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Abstract

We show that for every injective continuous map f : S2 → R
3 there are four distinct

points in the image of f such that the convex hull is a tetrahedron with the property
that two opposite edges have the same length and the other four edges are also of
equal length. This result represents a partial result for the topological Borsuk
problem for R

3. Our proof of the geometrical claim, via Fadell–Husseini index
theory, provides an instance where arguments based on group cohomology with
integer coefficients yield results that cannot be accessed using only field coefficients.

1 Introduction

The motivation for the study of the existence of particular types of tetrahedra on deformed
2-spheres is twofold. The topological Borsuk problem, as formulated by Soibelman in 1977
[6] (“estimate the minimal Borsuk partition number for the unit ball in R

n for general
metrics!”), along with the square peg problem [5] first posed by Toeplitz 1911 (“does
every Jordan curve contain the vertices of a square?”) inspire the search for possible
polytopes with nice metric properties whose vertices lie on the continuous images of
spheres. Beyond their intrinsic interest, these problems can be used as testing grounds
for tools from equivariant topology, e.g. for comparing the strength of Fadell–Husseini
index theory with ring resp. field coefficients.
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The following theorem will be proved through the use of Fadell–Husseini index theory
with coefficients in the ring Z. It is also going to be demonstrated that Fadell–Husseini
index theory with coefficients in field F2 has no power in this instance (Section 4.1).

Theorem 1.1. Let f : S2 → R
3 be an injective continuous map. Then its image contains

vertices of a tetrahedron that has at least the symmetry of a square. That is, there are
four distinct points ξ1, ξ2, ξ3 and ξ4 on S2 such that

d(f(ξ1), f(ξ2)) = d(f(ξ2), f(ξ3)) = d(f(ξ3), f(ξ4)) = d(f(ξ4), f(ξ1))

and
d(f(ξ1), f(ξ3)) = d(f(ξ2), f(ξ4)).

Thus the tetrahedron may even be regular and thus have symmetry group S4; it may also
degenerate to a (planar) square.

Remark 1.2. The proof is not going to use any properties of R
3 except that it is a metric

space. Thus in the statement of the theorem, R
3 can be replaced by any metric space

(M, d).

Figure 1: A D8-invariant tetrahedron on a deformed 2-sphere

Let us try to relate this to the square peg problem and the topological Borsuk problem:
The square peg problem is settled for various classes of sufficiently piecewise-smooth

Jordan curves, but open in general. Unfortunately, the methods used for the proof of
Theorem 1.1 do not imply any conclusion when applied to the square peg problem (see
Section 4.2). On the other hand, if the square peg problem could be solved for the
continuous Jordan curves, then it would imply the result of Theorem 1.1.

The first open instance of the topological Borsuk problem considers the existence of a
collection of four points with equal pairwise d-distances in a general metric space (R3, d).
The main result of the paper does not provide any new information concerning the topo-
logical Borsuk problem, as we work in the restricted parameter space {(x1, x2, x3, x4) ∈
(S1)

4
| x1 6= x3 or x2 6= x4} whose dimension is much smaller compared to the one used

in the topological Borsuk problem {(x1, x2, x3, x4) ∈ (R3)
4
| x1 6= x3 or x2 6= x4}.
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2 Introducing the equivariant question

Let f : S2 → R
3 be an injective continuous map. Denote by D8 the symmetry group of a

square, that is, the 8-element dihedral group D8 = 〈ω, j | ω4 = j2 = 1, ωj = jω3〉.

A few D8-representations.

The real vector spaces

U4 = {(x1, x2, x3, x4) ∈ R
4 | x1 + x2 + x3 + x4 = 0},

U2 = {(x1, x2) ∈ R
2 | x1 + x2 = 0}

are real D8-representations with actions given by
(a) for (x1, x2, x3, x4) ∈ U4:

ω · (x1, x2, x3, x4) = (x2, x3, x4, x1), j · (x1, x2, x3, x4) = (x3, x2, x1, x4),

(b) for (x1, x2) ∈ U2 :

ω · (x1, x2) = (x2, x1), j · (x1, x2) = (x2, x1),

The configuration space.

