < w(i+1) for at most one index i), explaining
a formula of Lascoux and Schützenberger [28] for Kazhdan-Lusztig polynomials Pv,w(q)
in that case. Following a generalization by Lascoux [27] of this formula to covexillary
permutations, Cortez [15] generalized the Zelevinsky resolution to this case.

Let Fi1,...,ik denote the partial flag manifold whose points correspond to flags whose
component subspaces have dimensions i1 < · · · < ik. Define the configuration variety Zw

by
Zw := {(G•, F•) ∈ Fr1,...,rk

(Cn) × Xw | Gri
⊆ (Fpi

∩ Eqi
) ∀i}.

Cortez shows that the projection π2 : Zw → Xw is a resolution of singularities. She
furthermore shows that the exceptional locus of π2 is precisely the singular locus of Xw,
and describes a one-to-one correspondence between components of the singular locus of
Xw and elements of the coessential set which are not inclusion elements. (This last fact
about the singular locus was implicit in Lascoux’s formula [27] for covexillary Kazhdan-
Lusztig polynomials.)

We now have the following lemma, whose proof is deferred to Section 5.

Lemma 3.1. Suppose the singular locus of Xw has only one component. If w contains
both 53241 and 52431, then w contains 632541.

This lemma allows us to treat separately the two cases where w avoids 53241 and
where w avoids 52431. We treat first the case where w avoids 53241, for which we use
the resolution of singularities just described. The case where w avoids 52431 requires the
use of a resolution of singularities which is dual (in the sense of dual vector spaces) to the
one just described; we will describe this resolution at the end of this section.

3.2 The 53241-avoiding case

In this subsection we show that Pid,w(q) = 1+q when the singular locus of Xw has exactly
one component and w avoids 653421 and 53241. To maintain the flow of the argument,
proofs of lemmas are deferred to Section 5.

When (pj , qj) is an inclusion element, then dim(Fpj
∩ Eqj

) = rj for any flag F• in Xw

and not merely generic flags in Xw. Therefore, given any F• we will have only one choice
for Grj

, namely Fpj
∩ Eqj

, in the fiber π−1
2 (F•). In particular, for the flag E•, any G• in

the fiber π−1(E•) will have Grj
= Erj

. Now let i be the unique index such that (pi, qi) is
not an inclusion element; there is only one such index since the singular locus of Xw has
only one irreducible component. For convenience, we let p = pi, q = qi, and r = ri. Now
we have the following lemmas. (In the case where i = 1, we define p0 = q0 = r0.)

Lemma 3.2. Suppose w avoids 653421 (and 3412). Then min{p, q} = r + 1.

Lemma 3.3. Suppose w avoids 53241 (and 3412). Then ri−1 = r − 1.

By definition, Gr ⊇ Gri−1
. Therefore, the fiber π−1

2 (eid) = π−1
2 (E•) is precisely

{(G•, E•) | Grj
= Erj

for j 6= i and Er−1 = Eri−1
⊆ Gr ⊆ (Ep ∩ Eq) = Er+1}.
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This fiber is clearly isomorphic to P
1.

By Polo’s interpretation [32] of the Decomposition Theorem [2],

Hz,π2(q) = Pz,w(q) +
∑

z≤v<w

qℓ(w)−ℓ(v)Ev(q)Pz,v(q),

where
Hz,π2(q) =

∑

i≥0

qi dim H2i(π−1
2 (ez)),

and the Ev(q) are some Laurent polynomials in q
1
2 , depending only on v and π2 and not on

z, which have with positive integer coefficients and satisfy the identity Ev(q) = Ev(q−1).
Since the fiber of π2 at eid is P1, it follows that Hid,π2(q) = 1 + q. As Pid,w(q) 6= 1 (since
by assumption Xw is singular), and all coefficients of all polynomials involved must be
nonnegative integers, Ev(q) = 0 for all v and

Pid,w(q) = 1 + q.

3.3 The 52431-avoiding case

When w avoids 52431 instead, we use the resolution

Z ′
w := {(G•, F•) ∈ Fr′1,...,r′

k
(Cn) × Xw | Gr′i

⊇ (Fpi
+ Eqi

) ∀i},

where r′i := pi + qi−ri. Arguments similar to the above show that, if we let i be the index
so that (pi, qi) does not give an inclusion element, the fiber π−1

2 (eid) is

{(G•, E•) | Gr′j
= Er′j

for j 6= i and Er′i−1 ⊆ Gr′i
⊆ Er′i+1}.

Hence the fiber over eid is isomorphic to P
1 and Pid,w(q) = 1+q by the same argument

as above.

4 Necessity in the 3412 containing case

In this section we treat the case where w contains a 3412 pattern. Our strategy in this
case is to use another resolution of singularities given by Cortez [16]. We will again apply
the Decomposition Theorem [2] to this resolution, but in this case the calculation is more
complicated as the fiber at eid will no longer always be isomorphic to P1. When the fiber
at eid is not P1, we will need to identify the image of the exceptional locus, which turns
out to be irreducible, and calculate the generic fiber over the image of the exceptional
locus as well as the fiber over eid. We then follow Polo’s strategy in [32] to calculate that
Pid,w(q) = 1 + qh, where h is the minimum height of a 3412 embedding as defined below.
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4.1 Cortez’s resolution

We begin with some definitions necessary for defining a variety Z and a map π2 : Z →
Xw which we will show is our resolution of singularities. Our notation and terminology
generally follows that of Cortez [16]. Given an embedding i1 < i2 < i3 < i4 of 3412
into w, we call w(i1) − w(i4) its height (hauteur), and w(i2) − w(i3) its amplitude.
Among all embeddings of 3412 in w, we take the ones with minimum height, and among
embeddings of minimum height, we choose one with minimum amplitude. As we will be
continually referring this particular embedding, we denote the indices of this embedding
by a < b < c < d and entries of w at these indices by α = w(a), β = w(b), γ = w(c), and
δ = w(d). We let h = α − δ be the height of this embedding.

Let α′ be the largest number such that w−1(α′) < w−1(α′ − 1) < · · · < w−1(α + 1) <
w−1(α) and δ′ the smallest number such that w−1(δ) < w−1(δ − 1) < · · · < w−1(δ′). Also
let a′ = w−1(α′) and d′ = w−1(δ′). Now let κ = δ′ + α′ − α, let I denote the set of simple
transpositions {sδ′ , · · · , sα′−1}, and let J be I \{sκ}. Furthermore, let v = wJ

0 wI
0w, where

wJ
0 and wI

0 denote the longest permutations in the parabolic subgroups of Sn generated
by J and I respectively.

As an example, let w = 817396254 ∈ S9; its graph is in figure 3. Then a = 3, b = 5,
c = 7, and d = 8, while α = 7, β = 9, γ = 2, and δ = 5. We also have h = 2, α′ = 8 and
δ′ = 4. Hence κ = 5 and v = 514398276.

