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Abstract

Freedman, Lovász and Schrijver characterized graph parameters that can be rep-
resented as the (weighted) number of homomorphisms into a fixed graph. Several
extensions of this result have been proved. We use the framework of categories to
prove a general theorem of this kind. Similarly as previous resuts, the characteri-
zation uses certain infinite matrices, called connection matrices, which are required
to be positive semidefinite.

1 Introduction

For two finite graphs F and G, let hom(F,G) denote the number of homomorphisms
F → G. The definition can be extended to weighted graphs. In [7] graph parameters
of the form hom(·, G), defined on finite multigraphs, were characterized, where G is a
fixed weighted graph. Several variants of this result have been obtained, characterizing
graph parameters hom(·, G) where all nodeweights of G are 1 [16], such graph parameters
defined on simple graphs [13] etc. These characterizations involve certain infinite matrices,
called connection matrices, which are required to be positive semidefinite and to satisfy
a condition on their rank. The results can be extended to directed graphs, hypergraphs
etc.

The goal of this paper is to use the framework of categories to prove a general theorem
of this kind. Let C be a category. We need to assume that it satisfies a number of natural
conditions C1-C4 below, but for the statement of the main theorem we only need that it
is locally finite, it has pullbacks, and it contains a terminal object t. In particular, every
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two objects a and b have a direct product a×b. We denote by C(a, b) the set of morphisms
from a to b.

Let f be a real valued function defined on the objects, invariant under isomorphism.
We say that f is multiplicative, if f(a × b) = f(a)f(b) for any two objects a and b. For
every object a, we define a (possibly infinite) symmetric matrix N(f, a), whose rows and
columns are indexed by the morphisms into a, and whose entry in row α and column β
is f(d), where d is the object where the pullback of (α, β) starts (this is well defined up
to isomorphism).

Theorem 1 Let C be a category satisfying conditions C1-C4 below. Let f be a function
defined on the objects, invariant under isomorphism. Then f = |C(b, .)| for some object b
if and only if the following conditions are fulfilled: (F1) f(t) = 1, (F2) f is multiplicative,
and (F3) N(f, a) is positive semidefinite for every object a.

We note that if there is a monomorphism from a to b, then N(f, a) is a submatrix
of N(f, b). Thus it would be enough to require the semidefiniteness condition for an
appropriate subset K of objects such that every object has a monomorphism into some
k ∈ K (we call such a set K cofinal). Since a × t is isomorphic with a, condition (F1)
follows from (F2) unless f is identically 0.

Let us mention a corollary.

Corollary 2 Conditions (F1)–(F3) of the theorem imply that (a) the values of f are
non-negative integers, (b) the rank of N(f, a) is finite.

Part (a) contrasts this result with the results of [7, 16], where (thanks to the weights)
the function values can be arbitrary. An analogue of (b) must be imposed as a condition
e.g. in the characterization in [7], while in this setup it follows from the other assumptions.

2 Preliminaries

2.1 Conditions on the category

Let C be a category (for basic definitions and facts, see e.g. [1]). For two objects a, b ∈
Ob(C), we denote by C(a, b) the set of morphisms a → b. We denote the composition of
two morphisms α ∈ C(a, b) and β ∈ C(b, c) by αβ. For α ∈ C(a, b), we set T (α) := a (tail
of α) and H(α) := b (head of α). Let Ca denote the set of morphisms with H(α) = a. We
denote by Cmon(a, b) and by Cmon

a the set of monomorphisms in C(a, b) and Ca, respectively.
We make the following assumptions about our category.

C1 C is locally finite, i.e., C(a, b) is finite for all a, b.

C2 (a) C has pullbacks.
(b) C has a terminal object t, into which every object has a unique morphism (which

can be thought of as the pullback of the empty set of morphisms).
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C3 Every morphism is the product of an epimorphism and a monomorphism.

C4 The category has an object such that the set of its direct powers is cofinal (we call
such an object a generator).

For every object a, we introduce an equivalence relation on Ca by α ≡ β if and only if
β = γα for some isomorphism γ. We say that α and β are left-isomorphic. We denote by
[α] the equivalence class of α, and by Ĉa, the set of equivalence classes in Ca.

Recall that for two morphisms α ∈ C(a, c) and β ∈ C(b, c), a pair of morphisms
α′ ∈ C(d, a) and β ′ ∈ C(d, b) is called a pullback of (α, β) if α′α = β ′β, and whenever
ξ ∈ C(e, a) and ζ ∈ C(e, b) are two morphisms such that ξα = ζβ, then there is a unique
morphism η ∈ C(e, d) such that ηα′ = ξ and ηβ ′ = ζ . We also call α′ a pullback of β along
α.

