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Abstract

In this article we outline a method that automatically trans forms an Euclidean
ornament into a hyperbolic one. The necessary steps are patn recognition, sym-
metry detection, extraction of a Euclidean fundamental regon, conformal deforma-
tion to a hyperbolic fundamental region and tessellation ofthe hyperbolic plane
with this patch. Each of these steps has its own mathematicalsubtleties that are
discussed in this article. In particular, it is discussed whch hyperbolic symmetry
groups are suitable generalizations of Euclidean wallpagegroups. Furthermore it is
shown how one can take advantage of methods from discrete dérential geometry in
order to perform the conformal deformation of the fundamentl region. Finally it is
demonstrated how areverse pixel lookupstrategy can be used to obtain hyperbolic
images with optimal resolution.

1 Introduction

Ornaments and regular tiling patterns have a long traditionn human culture. Their ori-
gins reach back to ancient cultures like China, Egypt, Greecand the Islam. Each of these
cultures has its own speci c way to create symmetric decon&e patterns. Mathemati-
cally the underlying structures are well understood. Takig only the pattern into account
(and neglecting possible color symmetries) there are just Zporadic groups and 2 in -
nite classes of groups governing the symmetry structure oflgme images. The two in nite
classes belong to rosette patterns with an-fold rotational symmetry (having re ections
or not). Furthermore there are 7 frieze groups describing fiarns that have translational
symmetry in a single direction. And last but not least there ee the most interesting ones,
the 17 wallpaper groups for patterns that admit translatioml symmetries in at least two
independent directions. The frieze and wallpaper groupse&in nite symmetry groups.
Structurally we have to tell apart at least three di erent layers when speaking about
symmetric patterns { two of them belong to mathematics and ombelongs to art. Starting
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Figure 1. A planar Euclidean ornament with its underlying symmetry st ructure

with a concrete symmetric patternP we are interested in its symmetry structure. For
this we embed the pattern inR? and study all Euclidean symmetries of this pattern. One
formal way to do this is to de ne a mappingP : R?! C whereC is a suitably rich set that
resembles a color space. For instance we could taRe= [0; 1] to be the red/green/blue
color values of each point in the plane. We are looking for @lluclidean transformations
that leave the pattern invariant. Let euc be the set of all possible Euclidean isometries.
The symmetry group of the patternP is sym(P) := fg 2 euc j P g = Pg, where
P g is a shorthand for rst applying the Euclidean symmetry and han looking for the
color at the transformed position. The symmetry group is thgart of the automorphism
group of P that belongs to euc. In other words we arrive at the same color for every
location in the orbit orb(x) := fg(x) j g 2 sym(P)g. This agrees with Hermann Weyl's
famous de nition of symmetry: \an object is symmetric if it remains the same under some
transformations”. Under the assumption thatP does not admit continuous symmetries,
each planar patternP has a symmetry group falling into one of the (conjugacy) class
mentioned above. (The extreme case of a pattern without anyepetitions is covered by
the rosette group that has only a 1-fold rotation.) The conjgacy class of the symmetry
group is in a sense the highest level of abstraction.

On a less abstract level each pattern is associated tocancrete symmetry group.
Within the same conjugacy class these concrete groups maylladi er by a variety of
parameters, like scaling, rotations, etc. Factoring out Etlidean transformations, some of
these classes turn out to have just one unique representatioThis happens for all rosette
and frieze groups. For wallpaper groups this e ect typicayl arises when a rotational
symmetry of order at least three is present. We call such grps highly symmetric The
remaining wallpaper groups still have one or two degrees oé€¢dom in their concrete geo-
metric representation. They correspond to an anisotropidretching in a certain direction
or an angle between the generating directions. The speci @gmetric representation of a
group is the second mathematical level we have to consider.

Finally, there is the artistic level, which is responsibledr the concrete motive that is
repeated in the ornament (see Figure 1). Here one has all atic freedom from complete
arbitrariness and noise to sophisticated ornamental desig as they occur for instance in
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Figure 2. A tessellation of the hyperbolic plane and M.C. Escher's Cicle Limit IIl,
woodcut 1959.

the Islamic ornamental art. The visual appearance of an orn@ent may vary drastically
with its artistic input. There is a clear concept that helps b draw a border between the
artistic and the mathematical level of an ornamental patten: the fundamental domain
This is a (connected) region in the original pattern that cotains exactly one point from
each orbit of the pattern. Thus within (the interior of) a fundamental domain there is no
repetition at all and one has full artistic freedom. If each pint of one fundamental domain
is colored then all the rest of the ornament is determined byhe underlying symmetry
group. Multiple copies of the fundamental domain generaténé pattern. One of the aims
of this paper is to provide a method that allows one to take thénigh-quality artistic
input of classical ornaments and turn them into patterns with new and amazing kinds
of symmetry. In other words we are interested in the generatn of artistically valuable
fundamental domains for interesting symmetry groups.

As mentioned above the structure of Euclidean ornaments iselunderstood and in a
sense a classical topic of geometry (see [9, 10, 18, 19]).dtywseldom happens that there
are speci c moments that represent a pivot in the interactio of mathematics and art.
But in the case of ornaments there seems to have been at leasesuch. At a conference
in 1954 the famous Dutch artist and lithograph M. C. Escher ath H. S. M. Coxeter rst
met. They exchanged many ideas on the interrelations of matmatics, geometry and art.
The conference resulted in a friendship and an exchange dtdes. One of these letters
of Coxeter to Escher contained a rendering of a hyperbolicgsellation in the Poincae
disk as it could also be found in Felix Klein's and Poincaes work (see Figure 2 left).
Escher claimed that he washockedby this picture since it resolved a problem he had
been struggling with for several yearsHow to t in nitely many similar objects into the
nite limits of a circle. Inspired by this drawing Escher produced a sequence of piods {
his famousCircle Limit | { IV  (see Figure 2 right). And in reaction to this Coxeter wrote
a beautiful article describing the subtle mathematics of thse pictures [5, 6].