(b, β)

(a, α)

(c, γ)

(d, δ)

δ′

α′

Figure 3: The graph of w = 817396254 in black, labelled. The points of the graph of
v = 514398276 which are different from w are in clear circles.
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Now consider the variety Z = PI ×
PJ Xv. By definition, Z is a quotient of PI × Xv

under the free action of PJ where q·(p, x) = (pq−1, q·x) for any q ∈ PJ , p ∈ PI , and x ∈ Xv.
In the spirit of Magyar’s realization [29] of full Bott-Samelson varieties as configuration
varieties, we can also consider Z as the configuration variety

{(G, F•) ∈ Grκ(Cn) × Xw | Eδ′−1 ⊆ G ⊆ Eα′ and dim(Fi ∩ G) ≥ rv(i, κ)}.2

By the definition of v, rv(i, κ) = rw(i, α′) for i < w−1(α − 1), rv(i, κ) = rw(i, α′) − j
when w−1(α− j) ≤ i < w−1(α− j − 1), and rv(i, κ) = rw(i, α′)−α′ + κ when i ≥ d′. The
last condition is automatically satisfied since, as G ⊆ Eα′ , we always have dim(G∩ Fi) ≥
dim(Eα′ ∩ Fi) − (α′ − κ) ≥ rw(i, α′) − α′ + κ.

Cortez [16] introduced the variety Z along with several other varieties (constructed
by defining κ = δ′ + α′ − α + i − 1 for i = 1, . . . , h) to help in describing the singular
locus of Schubert varieties3. A virtually identical proof would follow from analyzing the
resolution given by i = h instead of i = 1 as we are doing, but the other choices of i give
maps which are harder to analyze as they have more complicated fibers.

The variety Z has maps π1 : Z → PI/PJ
∼= Grα′−α+1(C

α′−δ′+1) sending the orbit of
(p, x) to the class of p under the right action of PJ and π2 : Z → Xw sending the orbit of
(p, x) to p · x. Under the configuration space description, π1 sends (G, F•) to the point in
Grα′−α+1(C

α′−δ′+1) corresponding to the plane G/Eδ′−1 ⊆ Eα′/Eδ′−1, and π2 sends (G, F•)
to F•. The map π1 is a fiber bundle with fiber Xv, and, by [16, Prop. 4.4], the map π2

is surjective and birational. (In our case where the singular locus of Xw has only one
component, the latter statement is also a consequence our proof of Lemma 4.5.)

In general Z is not smooth; hence π2 is only a partial resolution of singularities.
However, we show in Section 5 the following.

Lemma 4.1. Suppose w avoids 463152 and the singular locus of Xw has only one irre-
ducible component. Then Z is smooth.

4.2 Fibers of the resolution

We now describe of the fibers of π2. To highlight the main flow of the argument, proofs
of individual lemmas will be deferred to Section 5. Define M = max{p | p < c, w(p) <
δ′} ∪ {a} and N = max{p | w(p) < δ′}.

Lemma 4.2. The fiber of π2 over a flag F• is

{G ∈ Grκ(Cn) | Eδ′−1 + FM ⊆ G ⊆ Eα′ ∩ FN}.

Now we focus on the fiber at the identity, and show that it is isomorphic to Ph. Since
the flag corresponding to the identity is E•, it suffices by the previous lemma to show
that dim(Eδ′−1 + EM) = κ − 1 and dim(Eα′ ∩ EN ) = κ + h.

2The statement of this geometric description in [16] has a typographical error.
3Cortez’s choice of 3412 embedding in [16] is slightly different from ours. For technical reasons she

chooses one of minimum amplitude among those satisfying a condition she calls “well-filled” (bien remplie).
As she notes, 3412 embeddings of minimum height are automatically “well-filled”.
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Lemma 4.3. Suppose that the singular locus of Xw has only one component and w avoids
546213. Then dim(Eδ′−1 + EM) = κ − 1.

Lemma 4.4. Suppose that the singular locus of Xw has only one component and w avoids
465132. Then dim(Eα′ ∩ EN) = κ + h.

In the case where h = 1, these are all the geometric facts we need. When h > 1, we
identify the image of the exceptional locus as Xu for a particular permutation u of length
ℓ(u) = ℓ(w)− h. We then show that the fiber over a generic point of Xu is isomorphic to
Ph−1.

First we describe the image of the exceptional locus geometrically.

Lemma 4.5. Suppose the singular locus of Xw has only one component, and h > 1. Then
the image of the exceptional locus of π2 is {F• | dim(Eδ′−1 ∩ FM) > rw(M, δ′ − 1)}.

Now let σ ∈ Sn be the cycle (γ, δ + 1, δ + 2, . . . , α = δ + h), and let u = σw. We show
the following.

Lemma 4.6. Assume that the singular locus of Xw has only one component, that h > 1,
and that w avoids 526413. Then the image of the exceptional locus of π2 is Xu, ℓ(w) −
ℓ(u) = h, and the generic fiber over Xu is isomorphic to Ph−1.

4.3 Calculation of Pid,w(q)

We now have all the geometric information we need to calculate Pid,w(q), following the
methods of Polo [32]. The Decomposition Theorem [2] shows that

Hz,π2(q) = Pz,w(q) +
∑

z≤v<w

qℓ(w)−ℓ(v)Ev(q)Pz,v(q),

where
Hz,π2(q) =

∑

i≥0

qi dim H2i(π−1
2 (ez)),

and Ev(q) are some Laurent polynomials in q
1
2 , depending on v and π2 but not z, which

have positive integer coefficients and satisfy the identity Ev(q) = Ev(q−1). 4

When h = 1, the fiber of π2 at eid is isomorphic to P1, and so by same argument as in
Section 3.2, Pid,w(q) = 1 + q.

For h > 1, let u be the permutation specified above. For any x with x ≤ w and x 6≤ u,
π−1

2 (ex) is a point, so Xw is smooth at ex, and Hx,w(q) = 1 = Px,w(q). Therefore, by
induction downwards from w, Ex(q) = 0 for any x with x ≤ w and x 6≤ u.

Now we calculate Eu(q). From the above it follows that Hu,π2(q) = Pu,w(q) + q
h
2 Eu(q).

Since Hu,π2(q)−Pu,w(q) has nonnegative coefficients and deg Pu,w(q) ≤ (h− 1)/2 < h− 1,

Pu,w(q) = 1 + · · · + qs−1

4For those readers familiar with the Decomposition Theorem: No local systems appear in the formula
since Xw has a stratification, compatible with π2, into Schubert cells, all of which are simply connected.
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for some s, 1 ≤ s ≤ h− 1. Then q
h
2 Eu(q) = qs + · · ·+ qh−1, so Eu(q) = qs−h

2 + · · ·+ q
h
2
−1.

Since Eu(q−1) = Eu(q), s = 1, so

q
h
2 Eu(q) = q + · · · + qh−1.

To calculate Pid,w(q), note that Hid,π2 = 1 + q + · · · + qh, so

Pid,w(q) = Hid,π2(q) −
∑

x≤w

q
ℓ(w)−ℓ(x)

2 Ex(q)Pid,x(q)

= 1 + · · · + qh − (q + · · · + qh−1)Pid,u(q) +
∑

x<u

q
ℓ(w)−ℓ(x)

2 Ex(q)Pid,x(q).

Evaluating at q = 1, we see that

Pid,w(1) = h + 1 − (h − 1)Pid,u(1) −
∑

x<u

Ex(1)Pid,x(1).

Since Pid,w(1) ≥ 2, Pid,x(1) is a positive integer for all x, and Ex(1) is a nonnegative
integer for all x, we must have that Pid,u(1) = 1 and Ex(1) = 0 for all x < u. Therefore,
Pid,u(q) = 1 and Ex(q) = 0 for all x < u, and

Pid,w(q) = 1 + qh.