In terms of α and β, we write

αβ∗ := β ′, βα∗ := α′, α× β := α′α = β ′β.

(This strange notation will be convenient later on.)

a c

bt(α×β)

α

β
α×β

βα
� αβ

�
Figure 1: Pullbacks and product

It is well known and easy to check that for α, β ∈ Ca, [βα∗] only depends on [β],
and [α × β] only depends on [α] and [β]. The object T (α × β) is determined up to
isomorphism. Furthermore, if [α1] = [α2], then [α1β

∗] = [α2β
∗] and [β × α1] = [β × α2].

So the operation × is well defined on equivalence classes of morphisms. It is also clear
that if α1, α2 ∈ C(a, b), ϕ ∈ C(b, c), and [α1] = [α2], then [α1ϕ] = [α2ϕ]. This defines

[α] × [β] := [α × β]. It is easy to see that the operation × on Ĉa is associative and
commutative.

We say that the category has pullbacks (condition C2(a)) if every pair of morphisms
into the same object has a pullback. A direct product a× b of two objects is any object of
the form T (α×β), where α and β are the unique morphisms of a and b into the terminal
object t. This is uniquely determined up to isomorphism.

2.2 Examples

Example 1 The category of finite simple graphs with loops (where morphisms are ho-
momorphisms, i.e., adjacency-preserving maps) satisfies these assumptions. Conditions
C1 and C3 are trivial.
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The terminal object in C2(b) is the single node with a loop, while any complete graph
on 2 or more nodes with loops can serve as a generator object as in C4. To construct the
pullback of two homomorphisms α : a → c and β : b → c, take the direct (categorial)
product d of the two graphs a and b, together with its projections πa and πb onto a
and b, respectively, and take the subgraph d′ of d induced by those nodes v for which
(πaα)(v) = (πbβ)(v), together with the restrictions of πa and πb onto d′.

The cofinal set mentioned in the remark after the Theorem can be the set of all
complete graphs with loops at all nodes, in which case the conditions of Theorem 1 are
exactly the conditions given in [11].

Example 2 Reversing the arrows in the category of finite simple graphs with loops (Ex-
ample 1) gives another category satisfying the assumptions.

Conditions C1 and C3 are again trivial. The terminal object in C2(b) is the empty
graph, a generator object is the single node without a loop.

In this dual setting, we have to construct the pushout of two homomorphisms α : c→
a) and β : c→ b). This can be done by taking the disjoint union of the two graphs a and
b, and identifying those nodes that are the images of one and the same node of c. This is
just the construction of the connection matrix given in [11]. The cofinal set mentioned in
the remark after the Theorem can be the set of all graphs with no edges, in which case
the conditions of Theorem 1 are exactly the conditions given in [11] for this dual setting.

We note that the conditions are very similar to those in [7], except that there the
graphs cannot have loops and the matrices are indexed by monomorphisms only. As a
consequence, the characterization concerns homomorphism numbers into weighted graphs,
which is an extension not considered in this paper.

These examples can be extended to simplicial maps between simplicial complexes,
homomorphisms between directed graphs, hypergraphs, etc.

2.3 Some simple properties of the category

We state some easy consequences of these assumptions. It is easy to see that condition
C1 (local finiteness) implies:

Lemma 3 (a) Every monomorphism [epimorphism] µ ∈ C(a, a) is an isomorphism.
(b) If both C(a, b) and C(b, a) contain monomorphisms [epimorphisms], then a is iso-

morphic to b.

Another consequence of condition C1 is that generator objects have alternative char-
acterizations.

Lemma 4 For every object g, the following are equivalent.

(i) g is a generator.

(ii) Every object a has a monomorphism into the direct power g|C(a,g)|.

(iii) For any two objects a, b and any two different morphisms α, β ∈ C(b, a) there is a
morphism η ∈ C(a, g) such that αη 6= βη.
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Figure 2: Identities (a), (b) and (c) in Lemma 6.

(Condition (iii) is the more standard definition of a generator in a category.)

Proof. Clearly (ii) is a sharper form of (i), so it suffices to prove that (i)⇒(iii) and
(iii)⇒(ii).

(i)⇒(iii). We know that there is a k such that a has a monomorphism ξ into gk. Then
αξ 6= βξ. Let π1, . . . , πk be the canonical morphisms of gk into g, then by the definition
of pullback, there is an i ∈ {1, . . . , k} such that αξπi 6= βξπi. So we can take η = ξπi.