Let X = S2 × S2 × S2 × S2 and let Y be the subspace given by

Y =
{

(x, y, x, y) | x, y ∈ S2
}

≈ S2 × S2.

The configuration space to be considered is the space

Ω := X\Y.

Let a D8-action on X be induced by

ω · (ξ1, ξ2, ξ3, ξ4) = (ξ2, ξ3, ξ4, ξ1), j · (ξ1, ξ2, ξ3, ξ4) = (ξ4, ξ3, ξ2, ξ1),

for (ξ1, ξ2, ξ3, ξ4) ∈ X.

A test map.

Let τ : Ω → U4 × U2 be a map defined for (ξ1, ξ2, ξ3, ξ4) ∈ X by

τ(ξ1, ξ2, ξ3, ξ4) =
(

d12 −
∆
4
, d23 −

∆
4
, d34 −

∆
4
, d41 −

∆
4

)

×
(

d13 −
Φ
2
, d24 −

Φ
2

)

(1)

where dij = dji := d(f (ξi) , f (ξj)) and

∆ = d12 + d23 + d34 + d14, Φ = d13 + d24.
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With the D8-actions introduced above the test map τ is D8-equivariant. Indeed,

τ (ω · (ξ1, ξ2, ξ3, ξ4)) = τ(ξ2, ξ3, ξ4, ξ1)

=
(

d23 −
∆
4
, d34 −

∆
4
, d41 −

∆
4
, d12 −

∆
4

)

×
(

d24 −
Φ
2
, d13 −

Φ
2

)

= ω ·
((

d12 −
∆
4
, d23 −

∆
4
, d34 −

∆
4
, d41 −

∆
4

)

×
(

d13 −
Φ
2
, d24 −

Φ
2

))

and

τ (j · (ξ1, ξ2, ξ3, ξ4)) = τ(ξ4, ξ3, ξ2, ξ1)

=
(

d43 −
∆
4
, d32 −

∆
4
, d21 −

∆
4
, d14 −

∆
4

)

×
(

d42 −
Φ
2
, d31 −

Φ
2

)

= j ·
((

d12 −
∆
4
, d23 −

∆
4
, d34 −

∆
4
, d41 −

∆
4

)

×
(

d13 −
Φ
2
, d24 −

Φ
2

))

.

The following proposition connects our set-up with the tetrahedron problem.

Proposition 2.1. If there is no D8 equivariant map

α : Ω → (U4 × U2)\({0} × {0}) (2)

then Theorem 1.1 follows.

Proof. If there is no D8 equivariant map Ω → (U4 × U2)\({0} × {0}), then for every
continuous embedding f : S2 → R

3 there is a point ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Ω = X\Y such
that

τ(ξ1, ξ2, ξ3, ξ4) = (0, 0) ∈ U4 × U2. (3)

From (3) we conclude that

d12 = d23 = d34 = d14 = ∆
4

and d13 = d24 = Φ
2
. (4)

It only remains to prove that all four points are different. Since (ξ1, ξ2, ξ3, ξ4) /∈ Y we have
ξ1 6= ξ3 or ξ2 6= ξ4. By symmetry we may assume that ξ1 6= ξ3. The map f is injective,
therefore f(ξ1) 6= f(ξ3) and consequently d13 6= 0. Now

d13 6= 0 ⇒ d24 6= 0 ⇒ f(ξ1) 6= f(ξ3), f(ξ2) 6= f(ξ4) ⇒ ξ1 6= ξ3, ξ2 6= ξ4.

Let us assume, without loss of generality, that ξ1 = ξ2. Then d12 = d23 = d34 = d14 = 0,
which implies that d13 ≤ d12 + d23 = 0. This yield a contradiction to d13 6= 0. Thus
ξ1 6= ξ2.