Readers may note that the last computation is essentially identical to the one given
by Polo in the proof of [32, Prop. 2.4(b)]. In fact, in this case the resolution we use, due
to Cortez [16], is very similar to the one described by Polo.

Remark 4.7. We could have used a simultaneous Bialynicki-Birula cell decomposition [3,
4, 14] of the Z and Xw, compatible with the map π2, to combinatorialize the above
computation, turning many geometrically stated lemmas into purely combinatorial ones.
To be specific, for any u, the number Hu,π2(1) is the number of factorizations u = στ
such that τ ≤ v, σ ∈ WI , and σ is maximal in its right WJ coset. (The last condition
can be replaced by any condition that forces us to pick at most one σ from any WJ

coset.) This observation does not simplify the argument; the combinatorics required to
determine which factorizations of the identity satisfy these conditions are exactly the
same as the combinatorics used above to calculate the fiber of π2 at the identity. It
should also be possible to combinatorially calculate Hu,π2(q) by attaching the appropriate
statistic to such a factorization. If Z were the full Bott-Samelson resolution, the result
would be Deodhar’s approach [18] to calculating Kazhdan-Lusztig polynomials, and the
aforementioned statistic would be his defect statistic. However, when Z is some other
resolution, even one “of Bott-Samelson type,” no reasonable combinatorial description of
the statistic appears to be known.
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5 Lemmas

In this section we give proofs for the lemmas of Sections 3 and 4. We begin with
Lemma 3.1.

Lemma 3.1. Suppose the singular locus of Xw has only one component. If w contains
both 53241 and 52431, then w contains 632541.

Proof. Let a < b < c < d < e be an embedding of 53241, and a′ < b′ < c′ < d′ < e′ an
embedding of 52431. Since b < d and w(b) < w(d), there must be an element (p, q) of the
coessential set such that b < p < d and w(b) < q < w(d). This cannot be an inclusion
element since a < p but w(a) > q, and q < e but w(e) > p. We also have c < d and
w(c) < w(d), also inducing an element of the coessential set which is not an inclusion
element. Since the singular locus of Xw has only one component, this element must also
be (p, q). The pairs b′ < c′ and b′ < d′ also each induce an element of the coessential set
which is not an inclusion element; hence these must also be the same as (p, q). Therefore,
b < c < p < c′ < d′, and w(c) < w(b) < q < w(d′) < w(c′).

If a′ > b and w(a) < w(c′), then there must be an element (p′, q′) of the coessential set
with a < b < p′ < a′ < c′ and w(b) < w(a) < q′ < w(c′) < w(a′). We now have p′ < a′ < p
but q < a ≤ q′, contradicting w being covexillary. Therefore, a′ < b or w(a) > w(c′).
Similarly, e > d′ or w(e′) < w(c). Let a′′ be a if w(a) > w(c′) and a′ if a′ < b, and e′′ be e
if e > d′ and e′ if w(e′) < w(c).

Now a′′ < b < c < c′ < d′ < e′′ is an embedding of 632541 in w.

Recall that (p, q) = (pi, qi) is the unique element of the coessential set which is not
an inclusion element, and r = ri = rw(p, q). Furthermore, (pi−1, qi−1) is the immediately
preceeding element of the coessential set, and ri−1 = rw(pi−1, qi−1 = min(pi−1, qi−1).

Lemma 3.2. Suppose w avoids 653421 (and 3412). Then min{p, q} = r + 1.

Proof. Suppose that r ≤ min{p, q} − 2; we show that in that case we have an embedding
of 3412 or 653421. Since r ≤ p − 2, there exist a < b ≤ p with w(a), w(b) > q. Note
that w(a) > w(b), as, otherwise, a < b < p < w−1(q + 1) would be an embedding of 3412.
Similarly, since r ≤ q − 2, there exist d > c > p with w(d), w(c) ≤ q, and we have w(c) >
w(d) since w−1(q) < p + 1 < c < d is an embedding of 3412 otherwise. Furthermore, if
b > w−1(q), then w(c) < w(p), as otherwise w−1(q) < b < p < c would be an embedding
of 3412, and if w(b) < w(p + 1), then c > w−1(q + 1) to avoid b < p + 1 < c < w−1(q + 1)
being a similar embedding.

Now we have up to four potential cases depending on whether b < w−1(q) or b >
w−1(q), and whether w(b) > w(p + 1) or w(b) < w(p + 1). In each case we produce
an embedding of 653421. If b < w−1(q) and w(b) > w(p + 1), then a < b < w−1(q) <
p + 1 < c < d is such an embedding. If b < w−1(q) and w(b) < w(p + 1), then we
use a < b < w−1(q) < q−1(q + 1) < c < d. If b > w−1(q) and w(b) > w(p + 1), then
we use a < b < p < p + 1 < c < d. Finally, if b > w−1(q) and w(b) < w(p + 1),
a < b < p < w−1(q + 1) < c < d produces the desired embedding.
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Lemma 3.3. Suppose w avoids 53241 (and 3412). Then ri−1 = r − 1.

Proof. We treat the two cases where w(p) = q and w(p) 6= q separately. First suppose
w(p) = q. Suppose for contradiction that ri−1 < r − 1. Then there must exist an
index b 6= p which contributes to r = rw(p, q) but not to ri−1 = rw(pi−1, qi−1). This
happens when b ≤ p and w(b) ≤ q, but b > pi−1 or w(b) > qi−1. Since b < p and
w(b) < w(p) = q, there must be an element (pj, qj) of the coessential set such that
b ≤ pj < p and w(b) ≤ qj < q. But then we have that pj > pi−1 or qj > qi−1, contradicting
the definition of (pi−1, qi−1) as the next element smaller than (pi, qi) in our total ordering
of the coessential set. Therefore, we must have ri−1 = ri − 1.

Now suppose w(p) 6= q. Since r < p and r < q, there exists b < p with w(b) > q and
c > p with w(c) < q. Note that we cannot have both w(b) < w(p+ 1) and c < w−1(q + 1),
as, otherwise, b < p + 1 < c < w−1(q + 1) would be an embedding of 3412. It then
follows that we cannot have both b < w−1(q) and w(c) < w(p); when w(b) > w(p + 1),
b < w−1(q) and w(c) < w(p) imply that b < w−1(q) < p < p + 1 < c is an embedding of
53241, and when c > w−1(q + 1), b < w−1(q) and w(c) < w(p) imply that b < w−1(q) <
p < w−1(q + 1) < c is an embedding of 53241. Therefore, b > w−1(q) or w(c) > w(p), and
we now treat these two cases separately.

Suppose b > w−1(q). We must have w(c) < w(p) in this case, because otherwise
w−1(q) < b < p < c would be an embedding of 3412. Let a = min{b | w−1(q) < b <
p, w(b) > q}. We show that, for all b′ with a ≤ b′ < p, w(b′) > q. First, we cannot have
both w(a) < w(p + 1) and c < w−1(q + 1), as a < p + 1 < c < w−1(q + 1) would be
an embedding of 3412 otherwise. Now, if w(b′) < w(p), then w−1(q) < a < b′ < p is
an embedding of 3412, and if w(p) < w(b′) < q, then either a < b′ < p < p + 1 < c or
a < b′ < p < w−1(q + 1) < c would be an embedding of 53241, depending on whether
w(a) > w(p + 1) or c > w−1(q + 1).