(iii)⇒(ii). Let C(a, g) = {ϕ1, . . . , ϕk}. By the definition of pullbacks, there is a map
ξ ∈ C(a, gk) such that ξπi = ϕi for i ∈ {1, . . . , k}. We claim that ξ is a monomorphism.
Indeed, for any two different morphisms α, β ∈ C(b, a) there is an i such that αϕi 6= βϕi,
and hence αξ 6= βξ. �

The following lemma is easy to verify:

Lemma 5 Let α1 ∈ C(c, b), α2 ∈ C(b, a) and ϕ ∈ C(d, a). Let (ϕ′, β2) be a pullback of
(α2, ϕ), and let (ϕ′′, β1) be a pullback of (α1, varphi

′). Then (ϕ′′, β1β2) is a pullback of
(α1α2, ϕ).

The operations introduced above satisfy some useful identities.

Lemma 6 (a) Let α1 ∈ C(c, b), α2 ∈ C(b, a) and ϕ ∈ C(d, a). Then [(α1α2)ϕ
∗] =

[(α1(ϕα
∗
2)

∗)(α2ϕ
∗)] and [ϕ(α1α2)

∗] = [ϕα∗
2α

∗
1].

(b) Let α1, α2 ∈ Ca and ϕ ∈ C(b, a). Then [(α1 × α2)ϕ
∗] = [(α1ϕ

∗) × (α2ϕ
∗)].

(c) Let α1, α2 ∈ Ca and ϕ ∈ C(a, b). If ϕ is a monomorphism, then [(α1 × α2)ϕ] =
[(α1ϕ) × (α2ϕ)].

Proof. The identities in (a) just rephrase Lemma 5. For the proof of (b) and (c), we
fix a particular choice of the pullbacks, so that we don’t have to use [. . . ]. Identity (b)
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follows by the following computation:

(α1 × α2)ϕ
∗ = ((α1α

∗
2)α2)ϕ

∗ = (α1α
∗
2)(ϕα

∗
2)

∗(α2ϕ
∗)

(using the first identity in (a))

= α1((ϕα
∗
2)α2)

∗(α2ϕ
∗)

(using the second identity in (a))

= α1(α2 × ϕ)∗α2ϕ
∗ = α1((α2ϕ

∗)ϕ)∗α2ϕ
∗

= (α1ϕ
∗)(α2ϕ

∗)∗α2ϕ
∗ = (α1ϕ

∗) × (α2ϕ
∗).

To prove (c), let α1 ∈ C(ci, a), and α1 × α2 ∈ C(d, a). We want to prove that
(α2α

∗
1, α1α

∗
2) is a pullback of (α1ϕ, α2ϕ). Let e be any object and let γi ∈ C(e, ci) be

morphisms such that γ1α1ϕ = γ2α2ϕ. Since ϕ is a monomorphism, this implies that
γ1α1 = γ2α2. Since α1α

∗
2 ∈ C(d, c1) and α2α

∗
1 ∈ C(d, c2) form a pullback of (α1, α2), it fol-

lows that there is a unique morphism ψ ∈ C(e, d) such that γ1 = ψα2α
∗
1 and γ2 = ψα1α

∗
2.

This proves the assertion. �

For each object a, the operation × defines a semigroup on Ĉa. Let Ga denote its
semigroup algebra of all formal finite linear combinations of morphisms in Ca.

Remark 7 Razborov’s “flag algebras” [15] can be defined in our setting as follows. We
consider the category of embeddings (injective homomorphisms) between graphs. Fixing
a graph a (which Razborov calls a “type”), the morphisms from a correspond to graphs
with a specified subgraph isomorphic with a (which Razborov calls a “flag”). The pushout
of two such morphisms results in an object obtained by gluing together the two graphs
along the image of a, which is exactly how Razborov defines the product in flag algebras.
So if we reverse the arrows, we get that flag algebras are the algebras Ga in the category
of monomorphisms between graphs, with arrows reversed. This is a subalgebra of the
algebra Ga defined in terms of all homomorphisms between graphs.

If ϕ : a → b is any morphism, then α 7→ αϕ extends to a linear map Ga → Gb, which
we denote by x 7→ xϕ. The map β 7→ βϕ∗ extends to a linear map Gb → Ga, which we
denote by x 7→ xϕ∗.

Lemma 8 Let a, b1, b2 be objects, ϕi ∈ C(bi, a), and let (η1, η2) be a pullback of (ϕ1, ϕ2).
Let xi ∈ Gbi, then x1ϕ1 × x2ϕ2 = (x1η

∗
1 × x2η

∗
2)(ϕ1 × ϕ2).