The unit sphere of the representation U4 × U2 will be denoted by S(U4 × U2). Notice
that there is a D8-equivariant deformation of (U4 × U2)\({0} × {0}) onto the sphere
S(U4 × U2). Thus, there are D8-equivariant maps (U4 × U2)\({0} × {0}) → S(U4 × U2)
and S(U4 × U2) → (U4 × U2)\({0} × {0}). Hence by Proposition 2.1, Theorem 1.1 is a
consequence of the following topological result.

Theorem 2.2. There is no D8-equivariant map Ω → S(U4 × U2).

Indeed, we will prove a stronger result: There is no Z4-equivariant map Ω → S(U4 ×U2).
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3 Proof of Theorem 2.2

The proof is going to be conducted through a comparison of the Serre spectral sequences
with Z-coefficients of the Borel constructions associated with the spaces Ω and S(U4×U2)
and the subgroup Z4 = 〈ω〉 of D8. In other words, we determine the Z4 Fadell–Husseini
index of these spaces living in H∗(Z4; Z) = Z[U ]/4U , deg U = 2.
The Fadell–Husseini index of a G-space X, IndexG,ZX, is the kernel of the map

π∗

X : H∗(BG, Z) →H∗(X ×G EG, Z)

induced by the projection πX : X×GEG → BG. Consider a G-equivariant map f : X → Y
between two G-spaces. Then IndexG,ZX ⊇ IndexG,ZY . Thus, the inclusion of indices of
two G-spaces is a necessary condition for the existence of G-equivariant maps between
these two spaces. If E∗,∗

∗
denotes the Serre spectral sequence of the Borel construction of

X, then the homomorphism π∗

X can be presented as the composition

H∗(BG, Z) → E∗,0
2 → E∗,0

3 → E∗,0
4 → ... → E∗,0

∞
⊆ H∗(X ×G EG, Z). (5)

Since the E2-term of the spectral sequence is given by Ep,q
2 = Hp(BG, Hq(X, Z)) the first

step in the computation of the index is study of the cohomology H∗(X, Z) as a G-module
(Section 3.2). The final step is explicit description of non-zero differentials in the spectral
sequence and application of the presentation (5) of the homomorphism π∗

X (Section 3.3).

3.1 The Index of S(U4 × U2)

Let V 1 be the 1-dimensional complex Z4-representation, or 2-dimensional real Z4-repre-
sentation, induced by the correspondence 1 7→ eiπ/2. Then the 3-dimensional real vector
space U4 ⊂ R

4 seen as a real Z4-representation decomposes into a sum of two irreducible
real Z4-representations

U4 = span{(1, 0,−1, 0), (0, 1, 0,−1)} ⊕ span{(1,−1, 1,−1)} ∼= V 1 ⊕ U2.

Here “span” stands for all R-linear combinations of the given vectors. It can be also seen
that there is an isomorphism of real Z4-representations

U4 × U2
∼= V 1 ⊕ U2 ⊕ U2

∼= V 1 ⊕ (V 1 ⊗C V 1).

Here V 1⊗CV 1 is a tensor product of complex representations and therefore a 1-dimensional
complex Z4-representation or a 2-dimensional real Z4-representation. Following [1, Section
8, p. 271 and Appendix, page 285] we deduce the total Chern class of the Z4-representation
U4 × U2

c(U4 × U2) = c(V 1) · c(V 1 ⊗ V 1).

Therefore the top Chern class, or the Euler class of the underlying real representation, is

c2(U4 × U2) = c1(V
1) · c1(V

1 ⊗ V 1) = c1(V
1) · (c1(V

1) + c1(V
1)) = 2U2 ∈ H∗(Z4; Z).

The Z4-index of the sphere S(U4 × U2) is generated by the Euler class [2, Proposition
3.11], and so

IndexZ4,ZS(U4 × U2) = 〈2U2〉. (6)
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3.2 The cohomology H∗(Ω; Z) as a Z4-module

The cohomology is going to be determined via Poincaré–Lefschetz duality and an explicit
study of cell structures for the spaces X and Y .
Poincaré–Lefschetz duality [4, Theorem 70.2, page 415] implies that

H∗(Ω; Z) = H∗(X\Y ; Z) ∼= H8−∗(X, Y ; Z) (7)

and therefore we analyze the homology of the pair (X, Y ). The inclusion Y →֒ X induces
a map in homology. In particular, we consider this map in dimensions 2 and 4,

Φ : H2(Y ; Z) → H2(X; Z) and Ψ : H4(Y ; Z) → H4(X; Z).