The hyperbolic plane allows several (hyperbolic) rotatiomenters of arbitrary degree.
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Figure 3. The ultimate aim of this article: Transforming a scanned Eudidean input
image to a perfect hyperbolic ornament

Hence in contrast to the Euclidean plane in the hyperbolic phe there are in nitely many
structurally di erent symmetry groups. Nevertheless the anount of available artistically
interesting images ofhyperbolic ornamentsis very limited, and still the few examples
created by Escher are the outstanding period of this art. Theeasons for this are ob-
vious. A person creating hyperbolic ornaments has to copetiwviseveral problems and
to be equipped with several skills. He/she has to be artisadly gifted and has to know
the mathematical backgrounds of hyperbolic tessellationacluding the highly non-trivial
geometric construction principles. Furthermore he/she t®to nd a way to produce in-
nitely many ever so tiny copies of the object that has to be rpeated (the fundamental
region). There are several attempts to create such images tymputer. Some of them [3]
try to automatically create fundamental regions that matcha given concrete shape. Oth-
ers try to manually transform Euclidean patterns to create isilar hyperbolic patterns
[8]. There are also attempts [16] to take original picture pés of Escher images, deform
them manually to t approximately to a hyperbolic fundamental region and use this as a
basis for a tessellation. These latter come in a sense cldgeshe ones generated by the
methods described in this article. However, they su er fronvisual seams which appear
at the boundaries of the patches.

Also there are several programs that can be used to create imdual designs for a
speci ¢ symmetry group by mouse interactions (drawing ling placing objects). Most of
these programs also su er from the problem of creating in nely many objects in nite
time and are of doubtful artistic quality.

In this article we want to take a di erent approach. We want to outline a method
that allows one to take a classical ornamental pattern, feetlinto a computer and create
corresponding seamless hyperbolic patterns. Thus we wantkeep the artistic content (of
the old masters), while changing the symmetry structure oftte overall picture. Figure 3
exempli es input and a possible output of the program. The psent article outlines the
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di erent steps of this production process.

Pattern recognition: ~ We use autocorrelation methods based on discrete Fourier
transforms to detect symmetries of the original picture andb identify the structure
of its symmetry group.

Finding corresponding hyperbolic groups: An analysis of the symmetry group
is used to determine which hyperbolic groups match the origal symmetry group.

Conformal deformation:  We create a conformal deformation of the original fun-
damental region to the corresponding hyperbolic region. Entheory of this step

is governed by Riemann's famous mapping theorem. Howeveraptically feasible

implementations of this step need sophisticated methodsofn the relatively new

eld of discrete di erential geometry [2]. In particular, we use discrete conformal
mappings as introduced in [20].

Creating the image: Finally, the unit Poincae disk has to be covered with in-
nitely many copies of the fundamental region according tohe chosen symmetry
group. In order to obtain a perfect raster image we use a pixetiented algorithm

that calculates for each pixel its corresponding color.

The rest of the article is organized as follows. After outlimg some elementary concepts
and de nitions we focus in Section 3 on the task of transformg a Euclidean ornament
into a hyperbolic one. Section 4 is dedicated to the pre- andpt-processing { this means
the pattern recognition and the task of lling the entire Poincae disc with the pattern.
In Section 5 we present a collection of interesting exampleBinally, Section 6 points to
further projects and problems in this context that are not ceered by this article. The
article is meant as an overview of the subjects and our methednd omits several technical
details in order to emphasize the overall picture.

2 Concepts

This section covers several fundamental concepts needed tfee rest of the article. We
assume that the reader is familiar with elementary conceptsf wallpaper groups and with
hyperbolic geometry.

2.1 The Crystallographic Groups

The input pictures that we will use will all be Euclidean walpaper ornaments. These
pictures admit translational symmetries in at least two iné@pendent directions. Besides
translations also rotations, re ections and glide re ectons are allowed. The classi cation
of these groups dates back to the late 19th century and is due Fedorov, Schen ies and
Barlow [1, 9, 10, 18, 19]. There are exactly 17 conjugacy typef such groups. Di erent
nomenclatures have been proposed during the centuries. Weré will stick to the IUC
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pl p4

p2 p4m
pm p4g
Pg p3
cm p3ml
pmm p31m
pmg p6
Pgg pém
cmm

Table 1. Ornaments and their wallpaper groups
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notation, which is the notation for the symmetry groups adofed by the International
Union of Crystallography in 1952 [14]. A list of all 17 groups$s given in Table 1 (the
table rst appeared in [11] and is based on the beautiful cattion of classical ornaments
published by Owen Jones in 1910 [15]). The table gives one exde for each of the
groups and overlays a diagram indicating the symmetry stragre of the group. Double
lines represent re ections. Polygons represent rotatioreaters and dashed lines represent
glide re ections. In the nomenclature a letterm indicates the presence of a re ection,
a g indicates a glide refection and a numben > 1 indicates the presence of an-fold
rotation.

A concept that will turn out important for our purposes will be the fundamental region
(or fundamental domair) F of a wallpaper groupG euc. The orbit under G of a point
p is the equivalence claség pj g2 Gg.

De nition 1 A fundamental regionF of a wallpaper groupG  euc is a connected and
closed region inR? that contains at least one point from every orbit of the groysuch
that the images ofF under G cover R? and such that two such images have no interior
points in common.

Fundamental regions with fractal boundary are objects of ectent research. However,
we will neglect this case here. For Euclidean wallpaper gnpsiwe will only consider poly-
gonal fundamental regions. Later on in the hyperbolic caseawvill also admit hyperbolic
polygons (i.e. bounded by Euclidean circular arcs in the Rutae disk). While all interior
points of F belong to di erent orbits, it may happen that several bounday points of F
belong to the same orbit. For a particular colored symmetripattern P : R> ! C the
artistic content is given by the behavior within a fundamenal region. The whole pat-
tern is generated by gluing in nitely many copies (some of tim perhaps re ected) of the
fundamental region along their boundaries.

Some of the wallpaper groups turn out to be two-dimensionakerection groups or
are closely related to them. The groups p4m, p3ml and p6m cespond to the three
Euclidean triangular kaleidoscopic fundamental regionsitk corner angles (90;45 ;45),
(60 ;60 ;60) and (90 ;60 ;30), respectively. The groups p4, p3 and p6 are the corre-
sponding re ection free subgroups. These groups are indewd subgroups of the corre-
sponding re ection groups. The groups p31m and p4g can als@ lconsidered as index
two subgroups of p6m and p4m, respectively. All these groupave only one possible geo-
metric conjugacy class, since they are (up to a global Eucéidn transformation) uniquely
determined by the shape of the underlying triangles. Theres ione more re ection group,
namely pmm. It corresponds to a rectangular kaleidoscopettvifour 90 corners. It has
a one parameter family of conjugacy classes parametrized the ratio of two adjacent
edges.