Proof. It suffices to prove this for the case when xi = [βi] for some βi ∈ Cbi . Then the
equation follows by applying Lemma 6(a) twice. �

3 The easy direction of the proof

We start with proving the “only if” part of Theorem 1. Suppose that f = |C(b, .)| for some
object b. Then f(t) = 1 by the definition of t, and f is multiplicative by the definition
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of direct product. To show that N(f, a) is positive semidefinite, consider any γ ∈ C(c, a)
and δ ∈ C(d, a), and let u = T (γ × δ). Note that, by the definition of pullbacks, f(u) is
the number of pairs of morphisms (φ, ψ) (φ ∈ C(b, c), ψ ∈ C(b, d)) such that φγ = ψδ. Fix
any morphism µ ∈ C(b, a), and let Mµ

γ denote the number of morphisms φ ∈ C(b, c) such
that φγ = µ. Clearly N(f, a)γ,δ =

∑
µM

µ
γM

µ
δ , and so the matrix N is the sum |C(b, a)|

positive semidefinite matrices of rank 1.

Remark 9 The same argument gives a more general semidefiniteness result. Let C be
a locally finite category, and let c and d be two objects. For any two morphisms α ∈
C(a, a′) and β ∈ C(b, b′), let Nα,β denote the number of 4-tuples of morphisms (φ, ψ, µ, ν)
(φ ∈ C(c, a), ψ ∈ C(c, b), µ ∈ C(a′, d), ν ∈ C(b′, d)) such that φαµ = ψβν. Then the
matrix N = (Nα,β), where α and β range over all morphisms of the category, is positive
semidefinite.

4 Factoring by f

Let f : C → R be any function invariant under isomorphism. It will be convenient to
extend it to morphisms, and define f(ϕ) = f(T (ϕ)). Clearly, this extension is invariant
under left-isomorphism of morphisms. We can extend f to the algebras Ga linearly. It
follows from the definition that for x ∈ Ga and ϕ ∈ C(a, b) we have f(xϕ) = f(x).

For α, β ∈ Ca, we define
〈α, β〉 = f(α× β),

which defines a (generally indefinite) inner product on Ga. Lemma 6(a) implies that for
x ∈ Ga, y ∈ Gb and ϕ ∈ C(a, b) the following identity holds:

〈xϕ, y〉 = 〈x, yϕ∗〉 (1)

(which justifies the notation ϕ∗). Furthermore, Lemma 6(c) implies that if ϕ ∈ C(a, b) is
a monomorphism, then for x, y ∈ Ca,

〈xϕ, yϕ〉 = f(xϕ× yϕ) = f((x× y)ϕ) = f(x× y) = 〈x, y〉. (2)

It also follows from the definition and the associativity of the product × that

〈α× β, γ〉 = f(α× β × γ) = 〈α, β × γ〉 (3)

for all α, β, γ in Ca. This extends linearly to the identity

〈x× y, z〉 = 〈x, y × z〉 (4)

for all x, y, z ∈ Ga.
Let

Na = {x ∈ Ga : 〈x, y〉 = 0 for all y ∈ Ga},

then Na is an ideal in the algebra Ga, since if x ∈ Na, then by (4), we have for all y, z ∈ Ga,
〈x×y, z〉 = 〈x, y×z〉 = 0, and hence x×y ∈ Na. So we can form the factor Aa = Ga/Na,
which is an associative and commutative algebra with a (possibly indefinite) inner product
〈., .〉. The coset Na + ida is an identity element in Aa, which we denote by 1a.
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Lemma 10 Let ϕ ∈ C(a, b).

(a) If x ∈ Na then xϕ ∈ Nb.

(b) If y ∈ Nb then yϕ∗ ∈ Na.

(c) If ϕ is a monomorphism, then xϕ ∈ Nb implies that x ∈ Na.

Proof. (a) To prove that xϕ ∈ Nb, we want to prove that 〈xϕ, y〉 = 0 for all y ∈ Gb. By
(1), 〈xϕ, y〉 = 〈x, yϕ∗〉, which is 0 as x ∈ Na.

(b) To prove that yϕ∗ ∈ Na, we want to prove that 〈yϕ∗, x〉 = 0 for all x ∈ Ga.
Similarly as before, 〈yϕ∗, x〉 = 〈y, xϕ〉 = 0 as y ∈ Nb.

(c) Assume that xϕ ∈ Nb for some x ∈ Ga. Then 〈xϕ, y〉 = 0 for every y ∈ Gb, in
particular, 〈xϕ, zϕ〉 = 0 for every z ∈ Ga. Then by (2), 〈x, z〉 = 0 for every z ∈ Ga, and
so x ∈ Na. �

Corollary 11 (a) The maps x 7→ xϕ and y 7→ yϕ∗ induce linear maps from Aa → Ab

and Ab → Aa, respectively.