The long exact sequence in homology of the pair (X, Y ) yields that the possibly non-zero
homology groups of the pair (X, Y ) with Z-coefficients are

Hi(X, Y ; Z) =































Z[Z4]/imΦ, i = 2
ker Φ, i = 3
Z[Z4] ⊕ Z[Z4/Z2]/imΨ, i = 4
ker Ψ, i = 5
Z[Z4], i = 6
Z, i = 8

Thus explicit formulas for the maps Φ and Ψ are needed in order to determine the ho-
mology H∗(X, Y ; Z) and its exact Z4-module structure.

Let x1, x2, x3, x4 ∈ H2(X; Z) be generators carried by individual copies of S2 in the product
X = S2×S2×S2×S2. The generator of the group Z4 = 〈ω〉 acts on this basis of H2(X; Z)
by ω · xi = xi+1 where x5 = x1. Then by xixj ∈ H4(X; Z), i 6= j, we denote the generator
carried by the product of i-th and j-th copy of S2 in X. The action of ω on H4(X; Z) is
described by

x1x2
·ω
7−→ x2x3

·ω
7−→ x3x4

·ω
7−→ x1x4 and x1x3

·ω
7−→ x2x4.

Let similarly y1, y2 ∈ H2(X; Z) be generators carried by individual copies of S2 in the
product Y = S2 ×S2. Then ω · y1 = y2 and ω · y2 = y1. Again y1y2 denotes the generator
of H4(Y ; Z) and ω · y1y2 = y1y2. Note that ω preserves the orientations of X and Y and
therefore acts trivially on H8(X; Z) and on H4(Y ; Z).

The inclusion Y ⊂ X induces a map in homology H∗(X; Z) ⊂ H∗(Y ; Z), which in dimen-
sions 2 and 4 is given by

y1 7−→ x1 + x3, y2 7−→ x2 + x4,

y1y2 7−→ x1x2 + x2x3 + x3x4 + x1x4.

This can be seen from the dual cohomology picture: An element is mapped to a sum of
generators intersecting its image, with appropriately attached intersection numbers.
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Thus Φ and Ψ are injective and

imΦ = 〈x1 + x3, x2 + x4〉, imΨ = 〈x1x2 + x2x3 + x3x4 + x1x4〉.

Let N = Z⊕Z be the Z4-representation given by ω · (a, b) = (b,−a), while M denotes the
representation Z[Z4]/(1+ω+ω2+ω3)Z. Then the non-trivial cohomology of the space X\Y ,
as a Z4-module via the isomorphism (7), is given by

H i(Ω; Z) =















N, i = 6
M ⊕Z[Z4/Z2], i = 4
Z[Z4], i = 2
Z, i = 0

(8)

3.3 The Serre spectral sequence of Ω ×Z4
EZ4

The Serre spectral sequence associated to the fibration Ω → Ω ×Z4
EZ4 → BZ4 is a

spectral sequence with non-trivial local coefficients, since π1(BZ4) = Z4 acts non-trivially
(8) on the cohomology H∗(Ω; Z). The first step in the study of such a spectral sequence
is to understand the H∗(Z4; Z)-module structure on the rows of its E2-term.
The E2-term of the sequence is given by

Ep,q
2 =























Hp(Z4, N), q = 6
Hp(Z4, M) ⊕ Hp(Z4; Z[Z4/Z2]), q = 4
Hp(Z4; Z[Z4]), q = 2
Hp(Z4; Z), q = 0
0, otherwise.

(9)

Lemma 3.1. Hp(Z4; Z[Z4]) =

{

Z, p = 0
0, p > 0

and multiplication by U ∈ H2(Z4; Z) is trivial, U · Hp(Z4; Z[Z4]) = 0.