We have now established that there is an element of the coessential set at (a − 1, q).
Since this shares its second coordinate with (p, q), and w(b) > q for all b, a < b < p, there
are no elements of the coessential set in between, and (pi−1, qi−1) = (a − 1, q), so that
ri−1 = rw(a − 1, q). Now, rw(a − 1, q) = rw(p, q) − #{j | a − 1 < j ≤ p, w(j) ≤ q}. The
latter list has just one element, namely j = p, so ri−1 = ri − 1.

Now suppose w(c) > w(p) instead. Then we let s = min{t | w(p) < t < q, w−1(s) > p}.
By arguments symmetric with the above, for all s′ with s ≤ s′ < q, s′ > w(p). Therefore,
there is an element of the coessential set at (p, s−1), and this is the element immediately
before (p, q) in the total ordering. Furthermore, rw(p, s − 1) = rw(p, q) − #{j | s − 1 <
j < q, w−1(j) ≤ p}, and the latter list has one element, namely j = q, so ri−1 = ri−1.

Before moving on to prove the lemmas of Section 4, we prove the following two lemmas
which will be repeatedly used further. As in Section 4, a < b < c < d is an embedding of
3412 of minimal amplitude among such embeddings of minimal height, and α, β, γ, and
δ respectively denote w(a), w(b), w(c), and w(d).

For Lemmas 4.1, 5.1, and 5.2, we use the description of the singular locus given in
Section 2.4. It is worth noting that, since we only need to detect when the singular locus
has more than one irreducible component, it is also possible to prove these lemmas using
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Lemma A.2 (which was originally [8, Sect. 13]). Another alternate approach is first to
directly prove Theorem A.1 by using the condition of avoiding all its patterns instead of
the condition of having one component in the singular locus in the lemmas and then to
prove Theorem 1.1 as a corollary. Neither approach appears to substantially reduce the
need for detailed case-by-case analysis in the proof of these lemmas.

Lemma 5.1. Suppose the singular locus of Xw has only one component. Then the fol-
lowing sets are empty.

(i) {p | p < a, w(p) > β}

(ii) {p | p < a, α′ < w(p) < β}

(iii) {p | a < p < b, α < w(p) < β}

(iv) {p | b < p < c, α < w(p) < β}

(v) {p | b < p < c, β < w(p)}

(vi) {p | p < b, δ′ < w(p) < α}

(vii) {p | p > d, w(p) < γ}

(viii) {p | p > d, γ < w(p) < δ′}

(ix) {p | c < p < d, γ < w(p) < δ}

(x) {p | b < p < c, γ < w(p) < δ}

(xi) {p | b < p < c, w(p) < γ}

(xii) {p | p > c, δ < w(p) < α′}

Most of this lemma and its proof is implicitly stated by Cortez, scattered as parts
of the proofs of various lemmas in [16, Sect. 5]. The empty regions are illustrated in
Figure 4.

Proof. If p is in the set (vi), then p < b < c < d is a 3412 embedding with height less
than that of a < b < c < d. If p is in (iii) or (iv), then a < p < c < d is a 3412 embedding
of the same height but smaller amplitude than a < b < c < d. Similar arguments apply
to (ix), (x), and (xii).

Now we show that, if one of the other sets is nonempty, the singular locus of Xw must
have at least two components. Note that by the emptiness of (iv), (vi), (x), and (xii)
a < b < c < d is a critical 3412 embedding, and by the minimality of its height it must
be reduced.

Suppose the set (v) is nonempty; let p be the largest element of (v). Let C = {i | b <
i < p, δ < w(i) < α}; if C is nonempty, then i < p < c < d is a 3412 embedding of smaller
height than a < b < c < d for any i ∈ C. Now suppose C is empty. If the A2 region
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· · ·

(i)

(ii)
(iii) (iv)

(v)

(vi)

(viii)

(ix)(x)

(xii)

a′

(vii)(xi)

a

b

c

d

· · ·

d′

Figure 4: The regions forced to be empty by Lemma 5.1.

associated to a < b < c < d is also empty, then b < p < c < d is a reduced critical 3412
embedding. The top critical region is empty by our choice of p, the left critical region is
empty by (iv) and the emptiness of C, the bottom critical region is empty by (x), and the
right critical region is empty by (xii) and the emptiness of A2; furthermore it is reduced
since a < b < c < d is reduced. Since a 6= b and b 6= p, the components of the singular
locus associated to these critical 3412 embeddings must be different, even if they are of
type I. If A1 or B is empty, then a < p < c < d is a reduced critical 3412 embedding. The
critical regions are empty by the choice of p, the emptiness of C, and the emptiness of
(iv), (vi), (x), and (xii). Since b 6= p, the only way the two critical 3412 embeddings gave
rise to the same component is for the component to be a type I component using elements
of both A1 and B, but one of these sets is empty in this case. If A1, A2, and B are all
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nonempty, then the singular locus of Xw must already have more than one component.
Suppose (ii) is nonempty; let e be the element of (ii) with the smallest value of ǫ = w(e).

By the definition of α′ and the emptiness of (iii) and (iv), either w−1(ǫ−1) > c, or ǫ = α′+1
and a′ < e < a.

First we treat the case where w−1(ǫ − 1) > c. Let f = w−1(ǫ − 1). If h > 1, then
e < b < w−1(α − 1) < f is a 3412 embedding of height 1 and amplitude smaller than
that of a < b < c < d. If f > d, then the same holds for e < b < d < f . If h = 1 and
f < d, then we have a type I component defined by e, {i | e < i ≤ a, α ≤ w(i) ≤ α′},
which contains a, a subset of {j | c < j < d, α′ < w(j) < ǫ} that contains f , and d.
This type I component cannot be the component of the singular locus of Xw associated
to a < b < c < d, since b 6= e.

Now we treat the case where ǫ = α′ + 1 and a′ < e < a. Let i be the largest
element of {i | a′ ≤ i < e, α < w(i) ≤ α′}. Let j be the smallest element of {j |
e < j ≤ c, γ ≤ w(j) < δ}, a set which contains c. Let k be the smallest element of
{k | j < k ≤ d, w(j) < w(k) < w(i)}, a set which contains d. Then i < e < j < k is
a reduced critical 3412 embedding. The only portion of the critical region not directly
guaranteed empty by the definitions of i, e, j, and k is {m | e < m < j, δ ≤ w(m) < w(k)};
if m is an element of this set then m < k < c < d is a 3412 embedding of height smaller
than a < b < c < d. Since i 6= a and e 6= b, this must produce a second component of the
singular locus of Xw. This shows (ii) must be empty.

Suppose (i) is nonempty; let e be the largest element of (i). Then the singular locus
of Xw has a type I component defined by e, a set of which a is the largest element, a set
of which b is the largest element, and w−1(α − 1).

The proofs that (xi), (viii), and (vii) are empty are entirely analogous to those for (v),
(ii), and (i) respectively.

For the following lemma, recall the definitions M = max{p | p < c, w(p) < δ′} ∪ {a}
and N = max{p | w(p) < δ′}, given in Section 4.

Lemma 5.2. Suppose the singular component of Xw has only one component. Then

(i) a ≤ M < b.

(ii) {p | a < p < M, w(p) > α′} is empty.

(iii) c ≤ N < d.

(iv) {p | c < p < N, w(p) > α′} is empty.

This lemma is illustrated in Figure 5

Proof. We know that a ≤ M by definition, and M < b by Lemma 5.1 (x) and (xi).
Similarly, c ≤ N by definition, and N < d by Lemma 5.1 (vii) and (viii).