Here we will discuss \hyperbolizations" of wallpaper groupthat contain at least one
proper center of rotation. In addition to the above mentiond groups these are p2, pmg,
cmm, pgg. The groups pmg, cmm and pgg have a one parameter fgnof geometric
conjugacy classes. The group p2 has two geometric paramstéits fundamental region
can be an arbitrary triangle).
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2.2 Hyperbolic Ornaments and Hyperbolization

Analogously to Euclidean wallpaper groups we will also codgr hyperbolic ones. By
default we will use the Poincae model of the hyperbolic plae. The hyperbolic plane
is the interior of the unit disk H := fz 2 Cjjzj < 1g in C equipped with a certain
metric (see for instance [12] for further details). In this radel hyperbolic lines correspond
to Euclidean circular arcs that intersect the boundary of tle Poincae disc orthogonally.
The model is conformal in the sense that hyperbolic angles teen hyperbolic lines
correspond to the intersection angle of the correspondingaes. Orientation preserving
hyperbolic isometries are given by Mebius transformation :H'! H that leave the unit
circle as a whole invariant. Orientation reversing hyperdi isometries are obtained by
combining a Mebius transformation with complex conjugatn. By hyp we denote the
set of all these isometries. Now a hyperbolic ornament is aloppattern P : H! C
that admits a discrete symmetry groupsym(P) := fg2 hyp jP g= Pg. In contrast
to the Euclidean case in the hyperbolic plane there are in teély many di erent discrete
symmetry groups having more than one center of rotation.

The simplest of these groups are the triangular re ection gups generated by trian-
gular kaleidoscopes with angles, —, -, wherek;m;n 2 Nand : + = + 1 < 1. Already in
this case there are in nitely many di erent such groups goveed by the di erent choices
of k, m, n. In our approach these groups will play a special role, sintleey are especially
easy to deal with.

Before coming back to these groups we will de ne what we meany b hyperbolization
of a Euclidean ornament. As mentioned in the introduction wavant to maintain as much
as possible of the artistic input. In particular shapes andragles should only be minimally
distorted by the deformation of the fundamental cell. For tlis reason we require the
deformation to be a conformal mapping except for the rotatio centers. We identify
the Euclidean plane with the complex number€. We will de ne hyperbolization by an
analytic continuation process of a functiorf that is consistent with the symmetry of the
pattern P.

De nition 2  Given a Euclidean patternP that belongs to a speci c wallpaper group
G euc. Furthermore, let P°: H! C be a hyperbolic ornament with some underlying
discrete hyperbolic groupg3® hyp. Let U C be a small region that does not contain
a rotation center of G. We say thatP%is a hyperbolization ofP if there is a conformal
mapf :U! H such that

P (z) = PYf (2)) forall z2 U and

For any analytic path :[0;1]! C with (0) 2 U that avoids all rotation centers
of G the analytic continuation fz) of f satises P( (1)) = PY{®( (1))).

The analytic continuation of f connects (conformally) the color patterns® and P° If
we trace any path inC that avoids rotation centers the colors of the two patterns vit
coincide forz and f§z), respectively. It should be mentioned that at the rotationcenters
considerable monodromy could occur. Imagine that we have auffold rotation center r
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in P that gets mapped to a vefold rotation centerr®in P° If we start with some point
z su ciently close to r and with a corresponding image poinf&(z) then each full cycle
aroundr causes the image point to perform @ turn around r% Only after ve full cycles

the imagez and f§z) are both back to their original position.

2.3 Orbifolds

One of the most successful concepts in the study of symmetgatterns is the underlying
orbifold. In our context it will sometimes be useful to perform consigrations on the level
of orbifolds rather than on the level of fundamental regionsSimilar to wallpaper groups
the orbifold can also be considered on a geometric and on a ¢amatorial (topological)
level. The orbifold is an abstract two-dimensional manifal, that contains exactly one
point from each orbit of a wallpaper group. For a detailed inmbduction to the theory of
orbifolds we refer to the beautiful book [4]. Here we only inbduce the concepts necessary
in our context. In the Euclidean plane we consider a polygohtundamental regionF of a
wallpaper groupG. The orbifold now can be considered as a copy of a single funaeantal
cell where boundary points that are identi ed viaG are glued together. The edges d&f
that belong to re ections become the boundary of the orbifdl, while centers of rotation
become corner points on the boundary or cone points in the atior of the orbifold,
depending on whether they lie on an axis of re ection or not. igure 4 illustrates the
concept. It shows the famous Angel and Devil ornament of M. &Escher. The symmetry
group of this picture is p4g. The drawing in the middle hightihts a fundamental region.
Cutting out this right-angled triangle and identifying the two edges labeledh we obtain
the orbifold. In this case it has one cone point of order 4. Thigypotenuse of the triangle
corresponds to a mirror line and becomes the boundary of thebdold.

Our approach to hyperbolization will take the orbifold of a vallpaper group and at-
tempt to change the order of the corners and cone points. Thus the example of the
Angel and Devil picture above we might be interested to prodie a version of the picture
in which for instance ve instead of four tips of the wings t around the cone point. This
is no longer possible in the Euclidean plane. However one cad a suitable embedding in
the hyperbolic plane. A corresponding picture is shown on ¢hright of Figure 4 together
with the deformed fundamental region. Notice that this regin is no longer bounded by
straight lines but by circular arcs (which are hyperbolic giaight lines). In the example
above the conformal relation between the Euclidean and the/perbolic picture is already
induced by a suitable conformal mapping of the fundamentakgion.

3 Computing Hyperbolizations

The following sections deal with various aspects of hyperlmation. We will outline the-
oretical as well as computational approaches. In particulawe will describe cases that
are particularly easy (triangle groups and their relativesand exemplify di culties for the
other groups.
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Figure 4. The fundamental region of an ornament can be glued along pad of the
boundary to become an orbifold. Deformed orbifolds can agai be used as
fundamental regions for hyperbolization. (Pictures basedon M.C. Escher,
symmetry drawing number 45, 1941.)