(b) The map y 7→ yϕ∗ induces an algebra homomorphism.

(c) If ϕ is a monomorphism, then the map x 7→ xϕ induces an injective algebra
homomorphism.

We need some simple facts about inner products in direct products.

Lemma 12 Let a, b1, b2 be objects, ϕi ∈ C(bi, a), and let (η1, η2) be a pullback of (ϕ2, ϕ2).
Let xi ∈ Gbi, then

〈x1η
∗
1, x2η

∗
2〉 = 〈x1ϕ1, x2ϕ2〉.

In particular if a = t, then
〈x1η

∗
1 , x2η

∗
2〉 = f(x1)f(x2),

and for xi, yi ∈ Gbi,

〈x1η
∗
1 × x2η

∗
2 , y1η

∗
1 × y2η

∗
2〉 = f(x1 × y1)f(x2 × y2).

Proof. The first assertion follows from Lemma 8:

〈x1ϕ1, x2ϕ2〉 = f(x1ϕ1 × x2ϕ2) = f((x1η
∗
1 × x2η

∗
2)(ϕ1 × ϕ2))

= f(x1η
∗
1 × x2η

∗
2) = 〈x1η

∗
1, x2η

∗
2〉.

For the second assertion, it suffices to note that if a = t, then by the multiplicativity of
f ,

f(x1ϕ1 × x2ϕ2) = f(x1ϕ1)f(x2ϕ2) = f(x1)f(x2),

and using that η∗i is an algebra homomorphism,

〈x1η
∗
1 × x2η

∗
2, y1η

∗
1 × y2η

∗
2〉 = f(x1η

∗
1 × x2η

∗
2 × y1η

∗
1 × y2η

∗
2)

= f(x1η
∗
1 × y1η

∗
1 × x2η

∗
2 × y2η

∗
2) = f((x1 × y1)η

∗
1 × (x2 × y2)η

∗
2)

= f(x1 × y1)f(x2 × y2).

�
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5 Semidefiniteness

To use the hypothesis about semidefiniteness, we start with a simpe observation:

Lemma 13 The inner product 〈., .〉 is positive semidefinite on Ga if and only if the matrix
N(f, a) is positive semidefinite.

Proof. Let x =
∑

α xα ∈ Ga. We can also think of x as a column vector indexed by
morphisms α ∈ Ca. Then

〈x, x〉 =
∑

α,β

〈α, β〉xαxβ =
∑

α,β

f(α× β)xαxβ

=
∑

α,β

N(f, a)α,βxαxβ = xTN(f, a)x.

This is nonnegative for all x ∈ Ga if and only if N(f, a) is positive semidefinite. �

From now on we assume that all of the matrices N(f, a) are positive semidefinite, and
so the inner product 〈., .〉 is positive semidefinite on every Ga and then also on every Aa.

Lemma 14 The algebra Aa is finite dimensional and dim(Aa) ≤ f(a).

(The proof, which is an extension of Szegedy’s argument in [17], only uses that N(f, a×a)
is positive semidefinite.)

Proof. Let π1, π2 ∈ C(a × a, a) be the canonical projections of a × a onto a. There is a
unique morphism ϕ ∈ C(a, a×a) (the “diagonal embedding”) such that ϕπ1 = ϕπ2 = ida.

Let e1, . . . , eN be mutually orthogonal unit vectors in Aa. Both assertions will follow
if we prove that N ≤ f(a).

Let

x =
N∑

i=1

(eiπ
∗
1 × eiπ

∗
2) − [ϕ].

Then

〈x, x〉 =

N∑

i=1

〈eiπ
∗
1 × eiπ

∗
2, eiπ

∗
1 × eiπ

∗
2〉 + 2

∑

i<j

〈eiπ
∗
1 × eiπ

∗
2, ejπ

∗
1 × ejπ

∗
2〉

− 2

N∑

i=1

〈eiπ
∗
1 × eiπ

∗
2 , ϕ〉 + 〈ϕ, ϕ〉. (5)

Here using Lemma 12,

〈eiπ
∗
1 × eiπ

∗
2, eiπ

∗
1 × eiπ

∗
2〉 = f(ei × ei)

2 = 〈ei, ei〉
2 = 1.