Now, assume for contradiction that {p | a < p < M, w(p) > α′} is nonempty. Let
j = max{p | a < p < M, α < w(p)}. By the definition of j and Lemma 5.1 (vi),
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Figure 5: The regions forced to be empty by Lemma 5.2.

w(j + 1) < δ′. Then a < j < j + 1 < w−1(α − 1) is a reduced critical 3412 embedding
defining a component of the singular locus in addition to the one defined by a < b < c < d.

Similarly, suppose {p | c < p < N, w(p) > α′} is nonempty. Let j = max{p | c <
p < N, α′ < w(p)}. By the definition of j and Lemma 5.1 (xi), w(j + 1) < δ′. Then
w−1(δ + 1) < j < j + 1 < d is a reduced critical 3412 embedding defining a component of
the singular locus.

We now proceed with the proof of the lemmas of Section 4, beginning with Lemma 4.1.

Lemma 4.1. Suppose the singular locus of Xw has only one component and w avoids
463152. Let Z be constructed as above; then Z is smooth.

Proof. Since Z is a fibre bundle by the map π1 over a smooth variety (the Grassmannian)
with fibre Xv, it is smooth if and only if Xv is.

We show the contrapositive of our stated lemma by showing that, if Xv is not smooth
and w avoids 463152, then the singular locus of Xw must have a component in addition
to the one defined by the reduced critical 3412 embedding a < b < c < d.

Assume Xv is singular. We choose a component of its singular locus. This component
has a combinatorial description as in Section 2.4.
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For convenience, we let a1 = a′ = w−1(α′), a2 = w−1(α′−1), and so on with aα′−α+1 =
w−1(α) = a. Similarly, we let d1 = w−1(α − 1), d2 = w−1(α − 2), and so on with dh = d
and dh+δ−δ′ = d′ = w−1(δ′). We also let A = {a1, . . . , aα′−α+1}, D1 = {d1, . . . , dh−1},
D2 = {dh, . . . , dh+δ−δ′}, and D = D1 ∪ D2.

First we handle the case where our chosen component of the singular locus of Xv is
of type I. If no index of the embedding into v defining the component is in A or D, then
the indices define an embedding of the same permutation into w, and the sets required to
be empty by the interval condition remain in exactly the same positions. The horizontal
boundaries of these regions are all above α′ or below δ′, so these regions remain empty in
w. Therefore, the same embedding indices will define a type I component of the singular
locus of Xw. This cannot be the same as the component associated to the critical 3412
embedding a < b < c < d; even if the component associated to a < b < c < d is of type I,
it still must involve at least either a or d, whereas the component we just defined coming
from the singular locus of Xv involves neither. Therefore, the singular locus of Xw has at
least two components.

Now suppose our chosen type I component includes some index in A or D. Let its
defining embedding into v be given by i < j1 < · · · < jy < k1 < · · · < kz < m. Define the
sets J and K by J = {j1, . . . , jy} and K = {k1, . . . , kz}. We first show that one of A and
D contains no part of the embedding. If ar ∈ A and ds ∈ D are both in the embedding,
then since ar < ds and v(ar) < v(ds), ar ∈ J and ds ∈ K. Now we must have that i < ar,
and that v(i) > α′, since, by definition, v−1(t) ∈ D and hence v−1(t) > ar whenever
ds ≤ t ≤ α′. But then i < a and w(i) = v(i) > α′, which is forbidden by Lemma 5.1 (i)
and (ii).

Therefore, we have two cases, one where A has some part of our type I embedding
but D does not, and one where D has a part of our embedding but A does not. We first
tackle the case where A contains a part of the embedding. In this case, i ∈ A, since
otherwise i < a and w(i) > α′, violating Lemma 5.1 (i) or (ii). Having i ∈ A then implies
that m 6∈ A and J ∩ A = ∅ as follows. First, we cannot have m ∈ A because, otherwise,
any r and s satisfying i < r < s < m would satisfy v(r) > v(s), which contradicts i and
m being the first and last indices of a type I embedding. Second, J ∩ A must be empty
because, if ar ∈ A, w(ar) < w(k) < w(i) implies i < k < ar for any k, contradicting
ar ∈ J for any type I embedding starting with i.

We now have two subcases for the case where A has a part of our type I embedding,
depending on whether ((K ∪ {m}) \ A contains an index less than b. If it does, then
either m < b or ks < b and w(ks) < δ′ for some s. Either way, the forbidden region
for the type I embedding does not intersect {(p, q) | b < p, δ′ < q < α′}. Therefore
i < j1 < . . . < jy < k1 < . . . < kz < m defines a type I component of the singular locus
of Xw as well as Xv. The forbidden region may be a little larger in w, but it does not
acquire any points in the graph of w. This cannot be the same as any type I component
of the singular locus of Xw associated to a < b < c < d since both J and K contain
indices outside of the region B associated to a < b < c < d.

In the other case, since m > b, we must have c ≤ m < d by Lemma 5.1 (x), (xi), (vii),
and (viii). One possibility is that c = m. In this case, taking the type I embedding in v
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and adding D1 to K gives a type I component of the singular locus of Xw. Both J and
K contain indices outside of B, so this will also be a second component of the singular
locus of Xw.

If, on the other hand, c 6= m, then c ∈ K by the following argument. An example of
this case is in Figure 6. By Lemma 5.1 (ix), v(m) = w(m) < γ. Furthermore, j < c and
v(j) < γ for all j ∈ J as follows. If jr > c and jr−1 < c (allowing for r = 1 in which case
we define j0 = i), the forbidden region {(p, q) | jr−1 < p < jr, v(jr) < q < v(i)} for our
type I embedding contains (c, γ) as v(jr) < γ by Lemma 5.1 (ix). If v(j) ≥ γ for some
j ∈ J , then v(kz) > γ, and hence kz < c by Lemma 5.1 (ix); now the forbidden region
{(p, q) | kz < p < m, v(m) < q < v(kz)} contains (c, γ).
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Figure 6: The case of a type I configuration in v, using points in A, with c < m < d. The
hollow points are in w, and the shaded region is the forbidden region of the associated
configuration in w.

Recall that (K\A) has no index less than b in the case under consideration. Therefore,
by Lemma 5.1 (xi), no index k ∈ K satisfies k < c, v(k) < γ = v(c). As i < c < m,
v(m) < γ < v(i), and j < c and v(j) < γ for all j ∈ J , we must have c ∈ K as otherwise
(c, γ) would be in a forbidden region. Therefore, taking the type I embedding in v and
adding D1 to K also gives a type I component of the singular locus of Xw distinct from
any associated to a < b < c < d.

Now suppose D contains some part of the embedding but A does not. If i 6∈ D, then
w(i) = v(i) > α′, so by Lemma 5.1 (i) and (ii), i > a. If i ∈ D, we also have i > a.
(Actually, we cannot have i ∈ D but do not need this fact.) Therefore, i < j1 < · · · <
jy < k1 < · · · < kz < m also defines a type I component of the singular locus of Xw,
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since, as the forbidden region does not intersect {(p, q) | p ≤ a, δ′ < q < α′}, no points of
the graph of w move into the forbidden region. This type I component can be the same
as one associated to the critical 3412 embedding a < b < c < d, but only if w has an
embedding of 463152.