3.1 Triangle Groups and their Relatives

The restriction of conformality is a relatively strong requirement, but in the case of triangle
groups it is reasonably simple to fulll. We will rst outlin e the case of hyperbolization
of re ection groups generated by a triangular kaleidoscope
Assume that the pattern to be transformed belongs to one of éhtriangular re ection

groups p4m, p3ml or pém. They have a triangular fundamentalet .,.. The only
reasonable hyperbolizations will have a fundamental regioof comparable shape and
re ection behavior. Thus a hyperbolization belongs to a hygrbolic triangular group with
corner angles,, ~ and -~ Where% + % + % < 1. The corresponding fundamental region
is a hyperbolic triangle ny,. In order to be conformal we need a mapping that maps

euc 10 hyp and is conformal except for the corner points. At least theetically such a
mapping is simple to construct via the Riemann mapping theem. By this there exists
a conformal mapf, from the interior of ¢, to the upper half-planeC*. This map is
unique up to a Mebius transformation. The only regions wheg this map is not conformal
is at the corners of the triangle. There it behaves like a fution z . If we X the positions
of the image's corners on the real axis the mapping is unigyefletermined. In a similar
way we can de ne a mappingf, from ,, to C* (for this we chose w.l.o.g. the same
images of corner points on the real axis). Both maps and theinverses are conformal.
The desired map from ¢y t0  hyp NOwW is given by €, ) fi. The mapf; is a special
case of a Schwarz-Christo el mapping andl, is a variant of Schwarz-Christo el mappings
for circular arcs (see [7]).

At least theoretically there is an explicit way to expressf; and f,. This can be
done by the use of the hypergeometric functiogF,(a; b; c; 3. It goes back to Schwarz's
original work in which these maps were rst introduced parttularly in the context of
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covering spaces of hyperbolic re ection groups. If we wanbtmap the upper half-plane

to a triangle with corner angles; ;  this can be done by the formula
(2) = z' % F (%K % 2)
~ oFai(ahici)
with a= (1 + )=2,b=(1 )=2,c=1 ,a’=a c+1,KP=Db c+1

andc®=2 ¢ (see [13]). This formula maps the real axis to a triangular ggon with the
required corner angles. The preimages of the corner pointeed), 1 and1l . Calculating
the inverse of this map requires sophisticated numerical tm@ds since the map (z) may
become highly degenerate.

Our rst attempts to hyperbolization were based on this appoach. Unfortunately,
these maps are di cult to calculate and the known numerical nethods (see for instance
[7]) become unstable for circular arc polygons, due to solea \crowding e ects". For
these reasons our rst attempts at a concrete implementatiotook about one hour CPU
time for the deformation process, even if only tiny angle defmations were required.
In the meantime we switched to more sophisticated methodsoim discrete di erential
geometry. We will come back to this issue in Section 3.3.

Having transformed a single triangle the rest of the hyperbie unit disk H can be
lled consistently by the use of theSchwarz Re ection Principle (SRP). In its basic form
this principle can be stated most easily within the framewdr of the complex plane. If
G C is some region in the upper half-plane partially bounded by eeal line segment
Sandf : G! Cis a conformal map that mapsS again onto the reals axis therf can
be analytically and conformally extended to a regiol := fgj g 2 Gg by the function
fAz) := f(2). To be more specic: If we have a triangle in the upper halfplane with
one sideS on the real axis and this triangle is mapped to some regidn() in a way
that f (S) is again a real segment then this map can be extended as falfo The mirror
image of along the real axes is mapped to the mirror image of () according to f (2).
The map will be conformal also along the real axis. By suitablconjugation with Mebius
transformations the SRP can also be applied to regions bousd by arbitrary circular
arcs (of possibly in nite radius). By this in a hyperbolizaion of a re ection group the
triangular image of one triangle determines the images ofi @hree neighboring triangles.
If the corner angles of the image triangle are divisors ofthen the iterated continuation of
the map closes up nicely around the new rotation centers (iadt we get a very interesting
monodromy behavior of the map around the rotation centers,dwever we will neglect this
issue here).

One should notice that the triangular re ection groups are asy to handle for the
following reason: The Schwarz Christo el map that relateshe upper half-plane to the
interior of a (circular arc) polygon is unique up to Mebius tansformation. Thus in the
case of triangles this imposes no serious restriction on tip@sition of preimages of the
triangle corners. They can be entirely controlled by the Mdius transformation. The
situation changes if the fundamental region has more than the corners. However, the
fact that p3, p4, p6, p31m and p4g are closely related to triagte groups helps us, together
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(a) Re ected Triangle of p6m (b) Rotated Kite of p6 (c) Re ected Kite of p31m
Figure 5. Families of triangle-based orbifolds

with the SRP, to deal with these groups easily as well. Hereascensus of the fundamental
regions of these groups, also illustrated in Figure 5.

Re ected Triangle  (p6m, p3m1, p4m): The fundamental cell of the ornament is a
triangle which is bounded by re ections on all three sides. Ae interior angles of
©» = and - correspond directly to centers of rotation of order resgk, m and n,

which are implied by the re ections. Any integral values tha ful Il the angle sum
inequality for a hyperbolic triangle are valid.

Rotated Kite  (p6, p3, p4): The fundamental cell of the ornament can be ches as a
deltoid with equal angles, symmetric to one another and angle% and 27 on the
axis of rotation. Again they correspond to centers of rotatin of order resp.k, m
and n. The two symmetric rotations of orderk belong to a single transitivity class.
The angle sum inequality has to be ful lled for one half of thekite.

Re ected Kite  (p31m, p4g): The fundamental cell of the ornament can be chars as a
deltoid with re ections along two symmetric sides. The symrmatric angle has to be
a right angle, while the angles on the axis of symmetry arg at the corner with
the re ections and 27 at the corner without re ections, corresponding to centerof
rotation of order resp.m and n. The angle sum inequality has to be ful lled for one
half of the kite.

Thus the fundamental cells of the groups p3, p4, p6, p31m, p4gnsist of two copies
of the triangles for p3m1, p4m or p6m. Hence, if we already hena conformal map on
this triangle it can be easily extended to the whole kite by tb SRP. By this we also
get a mapping of the quadrangular fundamental regions in tlse cases. Figure 6 shows
the deformation of a fundamental region of an ornamental pern with p4 as underlying
wallpaper group.
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Figure 6: Conformal deformation of a Euclidean fundamental region toa hyperbolic one.

Multiple hyperbolic copies of this patch will perfectly coer the hyperbolic plane, as
Figure 7 shows. Here our standard example which belongs to 4 pas been transformed
to a suitable hyperbolic group. The original fundamental rgion is a square. One of the
90 angles (the one in the center of the ower) has been altered #n angle of 60. The
one centered in the little square as been altered to 72t is instructive to observe how
di erent parts of the picture change their appearance. Thesllow wheel around the ower
is now connected to six other wheels, while the little squatgecame a pentagon.