Similarly,
〈eiπ

∗
1 × eiπ

∗
2 , ejπ

∗
1 × ejπ

∗
2〉 = 〈ei, ej〉

2 = 0.
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Furthermore, using that

eiπ
∗
2 × ϕ = (eiπ

∗
2ϕ

∗)ϕ = (ei(ϕπ2)
∗)ϕ = eiϕ,

we have

〈eiπ
∗
1 × eiπ

∗
2, ϕ〉 = 〈eiπ

∗
1, eiπ

∗
2 × ϕ〉 = 〈eiπ

∗
1, eiϕ〉 = 〈ei, eiϕπ1〉 = 〈ei, ei〉 = 1.

Since [ϕ] is an idempotent in Ga×a,

〈ϕ, ϕ〉 = f(ϕ× ϕ) = f(ϕ).

Hence by (5),
〈x, x〉 = N + 0 − 2N + f(ϕ) = f(a) −N.

Since this is nonnegative, the lemma follows. �

Since 〈x×y, z〉 = 〈x, y×z〉 for all x, y, z ∈ Aa, the algebra Aa has a (unique) orthogonal
basis Ba consisting of idempotents. We call these idempotents the basic idempotents in
Aa. Every idempotent in Aa is the sum of a subset of Ba, and in particular

1a =
∑

p∈Ba

p. (6)

Thus the number of idempotents in Aa is finite. Since [µ] is an idempotent for every
monomorphism µ ∈ Ca, we get an important finiteness property of the category:

Corollary 15 For every object a there are only a finite number of nonequivalent
monomorphism into a.

Let ϕ ∈ C(a, b). Since ϕ∗ Ab → Aa is an algebra homomorphism, pϕ∗ is an idempotent
in Aa for any p ∈ Bb, and 1bϕ

∗ = 1a. So (6) implies that
∑

p∈Bb

pϕ∗ = 1bϕ
∗ = 1a =

∑

q∈Ba

q. (7)

For p ∈ Bb and ϕ ∈ C(a, b), define

Bϕ,p := {q ∈ Ba : pϕ∗ × q = q}.

By (7),

pϕ∗ =
∑

q∈Bϕ,p

q. (8)

Lemma 16 Let p ∈ Bb, q ∈ Ba, and ϕ ∈ C(a, b).

(a) q ∈ Bϕ,p if and only if

qϕ =
f(q)

f(p)
p.

(b) If q ∈ Bϕ,p and ϕ is a monomorphism, then qϕ = p.
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Note that here f(q) = f(q × q) = 〈q, q〉 > 0 and similarly f(p) > 0.

Proof. (a) To prove the necessity of the condition, assume that p′ ∈ Bb \ {p}. Then

〈qϕ, p′〉 = 〈q, p′ϕ∗〉 = 0 = 〈
f(q)

f(p)
p, p′〉,

since 〈p, p′〉 = 0. Moreover,

〈qϕ, p〉 = 〈q, pϕ∗〉 = f(q × (pϕ∗)) = f(q) = 〈
f(q)

f(p)
p, p〉,

since 〈p, p〉 = f(p× p) = f(p).
The proof of sufficiency is easy, since q belongs to Bϕ,p′ for some p′ ∈ Bb, hence

qϕ = f(q)
f(p′)

p′, and so p = p′.

(b) Notice that ϕ defines an algebra homomorphism from Aa to Ab by Corollary 11(c),
and hence using Lemma 6(c),

f(q)

f(p)
p = qϕ = (q × q)ϕ = (qϕ) × (qϕ) =

(f(q)

f(p)
p
)
×

(f(q)

f(p)
p
)

=
(f(q)

f(p)

)2

p,

which implies that f(q)/f(p) = 1. �

6 Simplified idempotents

Let a and b be two objects and x ∈ Aa, y ∈ Ab. We say that y is a simplification of x if
there exists a monomorphism ϕ ∈ C(b, a) such that x = yϕ. It is clear that a simplification
of a simplification is a simplification.

Lemma 17 Every x ∈ Aa has a unique simplification y such that for every other simpli-
fication z of x, y is a simplification of z.

Proof. Corollary 15implies that there is a simplification y of x such that y has no
simplification other than itself. We claim that if z is any other simplification of x, then y
is a simplification of z.

Let y ∈ Ab and z ∈ Ac, and let ϕ ∈ C(b, a) and ψ ∈ C(c, a) be monomorphisms such
that x = yϕ = zψ. Then

x = yϕ = (1b × y)ϕ = 1bϕ× yϕ = 1bϕ× zψ.

By Lemma 8, this implies that, setting d := T (ϕ × ψ), there is a u ∈ Ad such that
x = 1bϕ × zψ = u(ϕ× ψ). Since ϕ × ψ, ϕψ∗ and ψϕ∗ are monomorphisms, this implies
that u is a simplification of each of x, y and z. So we must have u = y, which implies
that y is a simplification of z as claimed. �

So it follows that every x ∈ Aa has a “most simplified” version, which we denote by
s(x).
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Lemma 18 If p is a basic idempotent, then every simplification of p is a basic idempotent.