We have completed the case where our chosen component of the singular locus of Xv

is of type I; now we move on to the case where it is of type II. Let i < j < k < m be
the reduced critical 3412 embedding associated to this component of the singular locus of
Xv. If none of i, j, k, and m are in A or D, then the critical regions are in the same place
in both v and w, and they remain empty. Therefore, they produce a component of the
singular locus of Xw which must not be the same as the one associated to a < b < c < d
as their reduced critical 3412 embeddings are different.

Now we first consider the case where D has a part of the critical embedding but A does
not. If i ∈ D, then i > a, so the critical region as well as the regions A and B associated
to i < j < k < m do not intersect {(p, q) | p ≤ a, δ′ ≤ q ≤ α′}, and i < j < k < m is also
a reduced critical 3412-embedding producing a type II component of the singular locus of
Xw. If j ∈ D, then v(i) < k, and, since i 6∈ A by assumption, v(i) < δ′. Since j > a, we
therefore also have that {(p, q) | p ≤ a, δ′ ≤ q ≤ α′} fails to intersect the critical regions
or the regions A and B, and i < j < k < m is a critical 3412 embedding producing a type
II component of the singular locus of Xw. Otherwise, i < d1 and v(i) > α′, so by Lemma
5.1 (i) and (ii), i > a, implying that i < j < k < m produces a type II component of the
singular locus of Xw. Since i < j < k < m is not a < b < c < d, we must have produced
a second component of the singular locus of Xw in all of these cases.

Now suppose A has part of the critical embedding. We cannot have k ∈ A or m ∈ A,
since otherwise we would have i < j < a with v(a) < v(i) < v(j), which forces j 6∈ A.
Then j < a and w(j) = v(j) > α′, violating Lemma 5.1 (i) or (ii). Therefore, j ∈ A or
i ∈ A.

If j ∈ A, then since i < j and v(i) < v(j), v(i) < δ′, and so v(k) < v(m) < δ′. Now
if k < b, i < j < k < m is a reduced critical 3412 embedding in w. It may have an
element in its A2 region in w that when there is none in its A2 region in v, but in that
case either the B region is empty or w fails to avoid 463152. When w avoids 463152,
i < j < k < m produces a second type II component of the singular locus of Xw. If
j ∈ A and k > b, then by Lemma 5.1 (x) and (xi), k ≥ c. Moreover, we cannot have
k = c as, in that case, c < m and γ < v(m) = w(m) < δ′, violating Lemma 5.1 (viii) or
(ix). Therefore, c < k < m, and, as m < δ′, m < d by Lemma 5.1 (vii) and (viii). Since
j < c < k, we now must have that v(i) = w(i) > γ in order for i < j < k < m to be
a critical 3412 embedding in v. If h = 1 and hence D1 is empty, then i < j < k < m
is a critical 3412 embedding in w with A or B empty as they are in v. If h > 1, let
i′ = max{p | p < b, γ < w(p) ≤ w(i)}; this set is nonempty because i is an element. Then
i′ < dh−1 < k < m is a reduced critical embedding of 3412 in w, and the component of
the singular locus of Xw it produces, whether it is type I or type II, must be different
from the one associated to a < b < c < d. This last case is illustrated in Figure 7.

Finally we tackle the case where i ∈ A. If m < b, then i < j < k < m is a reduced
critical 3412 embedding in w. Otherwise, m ≥ c by Lemma 5.1 (x) and (xi), and hence
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Figure 7: The case of a type II configuration in v, using points in A, with h > 1 and
k > b. The hollow points are in w, and the shaded regions are the critical regions of the
associated 3412 embedding in w.

v(m) < δ′. If k < c, then v(k) < δ′, so k ≤ M by definition. We then have j < M with
v(j) > α′, which is forbidden by Lemma 5.1 (i), (ii), and (iii) and Lemma 5.2 (ii). We
cannot have k = c since in that case γ < w(m) = v(m) < δ′ and m > c, violating Lemma
5.1 (viii) or (ix). If k > c then we have c < k < m < d. In this case a < b < k < m
is a critical 3412 embedding in w. In particular, {p | b < p < k, α < w(p) < β} is
empty by Lemma 5.1 (iv) and Lemma 5.2 (iv). Since k 6= c and m 6= d, the associated
component of the singular locus of Xw must be different from the component associated
to a < b < c < d.

We have now shown that, unless 463152 embeds in w, no matter what singularity Xv

may have, it must produce a second component of the singular locus of Xw, either directly
or through the use of Lemma 5.1 or Lemma 5.2. Therefore, if the singular locus of Xw

has only one component and w avoids 463152, Xv, and hence Z, is nonsingular.

Now we continue on to proving the lemmas of Section 4.2.

Lemma 4.2. The fiber of π2 over a flag F• is

{G ∈ Grκ(Cn) | Eδ′−1 + FM ⊆ G ⊆ Eα′ ∩ FN}.

Proof. By definition of Z, Eδ′−1 ⊆ G ⊆ Eα′ . We need to show that FM ⊆ G, that G ⊆ FN ,
and that any such subspace G is in π−1

2 (F•).
To show that FM ⊆ G, we show that rv(M, κ) = M . This is equivalent to showing

that {p | p ≤ M, v(p) > κ} is empty, which is in turn equivalent to showing that {p | p ≤
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M, δ′−1 < w(p) < α} and {p | p ≤ M, α′ < w(p)} are both empty. The first follows from
Lemma 5.1 (vi) since M < b by Lemma 5.2 (i). The second follows from Lemma 5.1 (i)
and (ii) and Lemma 5.2 (ii).

Now we show G ⊆ FN . This means showing that rv(N, κ) = κ, or that {p | p >
N, v(p) ≤ κ} is empty. This is equivalent to showing that {p | p > N, w(p) < δ′} and
{p | p > N, α ≤ w(p) ≤ α′} are both empty. The first is empty by the definition of N ,
and the second is empty by the definition of α′.

To show that any G satisfying Eδ′−1 + FM ⊆ G ⊆ Eα′ ∩ FN is in π−1
2 (F•), we need to

show that dim(G ∩ Fj) ≥ rv(j, κ) for any j with M < j < N . It suffices to show that
rv(j, κ) = rv(M, κ) = M when M < j < c, and that rv(j, κ) = rv(j − 1, κ) + 1 when
c ≤ j ≤ N . Equivalently, this means that v(j) > κ when M < j < c and v(j) ≤ κ when
c ≤ j ≤ N .

Since v(j) ≤ κ if and only if w(j) < δ′ or α ≤ w(j) ≤ α′, the first condition is clear
from the definition of M . We also have that N < d by Lemma 5.2 (iii), so we need
that {p | c < p < N, w(p) > α′} is empty, which follows from Lemma 5.2 (iv). Therefore,
rv(j, κ) = rv(j−1, κ)+1 when c ≤ j ≤ N , and any G satisfying Eδ′−1+FM ⊆ G ⊆ Eα′∩FN

is in π−1
2 (F•).

Lemma 4.3. Suppose that the singular locus of Xw has only one component and w avoids
546213. Then dim(Eδ′−1 + EM) = κ − 1.

Proof. Since rv(M, κ) = M , c > M , and v(c) < κ, M = rv(M, κ) + 1 ≤ rv(c, κ) ≤ κ, so
M ≤ κ − 1. If α = α′, then δ′ = α′ − α + δ′ = κ, so δ′ − 1 = κ − 1. Otherwise, we need
to show that M = κ − 1. Since M ≥ a, so that {p | p > M, α ≤ p ≤ α′} is empty, this is
equivalent to showing that {p | p > M, w(p) < δ′} has only one element, namely c.