Figure 7: Filling the unit disc with hyperbolic copies of a patch.
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3.2 Parametric Symmetry Groups

The situation becomes by far more subtle for the groups withower symmetry. This
section deals with the speci c problems that arise if the shme of the fundamental region
is not already determined by the combinatorics of the symmest group.

3.2.1 Pmm

We rst consider the case of the group pmm. The group pmm has a&ctangular fun-
damental region, with re ections along all boundary edgeswe now want to conformally
deform this rectangle to obtain a suitable hyperbolic quadngle with altered angles at
the corners. In order to cover the hyperbolic plane propetlyevery corner angle must be
a divisor of . From a combinatorial point of view, this is the only restritcion. Thus we
can set the angles to, say, 60at each corner and obtain in nitely many possible tessel-
lations of H. In fact, the hyperbolic length of one of the sides togetherithh the corner
angles uniquely determines the shape of the tile. Figure 8uitrates a sequence of such
tessellations coming from a continuous change of the lengplarameter.

Our de nition of a proper hyperbolization however requireghat we can conformally
map the original rectangle in the Euclidean plane to its hyp&olic counterpart. This
turns out to be possible for just one speci c shape of the hypsolic tile in our in nite
class. The reason for this is as follows: The Riemann mappitigeorem tells us that there
is a conformal map from the interior of the Euclidean rectarlg to the upper half-plane.
This map is unique up to Mebius transformations. Hence the gsition of the images of
three of the corner points on the real axis uniquely determ@s the position of the fourth
corner. Similarly, there is such a map for the hyperbolic fudamental region. In order
to map corners of the Euclidean tile to corners of the hypertio tile the images of the
corresponding corner points on the real axis must agree. Té® points can be identi ed
via the Mebius transformation. Fitting the fourth point is in fact a condition. There
is a notion in conformal mapping theory that singles out thiccondition { the conformal
modulus (see [7]). Given a quadrangle (perhaps bounded by circularca) we consider

Figure 8. Instances of a parametric hyperbolic symmetry group.
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a conformal map to the upper half-plane. The boundary of theupdrangle is mapped
to the real axis. The map is unique up to Mebius transformatns and the cross ratio
of the images of the four corner points is an invariant of thisnapping process. Thus
two quadrangles can only be conformally mapped to each othiétheir conformal moduli
agree.

It is instructive to study why there was no problem with quadangular fundamental
regions in the case of the symmetry groups p4, p3, p6, p4g andlm. In all these cases
the fundamental regions are kites. The fundamental regiorsf the hyperbolizations are
hyperbolic kites as well. All kites have the same conformal adulus 1 since they are
conformally equivalent to a square. Hence the shape of he fdlamental regions is no
restriction to conformality.

In the standard setup of numerical Schwarz-Christo el mapmgs (these are confor-
mal mappings of polygonal regions to the upper half-planehé computation is usually
divided into two distinct numerical steps (see [7]). When a@ygon is mapped then in a
rst step the position of the images of the corner points on ta real axis is humerically
calculated. A second numerical step computes the actual maipg. We will later on
see how we circumvent these issues by directly generating iatpre of the conformally
mapped fundamental region.

3.2.2 P2, Pmg, Pgg and Cmm

The situation becomes even worse for the groups p2, cmm, pgglgpmg. In these cases
we have parametric symmetry groups for which parts of the bawlary of the fundamental

region have to be identi ed with other parts of the boundary. There the situation is as

follows: The fundamental region of the Euclidean group mayebchosen to be a polygon.
However, the speci c position of these boundary edges of thendamental region has no
intrinsic geometric meaning. A priori there is no reason whguch a polygonal region
should in a suitable hyperbolization be mapped to a hyperbiol polygonal region. (The

situation is di erent for triangle groups and their relatives. There the kite shape together
with the SRP ensures that a polygonal Euclidean fundamentaiegion is mapped to a
hyperbolic polygon.)

The above considerations indicate that it is desirable to & a concept of conformal
deformation that is not entirely based on the concept of defming fundamental regions,
since their edges are sort of arti cial. In Section 3.3.3 weilvcome back to this issue and
describe how approaches from discrete di erential geomgtican provide methods that
work directly on the more appropriate structure of the unddying orbifold.

3.3 Discrete Conformal Deformation
3.3.1 Discrete Conformality

Discrete di erential geometry allows for a more feasible tdrnative to the time-consuming
continuous calculations using hypergeometric functionsutdined in Section 3.1. Spring-
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born et al. recently introduced the concept of discrete comfmal equivalence of triangle
meshes [20]. They also describe an algorithm to calculateckuneshes.

Taken as a black box, the algorithm has the following interize.
Input: a combinatoric description of a triangulation, including

for each edge its length in the original mesh and
for each vertex its target angle sum in the result mesh.

Output: a factor f, for every vertexv such that when all edges are multiplied with the
factors of both their endpoints, the resulting mesh ful listhe desired angle sums

and is called conformally equivalent.

A A B AfAABfB

Figure 9: Example of conformal equivalence

An example of this process is given in Figure 9. To get a at ppfon as the result
of such a transformation, all interior vertices should be agned an angle sum of 2 and
vertices on the boundary , with the exception of the corners of the polygon.

To transform the interior of each triangle, some kind of intgpolation is required. It
is possible to use the factor§, to calculate a projective transformation for each triangle
which will not only map corners to corners but also preservehé circumcircle of these
corners and guarantee continuity along the triangle edgesThis is a nice property of
discrete conformality de ned in this way. A mapping is discetely conformal if and only
if the circumcircle preserving projective maps of adjacerttiangles agree on joint edges
[20].

3.3.2 High Symmetry Case

With the algorithm for discrete conformal equivalence in glce, one can use it to transform
a single fundamental domain. To do so, we start with a hyperlio fundamental domain

and transform it to a straight-edged Euclidean fundamentalomain with given corner

angles. In rough steps the procedure goes as follows:
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Figure 10: Discrete conformal transformation of a triangulated fundamental domain

H

. Embed the hyperbolic fundamental domain into the Eucliden plane using Poincae's
disk model.

2. Approximate this arc-bounded shape using a su ciently re mesh of Euclidean
triangles.

3. Designate target angles for the centers of rotation acabng to the order of these
rotations in the original Euclidean symmetry group.