Proof. Let p ∈ Aa, y ∈ Ab and p = yϕ, where ϕ ∈ C(b, a) is a monomorphism. Write
y =

∑
q∈Bb

λqq. Then p = yϕ =
∑

q∈Bb
λqqϕ. By Lemma 16, the algebra elements qϕ are

basic idempotents in Aa, and so one of them must be equal to p. Hence qϕ = yϕ for this
basic idempotent, and by Corollary 11(c), this implies that y = q. �

Basic idempotents of the form s(p) will be called simplified.

Lemma 19 Let p ∈ Ba be a simplified basic idempotent, and suppose that p = pα for
some α ∈ C(a, a). Then α is an isomorphism.

Proof. Write α = γδ, where γ ∈ C(a, e) is an epimorphism and δ ∈ C(e, a) is a monomor-
phism. Then p = pα = (pγ)δ, and hence by the assumption that p is simplified, it follows
that δ is an isomorphism, and so α is an epimorphism. By Lemma 3, α is an isomorphism.
�

Lemma 20 Let p ∈ Ba be a simplified basic idempotent, ϕ ∈ C(b, a), q ∈ Bϕ,p and
s(q) ∈ Bd. Then there is an epimorphism η ∈ C(d, a) such that s(q) ∈ Bη,p.

Proof. Let µ ∈ C(d, b) be a monomorphism such that q = s(q)µ. By condition C3, µϕ
also factors as αβ, where α is an epimorphism and β is a monomorphism. Then

p =
f(p)

f(q)
qϕ =

f(p)

f(q)
s(q)µϕ =

f(p)

f(q)
s(q)αβ.

Since p is simplified, this implies that p = f(p)
f(q)

s(q)ασ for some isomorphism σ. Setting

η = ασ, we get that s(q) ∈ Bη,p by Lemma 16. �

Lemma 21 If p ∈ Aa is a simplified basic idempotent, then for every object b,

dimAb ≥
|Cmon(a, b)|

|Cmon(a, a)|
.

Proof. For every ϕ ∈ Cmon(a, b), pϕ is a basic idempotent in Ab. We claim that if
pϕ = pψ, then [ψ] = [ϕ]. This will imply that Ab has at least |Cmon(a, b)|/|Cmon(a, a)|
different basic idempotents, which will imply the Lemma.

Let q := pψ = pϕ. Let σ = ϕ× ψ ∈ C(c, b). By Lemma 8, there is a z ∈ Ac such that
pϕ×pψ = z(ϕ×ψ). But pϕ×pψ = q×q = q = pϕ, and so z(ψϕ∗)ϕ = z(ϕ×ψ) = q = pϕ,
whence z(ψϕ∗) = p as ϕ is a monomorphism. But ψϕ∗ is also a monomorphism, and since
p is simplified, it follows that it is an isomorphism. Similarly, ϕψ∗ is an isomorphism, and
hence ψ = (ϕψ∗)−1(ψϕ∗)ϕ, where (ϕψ∗)−1(ψϕ∗) is an automorphism of a. Thus [ψ] = [ϕ].
�

Our next goal is to prove that the number of simplified basic idempotents is finite.
This is where we also use the existence of a generator object g.
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Lemma 22 The number of simplified basic idempotents is finite.

Proof. Let a be an object such that Aa has a simplified basic idempotent p. Let m be the
smallest integer such that a has a monomorphism into gm. By Lemma 4, |C(a, g)| ≥ m.
Hence it follows that |C(a, gk)| ≥ mk, and so

|Cmon(a, gk)| ≥ |C(a, gk−m)||Cmon(a, gm)| ≥ mk−m

for k ≥ m. Combining with Lemma 21, we get that

dimAgk ≥
|Cmon(a, gk)|

|Cmon(a, a)|
≥

mk−m

|Cmon(a, a)|
.

Using Lemma 14, we get that

mk−m ≤ |Cmon(a, a)|f(gk) = |Cmon(a, a)|f(g)k.

Letting k → ∞, we get
m ≤ f(g).

So it follows that a has a monomorphism into g⌊f(g)⌋. Corollary 15 implies that the number
of nonisomorphic objects a with this property is finite. �

7 Conclusion

We say that a simplified basic idempotent p ∈ Aa is maximal, if whenever η ∈ C(b, a) is
an epimorphism and q ∈ Bη,p is a simplified basic idempotent, then η is an isomorphism.
Lemma 22 implies that there is at least one maximal simplified basic idempotent.