By the definition of M , {p | M < p < c, w(p) < δ′} is empty. Furthermore, by
Lemma 5.1 (vii), (viii), and (ix), {p | p > d, w(p) < γ}, {p | p < d, γ < w(p) < δ′}, and
{p | c < p < d, γ < w(p) < δ} are empty. This leaves {p | c < p < d, w(p) < γ}, which is
empty since α′ 6= α and w avoids 546213.

Lemma 4.4. Suppose that the singular locus of Xw has only one component and w avoids
465132. Then dim(Eα′ ∩ EN) = κ + h.

Proof. First, note that N ≥ κ + h, since N = #{p | p < N, v(p) ≤ κ} + #{p | p <
N, v(p) > κ}, and the first summand is rv(N, κ) = κ, while the second summand is
at least h since the h elements b, w−1(α − 1), . . . , w−1(δ + 1) are in the set. If δ′ = δ,
then α′ = κ + α − δ = κ + h. Otherwise, we need to show that N = κ + h. This
means showing that {p | p < N, v(p) > κ} has exactly h elements, or, equivalently, that
{p | p < N, w(p) > α′} contains only b.

We know that {p | c < p < N, w(p) > α′} is empty by Lemma 5.2 (iv), and, by
Lemma 5.1 (i), (ii), and (iii), {p | p < a, w(p) > β}, {p | p < a, α′ < w(p) < β}, and
{p | a < p < b, α < w(p) < β} are empty. This leaves {p | a < p < b, w(p) > β}, which is
empty since δ′ 6= δ and w avoids 465132.
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Lemma 4.5. Suppose the singular locus of Xw has only one component, and h > 1. Then
the image of the exceptional locus of π2 is

{F• | dim(Eδ′−1 ∩ FM ) > rw(M, δ′ − 1)}.

Proof. First we show that rw(N, α′) = κ + h − 1. By the definition of N , rv(N, κ) = κ,
so the two sets {p | p < N, w(p) < δ′} and {p | p < N, α ≤ w(p) ≤ α′} have κ
elements combined. Since c < N by definition and N < d by Lemma 5.1 (vii) and (viii),
{p | p < N, δ′ ≤ w(p) < α} has precisely the h − 1 elements w−1(α − 1), . . . , w−1(δ + 1).
Therefore, dim(Eα′ ∩ FN) = rw(N, α′) = κ + h − 1 generically.

Now we calculate dim(Eδ′−1 + FM). Note that

dim(Eδ′−1 + FM) = δ′ − 1 + M − dim(Eδ′−1 ∩ FM ).

Generically,
dim(Eδ′−1 ∩ FM) = rw(M, δ′ − 1),

and

rw(M, δ′ − 1) = rv(M, κ) − #{p | p < M, α ≤ w(p) ≤ α′}

= M − (α′ − α + 1).

Therefore, generically,

dim(Eδ′−1 + FM) = δ′ − 1 + M − M + α′ − α + 1

= δ′ + α′ − α

= κ.

Recall that, by Lemma 4.2, the fiber over a flag F• is

{G ∈ Grκ(Cn) | Eδ′−1 + FM ⊆ G ⊆ Eα′ ∩ FN}.

Therefore, since dim G = κ, the fiber over F• consists of the single point correspond-
ing to the subspace Eδ′−1 + FM generically; here, the generic situation occurs whenever
dim(Eδ′−1 ∩ FM) = rw(M, δ′ − 1). When h = 1, we also have that dim(Eα′ ∩ FN ) = κ in
the generic situation, and we also need dim(Eα′ ∩ FN) > κ in order for the fiber over F•

to consist of more than a point. However, when h > 1, π−1(F•) has more than one point
whenever dim(Eδ′−1 ∩ FM) > rw(M, δ′ − 1), so the image of the exceptional locus is

{F• | dim(Eδ′−1 ∩ FM ) > rw(M, δ′ − 1)},

as desired.

Recall that u is defined by u = σw, where σ ∈ Sn is the cycle (γ, δ + 1, δ + 2, . . . , α).

Lemma 4.6. Assume that h > 1 and w avoids 526413. Then the image of the exceptional
locus of π2 is Xu, ℓ(w) − ℓ(u) = h, and the generic fiber over Xu is isomorphic to Ph−1.
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Proof. Suppose F• is in the image of the exceptional locus, and let X◦
x be the Schubert

cell containing F•. Our strategy is to show using rank matrices that x ≤ u. As part of
this proof, we show that a certain region of the graph of w is empty, which will imply
that ℓ(w) − ℓ(u) = h.

First we compare the rank matrices ru and rw. Let R1 denote the region {(p, q) |
w−1(δ + 1) ≤ p < c, γ ≤ q < δ + 1} and Ri = {(p, q) | w−1(δ + i−1) ≤ p < w−1(δ + i), γ ≤
q < δ+i} when 1 < i ≤ h. Since u = th · · · t1w where t1 = (γ, δ+1) and ti = (δ+i−1, δ+i)
when 1 < i ≤ h, we get that ru(p, q) = rw(p, q) + 1 if (p, q) is in Ri for some i, and
ru(p, q) = rw(p, q) otherwise. Let R denote the union R =

⋃h

i=1 Ri. The region R is
drawn in Figure 8.
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Figure 8: The region R “between” u and w.

Now we show that, when (p, q) ∈ R, then rw(p, q) is as small as possible given that
rw(M, δ′ − 1) = M and given that, as for any permutation and any p and q, 0 ≤ rw(p +
1, q) − rw(p, q) ≤ 1 and 0 ≤ rw(p, q + 1) − rw(p, q) ≤ 1. To be precise, this means that,
assuming (p, q) and (p, q + 1) are both in R, rw(p, q) = rw(p, q + 1) − 1 if γ ≤ q < δ′

and rw(p, q) = rw(p, q + 1) otherwise, and, assuming (p, q) and (p + 1, q) are both in R,
rw(p, q) = rw(p + 1, q) − 1 if a ≤ p < M with rw(p, q) = rw(p + 1, q) otherwise.

To prove the above claim, we need to show that R contains no point in the graph of w,
that w(p) < γ when a < p ≤ M , and that w−1(q) < a when γ < q ≤ δ′ − 1. Since h > 1
and w avoids 526413, {p | a < p < b, γ < w(p) < δ′}. Also, {p | a < p < b, δ′ ≤ w(p) < α}
and {p | b ≤ p < c, γ < w(p) < δ′} are empty by Lemma 5.1 (vi) and (x). The remaining
portion of R contains no point in the graph of w since, as a < b < c < d is a 3412
embedding of minimal height, b < w−1(α − 1) < · · · < w−1(δ + 1) < c by a < b < c < d.
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Furthermore, using that R contains no point of the graph of w, w(p) < γ when a < p ≤ M
by Lemma 5.2 (ii), and w−1(q) < a when γ < q ≤ δ′ − 1 by Lemma 5.1 (viii) and (ix).