4. Default all other vertices to along the boundary resp. 2 in the interior of the
mesh.

5. Calculate a conformally equivalent mesh for these angles

6. Adjust the size and position of the transformed mesh to melh the original Euclidean
fundamental domain.

7. Map interiors of all triangles using circumcircle-preseing projective transforma-
tions.

The above algorithm assumes that you already know the shapé the appropriate
hyperbolic fundamental domain. This is the case for highlyysnmetric Euclidean groups,
i.e. groups containing a rotation of order at least three. Ithese cases, the shape of the
fundamental domain is already fully determined by the combiatorics of the hyperbolic
symmetry group, as was described in Section 3.1.

Using a triangle re ection group as the basis for a hyperbalisymmetry group is a
powerful and intuitive concept. In another application writen by the rst author, a user
can de ne hyperbolic symmetry groups by identifying triandes of a triangular tiling. The
transformations de ned in this way generate a subgroup of thre ection group. This
symmetry group can then be used to draw new hyperbolic ornamts.
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3.3.3 Low Symmetry Case

In the less symmetric groups, more complicated issues occls explained in Section 3.2,
in these cases the corners of the fundamental domain can't deduced from the com-
binatorics of the hyperbolic symmetry group, and in generafou can choose either the
Euclidean or the hyperbolic fundamental domain to be boundeby straight lines, but not
both at the same time, as illustrated in Figure 11. To deal wit these issues, one can
focus on the orbifold instead of a at fundamental domain. Incontrast to the latter, the
orbifold contains no arbitrarily chosen boundary edges. Thonly possible boundary is in-
troduced by re ections, which have to map to re ections and hus remain straight-edged.
All other boundaries of the fundamental domain are glued tagher and thus lose their
distinguished role.

One can easily build a mesh representation of the orbifold tife original Euclidean or-
nament. This is done by triangulating the Euclidean fundamatal domain in any suitable
manner and then identifying boundary objects according tohe topology of the Euclidean
group. As aresult, each triangle has a xed position in the fodamental domain, but edges
and vertices don't, and triangles not adjacent in the fundamntal domain may be adja-
cent in the orbifold mesh. The resulting mesh in general cdrbe layed out in the plane.
Luckily the input for the calculation of conformally equivdent triangle meshes requires
only edge lengths, not vertex positions. The lengths of thesedges are well de ned and
easy to calculate.

Now that we have a mesh of the Euclidean orbifold, we can hygmalize it. To do so we
simply assign di erent target angles to the corners and cormints of the orbifold, ful lling
the hyperbolic angle sum constraints. There is a hyperbolixersion of the conformality
algorithm, which uses hyperbolic edge length and angle calations. Using this, we end
up with a discretely conformal hyperbolic orbifold.

To draw the hyperbolic ornament, one has to unroll this orbdld. Starting with an
arbitrary triangle and placing it at an arbitrary position, one can repeatedly place adjacent
triangles next to those already layed out. For every new triggle to be placed, the position
of an edge already placed together with the lengths of all tte edges de nes the position
of the third vertex. In theory, this process could be repeatkin nitely in order to cover
the whole hyperbolic plane. In practice, this process by idf would be infeasible to draw
the whole image. Instead, it suces to draw a single hyperbat fundamental domain,

>

Figure 11: Fundamental domains connecting centers of rotation using Wiperbolic straight
edges (red) or the images of Euclidean straight edges (blug)
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and continue from there using the process described in Secti4.2. Once the layout
process has layed out enough centers of rotation, they can bennected using straight
hyperbolic lines to form a hyperbolic polygonal fundamentadomain. Triangles outside
this fundamental domain needn't be considered. With this mriction in place, most

triangles of the orbifold result in only one triangle in the mterior of the fundamental

domain. Only a few triangles of the orbifold result in multipe copies being positioned
near di erent edges of the fundamental domain belonging tche same orbit.

4 Pre- and Post-processing

While the conformal deformation of the fundamental cell istte core of the hyperbolization
process, this by itself isn't enough to turn an image of an Elidean ornament into a
complete hyperbolic ornament. There are two more necessateps. Both of them have
their own mathematical subtleties. First of all the deforméon algorithm needs proper
input data. Hence, before the deformation can even be stadethe input image usually
has to be made perfectly symmetric, and its symmetry structe has to be analyzed.
This data is fed to the deformation algorithm. As describedni Section 3 this algorithm
produces a suitable hyperbolic fundamental region. In a kihof post-processing this
data is used to Il the entire Poincae disk according to thesymmetry structure of the
underlying hyperbolic group. The following two sections dg with these two steps.

4.1 Recognition of Ornaments

The input to our process should be an image of any symmetricrament. In general, such
an input will be imperfect: although a human will readily peceive it as being symmetric,
it actually isn't strictly so.

Take Figure 12(a) as an example. Although you can tell that th artist intended there
to be centers of four-fold rotation in the middle of each gre@esquare, you can also have a
closer look and see that in fact the color plates are misaligd, and also that the squares do
not all look exactly the same. Therefore, strictly speakinthe ornament is not symmetric.
If one were to use this imperfect image directly as the souroéthe hyperbolic ornament,
seams would be visible in the result. Consider for exampledhmisaligned colors in the
center of the square. As the hyperbolization process will to this four-fold rotation into
a ve-fold one, it has to be split at some line, where at leastr® more segment can be
inserted. Practically, one would use only a single fundamih domain, which has to line
up with itself.

Therefore, as the initial step towards a hyperbolic ornaménwe rst have to get a
perfectly symmetric Euclidean ornament. To help with this,the computer has to ana-
lyze the structure of the ornament, i.e. nd its symmetry grap. For this we reuse an
implementation originally described in [11]. The elementsf every symmetry group are
isometries, and can be divided into translations, rotatios, re ections and glide-re ections.
It is easiest to look for these features in this order.
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(&) Imperfect image scanned (b) Perfectly symmetric
from a book ornament

Figure 12. Example of the hyperbolization of an ornament

In order to nd the grid of translations which map the ornamen onto itself, one has
to measure the similarity between the original ornament anttanslated versions of it. A
naive implementation would consider every possible integrtranslation vector, and for
each vector calculate a measure by comparing all overlappgipixels, e.g. by summing up
di erences in color values, as outlined in Equation 1. For agsiare image of edge length
n this would yield an algorithm with O(n%) time complexity.