For the proof one can consult [3, Example 2, page 58].

Lemma 3.2. H∗(Z4; Z[Z4/Z2]) ∼= H∗(Z2; Z), where the module structure is given by the
restriction homomorphism resZ4

Z2
: H∗(Z4; Z) → H∗(Z2; Z).

In other words, if we denote H∗(Z2; Z) = Z[T ]/2T , deg T = 2, then resZ4

Z2
(U) = T and

consequently:
(A) H∗(Z4; Z[Z4/Z2]) is generated by one element of degree 0 as a H∗(Z4; Z)-module, and
(B) multiplication by U in H∗(Z4; Z[Z4/Z2]) is an isomorphism, while multiplication by

2U is zero.

The proof is a direct application of Shapiro’s lemma [3, (6.3), page 73] and a small part
of the restriction diagram [2, Section 4.5.2].

Lemma 3.3. There exists an element Λ ∈ H∗(Z4, M) of degree 1 such that 4Λ = 0 and
H∗(Z4, M) ∼= H∗(Z4; Z) · Λ as an H∗(Z4; Z)-module.

the electronic journal of combinatorics 16(2) (2009), #R16 7



Proof. The short exact sequence of Z4-modules

0 −→ Z
1+ω+ω2+ω3

−→ Z[Z4] −→ M −→ 0

induces a long exact sequence in cohomology [3, Proposition 6.1, page 71], which is natural
with respect to H∗(Z4; Z)-module multiplication. Since Z[Z4] is a free module we get
enough zeros to recover the information we need:

0 −→ H0(Z4; Z)
ξ

−→ H0(Z4; Z[Z4]) −→ H0(Z4, M) −→ H1(Z4; Z) −→
Z Z 0

−→ H1(Z4; Z[Z4]) −→ H1(Z4, M) −→ H2(Z4; Z) −→
0 Z4

−→ H2(Z4; Z[Z4]) −→ . . .
0

−→ H i(Z4; Z[Z4]) −→ H i(Z4, M) −→ H i+1(Z4; Z) −→
0

−→ H i+1(Z4; Z[Z4]) −→ ...
0

The map ξ : H0(Z4; Z) ∼= Z
Z4 → H0(Z4; Z[Z4]) ∼= Z[Z4]

Z4 is a surjection. Indeed, ξ is

induced by the map Z
1+ω+ω2+ω3

−→
1-1 and onto

Z[Z4]
Z4 →֒ Z[Z4] which bijectively factorizes through the

invariants of Z[Z4].

Lemma 3.4. There exists an element Υ ∈ H∗(Z4, N) of degree 1 such that 2Υ = 0 and
H∗(Z4, N) ∼= H∗(Z4; Z[Z4/Z2]) · Υ as an H∗(Z4; Z)-module.

Proof. There is a short exact sequence of Z4-modules

0 → N
α
→ Z[Z4]

β
→ L → 0

where L = Z[Z4]/N and α(p, q) = (p, q,−p,−q). The map α is well defined because the
following diagram commutes

N =ab Z ⊕ Z ∋ (p, q)
α

−→ (p, q,−p,−q) ∈ Z[Z4]
↓·ω ↓·ω

N =ab Z ⊕ Z ∋ (q,−p)
α

−→ (q,−p,−q, p) ∈ Z[Z4].

The Z4-module L is isomorphism to Z[Z4/Z2] ∼= Z ⊕ Z and the map β is given, on
generators, by

(1, 0, 0, 0) 7−→ (1, 0), (0, 1, 0, 0) 7−→ (0, 1), (0, 0, 1, 0) 7−→ (1, 0), (0, 0, 0, 1) 7−→ (1, 0).