Suppose X◦
x is in the image of the exceptional locus, so that x ≤ w and rx(M, δ′−1) ≥

rw(M, δ′ − 1) + 1. We show that rx(p, q) ≥ ru(p, q) for all p and q. If (p, q) is not in R,
this follows since x ≤ w. For (p, q) ∈ R, rw(p, q) is the minimum possible given that
rw(M, δ′ − 1) = M . Since rx(M, δ′ − 1) > rw(M, δ′ − 1), it follows that rx(p, q) > rw(p, q)
for (p, q) ∈ R. Therefore, rx(p, q) ≥ ru(p, q) when (p, q) is in R, and x ≤ u.

Since the regions Ri are empty, multiplication by each transposition t1,. . . , th decreases
the length of w by 1, and ℓ(u) = ℓ(w) − h.

Since u(p) ≤ α′ if and only if w(p) ≤ α′, ru(N, α′) = rw(N, α′) = κ+ h−1. Therefore,
dim(E ′

α ∩ FN) = κ + h − 1 for F• ∈ X◦
u. Moreover, for F• ∈ X◦

u,

dim(Eδ′−1 + FM) = δ′ − 1 + M − ru(M, δ′ − 1)

= δ′ − 1 + M − M + α′ − α

= κ − 1.

Therefore, the generic fiber over Xu is isomorphic to Ph−1.

A A Purely Pattern Avoidance Characterization

(by Sara Billey and Jonathan Weed)

Let S∞ be the union of Sn for all n ≥ 1. There exists a partial order on S∞ determined
by pattern embeddings; we say v ≺ w if there is a pattern embedding of v into w. If
the embedding of v into w is given by the set of indices Z = {i1, . . . , im}, then we write
flZ(w) = v, i.e., that the “flattened” version of w consisting only of the indices in Z is
the permutation v.

Consider the set KLm = {w ∈ S∞ |Pid,w(1) ≤ m} for any positive integer m. By [6,
Thm. 1], we know KLm is the complement of a lower order ideal in the poset of pattern
embeddings. Therefore, KLm can be characterized by pattern avoidance for every m ≥ 1.
For example, KL1 is the set of permutations avoiding 4231 and 3412. The following
theorem gives a minimal set of patterns characerizing KL2.

Theorem A.1. KL2 is equal to the set of permutations avoiding the 66 patterns
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45123 34512 53412 52341

45231 351624 523614 526314

624153 524613 462513 526413

546213 361452 461352 364152

463152 536142 465132 426351

632541 635241 642531 653421

3612745 6231745 6241735 3416725

4236715 4263715 4267315 3712564

7231564 3715264 3751264 7523164 (A.1)

6251734 7261453 3417562 3517462

4517362 4237561 5347261 4275631

34127856 42317856 34172856 42371856

42731856 35127846 52317846 52417836

34128675 42318675 34182675 42381675

42831675 34186275 42386175 42863175

35128674 52318674 36128574 62318574

52418673 62518473.

Given w ∈ Sn, the irreducible components of the singular locus of the Schubert variety
Xw are themselves Schubert varieties. The set of permutations indexing these irreducible
components is called the maximal singular locus, and is denoted by maxsing(w). The
proof of Theorem A.1 follows from the next two lemmas relating the maximal singular
locus of a Schubert variety with patterns.

Lemma A.2. [8, Sec. 13] Consider a set Z such that flZ(w) = 4231 or 3412. Then Z
corresponds to a unique element of maxsing(w) if and only if the pattern does not occur
as the dotted part of one of the following patterns:

3̇5̇41̇2̇ 4̇35̇1̇2̇ 4̇5̇1̇32̇
4̇5̇21̇3̇ 5̇2̇34̇1̇ 5̇2̇4̇31̇
5̇32̇4̇1̇ 5̇3̇4̇21̇ 5̇42̇3̇1̇
6̇3̇524̇1̇ 5̇6̇341̇2̇ 5̇26̇41̇3̇
4̇6̇31̇52̇.

(A.2)

Remark A.3. In contrast to Theorem A.1, it is interesting to note that the set MS2 =
{w ∈ S∞ : |maxsing(w)| ≥ 2} is not characterized by pattern avoidance. For instance,
the permutation x = 4631725 has a maximal singular locus of size 2, so x ∈ MS2. However
x ≺ w = 47318625, but w has maximal singular locus of size 1.
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Lemma A.4. If |maxsing(w)| ≥ k, then there exists a pattern v ≺ w with at most 4k
entries such that |maxsing(v)| ≥ k.

Proof. For each element xi of maxsing(w), let Zi be the indices of w such that flZi
(w) is

the 4231 or 3412 pattern corresponding to xi, and let Z be the union of Z1, Z2, . . . , Zk.
Then |Z| ≤ 4k, since each element of maxsing(w) adds at most 4 indices to Z, so flZ(w)
has at most 4k entries. Let v = flZ(w).

Given xi ∈ maxsing(w), flZi
(w) is a 4231 or 3412 pattern which is not a subpattern of

one of the dotted patterns in (A.2). Since Zi ⊂ Z, flZi
(v) = flZi

(flZ(w)) = flZi
(w), so Zi is

a 4231 or 3412 pattern in v as well. Furthermore, it cannot be a subpattern of one of the
patterns in (A.2), since then it would be a subpattern of that pattern in w as well. Hence
Zi corresponds to a unique element of maxsing(v). So |maxsing(v)| ≥ |maxsing(w)| ≥ k,
as desired.

Proof of Theorem A.1. By Theorem 1.1, KL2 is the set of permutations which have at
most 1 elements in the maximal singular locus and avoid

{653421, 632541, 463152, 526413, 546213, 465132}. (A.3)

If w 6∈ KL2, then either it contains a pattern in (A.3) or it has at least two elements
in its maximal singular locus. The patterns of (A.3) are in (A.1). We claim that any
w ∈ S∞ with |maxsing(w)| ≥ 2 contains a pattern in (A.1). Therefore, w 6∈ KL2 contains
a pattern from (A.1).

To prove the claim, note by Lemma A.4 that there exists v ∈ S≤8 such that v ≺ w
and |maxsing(v)| ≥ 2. A computer check establishes that (A.1) contains all the minimal
patterns in S≤8 not in KL2, hence w contains one such pattern.

Conversely, if w ∈ S∞ contains a pattern v in (A.1), then a computer verification
shows that Pid,v(1) > 2 so by [6], Pid,w(1) > 2. Hence, w is not in KL2. Therefore, the
patterns of (A.1) characterize KL2, as desired.

The structure of KLm for m ≥ 1 gives a pattern avoidance “filtration” on S∞. This
suggests the following questions.

1. Can KLm always be characterized by a finite number of patterns?

2. If so, can the minimal elements of the complement of KLm be determined efficiently?

3. We know the maximal singular locus is efficient to calculate. Can we use information
about maxsing(w) to give bounds for Pid,w(1)?

The following conjecture has been tested through S8.

Conjecture A.5. Let w ∈ Sn.

1. If Pid,w(1) ≤ 3 then |maxsing(w)| ≤ 3.

2. If Pid,w(1) = 3 and |maxsing(w)| = 1 then Pid,w = 1 + qa + qb.

3. If Pid,w(1) = 3 and |maxsing(w)| = 2 then Pid,w = 1 + qa + qb.

4. If Pid,w(1) = 3 and |maxsing(w)| = 3 then Pid,w = 1 + 2qa.
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The following conjecture has been tested for B5, C5, and D5.

Conjecture A.6. For other Weyl group types, Pid,w(1) = 2 implies |maxsing(w)| = 1.
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