Lemma 23 Let p ∈ Ba be a maximal simplified basic idempotent and ϕ ∈ C(b, a). Then

pϕ∗ =
∑

ψ∈C(a,b)
ψϕ=ida

pψ.

Proof. Let q ∈ Bb. We want to prove that q ∈ Bϕ,p if and only if q = pψ for some
ψ ∈ C(a, b) with ψϕ = ida.

If q = pψ for such a ψ, then qϕ = pψϕ = p, and so q ∈ Bϕ,p by Lemma 16.
Conversely, let q ∈ Bϕ,p, and let s(q) ∈ Bd (Figure 3). By Lemma 20, there is an

epimorphism η ∈ C(d, a) such that s(q) ∈ Bη,p. By the maximality of p, this implies that
η is an isomorphism, and so s(q) = pσ for some isomorphism σ ∈ C(a, d). It follows that
q = s(q)µ = pσµ for some monomorphism µ ∈ C(a, b). Then by Lemma 16

p =
f(p)

f(q)
qϕ =

f(p)

f(q)
pσµϕ.

Applying f we see that f(p) = f(q), so p = qϕ. Set α := σµϕ, so p = pα. By Lemma 19,
α is an isomorphism, and so ψ = α−1σµ ∈ C(a, b) is a monomorphism satisfying ψϕ = ida.
�
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Figure 3: Proof of Lemma 23

Lemma 24 For any two objects a, b and maximal simplified basic idempotent p ∈ Aa,
∑

ϕ∈C(a,b)

pϕ = f(p)1b. (9)

Proof. By condition C2(b), the category has a terminal object t. Let C(a, t) = {α} and
C(b, t) = {β}. Set γ = βα∗, δ = αβ∗, and c = T (α× β).

The algebra At is 1-dimensional, which implies that for any y ∈ Ab, yβ is a scalar
multiple of 1t, where f(yβ) = f(y) and the hypothesis that f(1t) = 1 give the value of
the scalar:

yβ = f(y)1t. (10)

Furthermore, Lemma 6(b) implies that that

(yβ)α∗ = (yδ∗)γ. (11)

For each ϕ ∈ C(a, b), there is a unique ψ ∈ C(a, T (α× β)) with ψγ = ida and ψδ = ϕ.
Hence, with Lemma 23,

∑

ϕ∈C(a,b)

pϕ =
∑

ψ
αψ=ida

pψδ =
( ∑

ψ∈C(a,T (α×β))
ψγ=ida

pψ
)
δ = (pγ∗)δ.

By (1), (10) and (11), we have for each y ∈ Ab:

〈y, pγ∗δ〉 = 〈yδ∗, pγ∗〉 = 〈yδ∗γ, p〉 = 〈(yβ)α∗, p〉

= 〈yβ, pα〉 = f(y)f(p)〈1t, 1t〉 = f(y)f(p) = 〈y, f(p)1b〉.

This implies that (pγ∗)δ = f(p)1b. �

We are now ready to prove our main theorem.

Proof of Theorem 1. Let p ∈ Ca be a maximal simplified basic idempotent. Then for
every object b, by Lemma 24,

f(b) = f(1b) =
1

f(p)

∑

ϕ∈C(a,b)

f(pϕ) = |C(a, b)|.

�
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8 Concluding remarks

Homomorphisms between graphs and their number occur in several other contexts. Which
of these results can be extended to categories? Let us discuss some examples.

• Questions of existence of homomorphisms between graphs can often be posed in a
very clean form using categorial language (see e.g. [8]).

• Counting homomorphisms has been a main tool in proving cancellation laws for
finite relational structures [9]. These results were extended to locally finite categories
much in the spirit of this paper [10, 14].

• Counting homomorphisms from fixed graphs into a growing sequence of “large”
graphs can be used to define convergence of sequences of graphs and their limit
objects [5, 12]. Counting homomorphisms from “large” graphs into fixed graphs
(usually with weights) connects this subject to statistical physics. Some of these
methods have been extended to hypergraphs and other structures [6]. It would
be very interesting to extend these notions and results to categories. One can
generalize the notions of cut distance and convergence in a rather straightforward
way, but it seems to be much harder to generalize some of the basic proofs, and to
find interesting special categories to which the general results would apply.

• The set of homomorphisms between two graphs can be endowed with the structure of
a convex cell complex [2], which allows the use of methods from algebraic topology
to prove non-existence results concerning homomorphism, in particular colorings
[3, 4]. Can this be extended to categories? Again, one can generalize the definitions
in more than one way, but the generalization of the results, and even more finding
interesting further special cases, is open.
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