Therefore, the induced map of invariants Z ∼= Z[Z4]
Z4

β
→ Z[Z4/Z2] ∼= Z is a multiplication

by 2. Now, the long exact sequence in group cohomology [3, Prop. 6.1, p 71] implies the
result.
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T
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Figure 2: The E2-term

The E2-term of the Borel construction (X\Y )×Z4
EZ4, with the H∗(Z4; Z)-module struc-

ture, is presented in Figure 2.
The differentials of the spectral sequence are retrieved from the fact that the Z4 action
on Ω is free. Therefore H i

Z4
(Ω; Z) = 0 for all i > 8. Since the spectral sequence is

converging to the graded group associated with H i
Z4

(Ω; Z) this means that for p + q > 8

nothing survives. Thus the only non-zero second differentials are d2 : E2i+1,6
2 → E2i+4,4

2 ,
d2(T

iΥ) = T i+1, i > 0, as displayed in Figure 3.
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Figure 3: Differentials in E2 and E3-terms

The last remaining non-zero differentials are d4 : E2i+1,4
4 → E2i+6,0

4 , d6(U
iΛ) = U i+3,

i > 0. Then E5 = E∞, cf. Figure 4.

3.4 The index of Ω

The conclusion d6(Λ) = U3 implies that

IndexZ4,ZΩ = 〈U3〉.

Since the generator 2U2 of the IndexZ4,ZS(U4×U2) is not contained in IndexZ4,ZΩ it follows
that there is no Z4-equivariant map Ω → S(U4 × U2). This concludes the proof of
Theorem 2.2.
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Figure 4: Differentials in E4 and E5-terms

Remark 3.5. As one of the referees observed, in order to prove Theorem 2.2 there was no
need to compute the IndexZ4,ZΩ. The structure of E2-term (9) of the spectral sequence of
the fibration Ω×Z4

EZ4 and Lemma 3.1 guarantee that the elements U2 and 2U2 survive
to E∞-term. This provides the contradiction since IndexZ4,ZS(U4 × U2) = 〈2U2〉.

4 Concluding remarks

4.1 The F2-index

Let H∗(Z4, F2) = F2[e, u]/e2, deg(e) = 1, deg(u) = 2. The homomorphism of coefficients
j : Z → F2, j(1) = 1, induces a homomorphism in group cohomology j∗ : H∗(Z4; Z) →
H∗(Z4, F2) given by j∗(U) = u (compare [2, Section 4.5.2]).
The F2-index of the configuration space Ω is

IndexZ4,F2
Ω = 〈eu2, u3〉.

This can be obtained in a similar fashion as we obtained the index with Z-coefficients
in Section 3.3. The relevant E2-term of the Serre spectral sequence of the fibration
Ω → Ω ×Z4

EZ4 → BZ4 is described in Figure 5.
The F2-index of the sphere S(U4 × U2) is generated by the j∗ image of the generator
2U2 of the index with Z-coefficients IndexZ4,ZS(U4 × U2). Since j∗(2U2) = 0 the index
IndexZ4,F2

S(U4 × U2) is trivial. Therefore, for our problem no conclusion can be ob-

tained from the study of the F2-index. The same observation holds even when the
complete group D8 is used. The F2-index of the sphere S(U4 × U2) would be generated
by xyw = 0 ∈ H∗(D8; F2), in the notation of [2].

4.2 The square peg problem

The method of configuration spaces can also be set up for to the continuous square peg
problem. Following the ideas presented in Section 2, taking for X the product S1 × S1 ×
S1 × S1, for Y the subspace Y = {(x, y, x, y) | x, y ∈ S1} and for the configuration space
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Figure 5: E2-term with F2-coefficients

Ω = X\Y , the square peg problem can be related to the question of the existence of a
D8-equivariant map Ω → S(U4 × U2). The Fadell–Husseini indexes can be retrieved:

IndexZ4,ZΩ = 〈U2〉 and IndexZ4,ZS(U4 × U2) = 〈2U2〉,

but since IndexZ4,ZΩ ⊇ IndexZ4,ZS(U4 ×U2) the result does not yield any conclusion. The
same can be done for the complete symmetry group D8, explicitly IndexD8,ZS(U4 ×U2) =
〈2W〉 and W ∈ IndexD8,ZΩ.
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