X x - . . .
ax;y) = ipG: k) p( + x;k +y)j 1)
ik
A better approach is the calculation of the autocorrelatioras a sum of products, not
di erences:

X X _
ax;y) = p(: k) p( + x;k +y) 2)
ik
Using this de nition of autocorrelation, the values for allpossible translation vectors
can be calculated inO(n?logn) by using fast Fourier transforms:

1. P=DFT p
2. A(xy) = P(xiy) P(xy)
3. a=iDFT A

As Fourier transforms conceptually operate on repetitive ata, the images have to be
padded with zeros to at least twice their size in order to avdiany wraparound e ects.

Once the autocorrelation has been calculated, the result tdbe searched for peaks.
We employ an area of dominance approach to peak detection, ialinweights peaks by the
area around them devoid of larger peaks. A similar approacle symmetry detection has
also been presented in [17]. The heuristics used to extracadis vectors from this fuzzy
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grid of peaks are still under development. Once two basis ¥ers spanning the grid of
all translations have been found, they can be used to extraeatsingle representative of a
translative cell of the ornament.

In the next step, this cell can be tested for rotations and (gle-)re ections. We again
employ correlations calculated using fast Fourier transfms, now between an image and
its rotated or re ected copy. As there are only very few rotabns which can occur in any
Euclidean ornament, namely by 60(6-fold), 90 (4-fold), 120 (3-fold) and 180 (2-fold),
and also the direction of any axis of re ection has to corregmd to certain vectors in
the grid of all translations, there are only few correlatios to perform. This time, we
don't pad the image but instead make use of the cyclic nature &ourier transformations.
Because of this, we are not really correlating a single tilend its rotated copy, but rather
an in nitely tiled area and its rotated version. From the postion of a peak, the location
of the possible center(s) of rotation or axis of translatiorran be derived. Also the glide
distance of a glide re ection can be determined and used tosiinguish simple re ections
from glide re ections.

In general, the value of the peaks corresponding to each detxl feature gives an
indication as to how likely that feature is actually presentin the ornament. In practice,
however, it pays o to let the user decide about these featuse as only the human can
easily distinguish unintended errors from slight symmetrpreakings intended by the artist.

From the set of detected features together with the grid of amslations the concrete
symmetry group of the ornament can be deduced. With this infmation, one can extract
a single fundamental domain. For each pixel of the fundameadtdomain to be calculated,
all the pixels in its orbit in the original image are accumulged and boiled down to a single
color using averaging, median calculation, or a combinatioof these.

When used as a tile under the same symmetry group, this fundamtal domain will
yield an ornament that is similar to the input image but perfetly symmetric.

4.2 Reverse Pixel Lookup

Once the fundamental domain has been transformed, it can bead to |l the plane. The
Poincae disk model embeds the whole in nite hyperbolic @ne into a nite Euclidean
circle. To display this circle correctly, an in nite number of copies of the fundamental
domain would be needed. As this is obviously impossible withite computational means,
one has to set some limits.

The easiest approach would be to simply create a nite numbef copies, placing them
one next to the other until some break condition is met. Doingo, one has to nd a com-
promise between the completeness of the result and the timgesit calculating it. Abort
too early, and the image will have major holes along the bouady. Calculate too long,
and most of the time will be spent transforming fundamental dmains that are too small
to be distinguished in any case. As we were dealing with inteetive hyperbolic drawing
applications before, and are planning to add a feature for awing on the transformed
ornament later on, we had quite severe real time constrainta mind for this tiling step,
and thus this naive approach was deemed unsuitable.
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The way to avoid this whole problem is to reverse the procesBon't copy tiles and see
what pixels to color, but instead start with the pixels and lok at the tiles they belong to.
While there are in nitely many tiles in the Poincae disk, every pixel of the disk belongs
to exactly one such tile (neglecting pixels on boundariesand every tile can be mapped
onto a central tile with known color values by a nite number ¢ semigroup generator
transformations. For most of the area, two adjacent pixels M/ belong to the same tile,
so that the transformation taking them into the central tile is the same as well.

This leads to the following algorithm, illustrated in Figure 13. Suppose you have
a central fundamental domain with known content, illustratd as square pixels. You
then copy colors from the central domain to the rest of the dis moving from the center
outwards. At any given point in time, some pixels are alreadgolored ( lled), while others
are yet to be colored (outlined). Consider the next pixel to & colored (red circle, 1).

1. First apply the transformation (green arrow)
which mapped its neighboring pixel (green cir-
cle, 2) into the central tile. The result (red
circle, 3) is usually at least quite close to the
central tile.

2. While the transformed position is still outside
of any boundary line of the central tile (blue
line), apply the generator associated with this
boundary line (blue arrow). If the result (red
circle, 4) still isn't inside the central tile, re-
peat this step until it nally is.

3. Round to integral pixel coordinates. Figure 13:  Reverse pixel lookup
in progress

4. Copy pixel color.

5 A Picture Book

This section is dedicated to pictures created by the implem@tions of the methods
described in the previous sections. Having well structuredigh quality input material

turned out to be extremely important during the process of iplementation. Most of the
benchmarks came from the beautiful book \The Grammar of Ormaent”" published by
Owen Jones in 1910. We now will present some of these origgalgether with interesting
hyperbolizations.

5.1 Jones' Ornaments

In Jones' book there are various samplers of classical ornamts from very di erent cul-
tures. The book was one of the rst books produced with multile color printing plates.
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The novelty of the production process caused some nice irodgyities and imperfections
that were a challenge for our picture recognition algorithmThe following pages illustrate
some of the most beautiful patterns of the collection toge#r with several interesting
hyperbolizations.

The rst collection of images, Figure 14, shows in a sens@riations on a topic Each
of the following eight hyperbolic pictures is generated fro the same input material (upper
left picture) and rendered with di erent indices for the rotation centers.

(5.4,2) (4,5,2)

(2,5,4) (2,7,3) (3,7,2)

(7,2,3) (7,32 (3,13,3)

Figure 14. A sampler of hyperbolizations of a p4 ornament. Orders of roation centers
given in brackets.
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The following pictures illustrate various other wallpapergroups with a small selection
of hyperbolizations. Unfortunately it is not possible to reresent the in nite variety of
possible patterns within the nite space of this article. Havever we hope the reader will
get an impression of the richness of the structures.

The rst example Figure 15 shows an ornament based on a simgtéangular re ection
group (the p6m). Two straight forward hyperbolizations areshown.

Figure 15: Hyperbolizations of a p6m ornament

Figure 16 has a p2 ornament as basis. The group p2 has four ipdadent centers
of two fold symmetry. Each of these centers can be altered iependently. The pictures
show the e ect for two possible choices of a single rotatiorenter. Notice that the p2
has a wide variety of possible appearances due to the freedonthe choice of geometric
parameters.

Figure 16: Hyperbolizations of a p2m ornament

Finally, in Figure 17 we present a hyperbolization of an evemore subtle group: a pmg.
Here in the original re ections, glides and 2-fold rotatios are present. The group pmg
has p2 as a subgroup. Thus the image can also be considered p& avith a particularly
symmetric fundamental region. We used this fact to obtain tb hyperbolizations by using
our algorithm for p2.
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Figure 17: Hyperbolizations of a pmg ornament

5.2 Escher's Lizards

It was a particular challenge and also particular
fun for us to apply our algorithms to the orna-
mental work of M. C. Escher and by this creat-
ing new circle limit pictures similar to his. Here
we will illustrate this process for a particularly
interesting example: Escher's famous Lizard tes-
sellation (symmetry drawing number 25). The
original source for our hyperbolizations was Fig-
ure 18. In this case a particular problem arose.
Escher's original drawing chose three dierent
colors for the Lizards. If the colors are considered
there is no rotational symmetry anymore. How-
ever, the shapes of the lizards admit a 3-fold ro-
tation symmetry. We created a hyperbolization
in a three step process. First we created a color
free copy of the original Lizard picture, in which
only the outlines of the Lizards were present (ac-
tually we created these outlines by hand using
Escher's drawing as a blueprint). The picture of
the outlines (which now admits a p3 symmetry) was fed to the Iperbolization algorithm.
There we altered one of the 3-fold rotation centers to a 4-fbicenter and generated the
hyperbolic image. Figure 19(a) illustrates the fundamentaregion of this ornament. The
structure generated this way does no longer admit a proper tige-coloring in a way such
that no lizards of same color meet in a proper boundary segmerHowever, the picture
is nicely four-colorable in a symmetric way.

We then started to four-color the a fundamental region of tl& picture under the
proposed coloring, as illustrated in Figure 19(b). This fudamental region was then used
as an input for the reverse pixel lookup algorithm which ndly produced a (four-colored)
hyperbolization of the lizard picture. The result of this pocess is shown in Figure 20.

Figure 18: M. C. Escher, symmetry
drawing number 25, Ink,
pencil, watercolor, 1939.
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(@) Monochrome fundamental (b) Colored fundamental domain
domain and its tessellation

Figure 19:

Intermediate steps when producing a hyperbolization of Esker's Lizards

Figure 20: Lizards reaching for the circle limit
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6 What's Next
6.1 Subgroups

Many artistic ornaments almost belong to a group of higher symetry, except for some
details. E.g. the p4 ornament hyperbolized in Figure 14 wodilbe a p4m except for the
twist at the corners of the green almost-square. The shapes$ Bscher's Lizards from
Figure 18 belong to p3, and only the colors reduce this to plt $eems to be interesting
to have large parts of an ornament stable under some highly mynetric group, but to

have smaller details break this symmetry, resulting in somsubgroup of the former group
as the symmetry group of the whole ornament.

So far, we haven't dealt with such issues in depth. Our hypedtization of the Lizards
employs some code written for this speci ¢ purpose, whichpeesents the speci ¢ subgroup
used when colors are added. It would be nice to nd and implemesome general way to
hyperbolize an ornament in a highly symmetric group and lateon switch to a subgroup
and intentionally break the symmetry. To transport artistic content and intention, the
breaking of the symmetry should be related to what was done the original image, but
needn't be the same. So, at places where Escher broke his tiotaal symmetries using
three colors, the hyperbolic ornament also breaks symmaeds, although using four colors.
The proper concepts to formalize symmetry breakings that ait interfere with the general
hyperbolization still have to be found.

A rst step in this direction would be an implementation in our interactive hyperbolic
drawing application. We already used this application to deelop many of the concepts
discussed in this paper. One could allow users to select a gudup, giving them a low-
symmetry brush to modify an existing high-symmetry ornamet either hyperbolized or
completely hand-drawn. Experiments of this kind would liksy help understanding of the
matter.

6.2 Spherical Geometry

Most of the concepts used for hyperbolization will work as Wefor spherical geometry.

Especially the transformation of artistic content using dscrete conformal maps and the
reverse pixel lookup to render the resulting image should haluable tools for a possible
sphericalization toolkit. It would be interesting to implement such an application as well.

6.3 Generic Ornament Transformations

Of course one isn't necessarily forced to change geometryctmformally map an ornament.
Even within the Euclidean plane there are symmetry groups i a common topology of
their orbifolds, diering only in the orders of their rotation centers. Section 2.3 lists
some such families. It would be interesting to allow conforah transformations between
di erent Euclidean ornaments as well.

In theory, one could also start with a hyperbolic (or spher@l) ornament and transform
it to any other symmetry group. However, as the number of arstically interesting non-
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Euclidean ornaments out there is rather low, such an applitan might have little practical
value.

6.4 P1

In this article we completely excluded the groups p1, pm, pgd cm. They do not have any
rotation centers. However it might be still desirable to traslate their artistic content to a
hyperbolic setup. In order to do so one must arti cially introduce new centers of rotation.
It might be an interesting study on the borderline of art and gometry to investigate what
kind of places are suitable for such rotation centers. For stance if one has a wallpaper
with a pl ower pattern it might be undesirable to introduce arotation center within
some leaf or petal. A distinction between foreground and bleground will be important
and except for rare cases rotation centers may occur prefelain the background.

6.5 Morenaments

The collaboration of the two authors of this article in the dd of ornaments started with a
real time drawing application for Euclidean ornaments, with has become an easy to use
program for users of all ages and backgrounds, thus espdygialited to public exhibitions.
We followed this up with another application to draw hyperbdic ornaments, again in real-
time. This is still being developed, and usability by laymens still lower than we would
wish. In the meantime, we have added further projects, likehtait for automatic pattern
recognition or the tools for hyperbolizations discussed ithis paper.

It is our goal to unite all these projects into a single applation. The name of this
combined application will be \morenaments”, in response tevhich we have already re-
named the Euclidean and hyperbolic drawing applications tdmorenaments euc" and
\morenaments hyp". We will try to achieve a user interface asasy to use as that of
morenaments euc, while giving access to all the interestirigatures resulting from non-
Euclidean geometries and the combination of di erent geontriees. We will also use this
integration to redesign most parts of the code, in order to @ammodate features we have
in mind but couldn't implement yet.
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