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Abstract

The notion of Rees product of posets was introduced by Björner and Welker in
[8], where they study connections between poset topology and commutative algebra.
Björner and Welker conjectured and Jonsson [25] proved that the dimension of the
top homology of the Rees product of the truncated Boolean algebra Bn \ {0} and
the n-chain Cn is equal to the number of derangements in the symmetric group
Sn. Here we prove a refinement of this result, which involves the Eulerian numbers,
and a q-analog of both the refinement and the original conjecture, which comes from
replacing the Boolean algebra by the lattice of subspaces of the n-dimensional vector
space over the q element field, and involves the (maj, exc)-q-Eulerian polynomials
studied in previous papers of the authors [32, 33]. Equivariant versions of the
refinement and the original conjecture are also proved, as are type BC versions (in
the sense of Coxeter groups) of the original conjecture and its q-analog.
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1 Introduction and statement of main results

In their study of connections between topology of order complexes and commutative al-
gebra in [8], Björner and Welker introduced the notion of Rees product of posets, which
is a combinatorial analog of the Rees construction for semigroup algebras. They stated a
conjecture that the Möbius invariant of a certain family of Rees product posets is given
by the derangement numbers. Our investigation of this conjecture led to a surprising new
q-analog of the classical formula for the exponential generating function of the Eulerian
polynomials, which we proved in [33] by establishing certain quasisymmetric function
identities. In this paper, we return to the original conjecture (which was first proved by
Jonsson [25]). We prove a refinement of the conjecture, which involves Eulerian poly-
nomials, and we prove a q-analog and equivariant version of both the conjecture and its
refinement, thereby connecting poset topology to the subjects studied in our earlier paper.

The terminology used in this paper is explained briefly here and more fully in Section 2.
All posets are assumed to be finite.

Given ranked posets P,Q with respective rank functions rP , rQ, the Rees product P ∗Q
is the poset whose underlying set is

{(p, q) ∈ P ×Q : rP (p) ≥ rQ(q)},

with order relation given by (p1, q1) ≤ (p2, q2) if and only if all of the conditions

• p1 ≤P p2,

• q1 ≤Q q2, and

• rP (p1) − rP (p2) ≥ rQ(q1) − rQ(q2)

hold. In other words, (p2, q2) covers (p1, q1) in P ∗Q if and only if p2 covers p1 in P and
either q2 = q1 or q2 covers q1 in Q.
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Figure 1. (B3 \ {∅}) ∗ C3

Let Bn be the Boolean algebra on the set [n] := {1, . . . , n} and Cn be the chain
{0 < 1 < . . . < n − 1}. This paper is concerned with the Rees product (Bn \ {∅}) ∗ Cn

and various analogs. The Hasse diagram of (B3 \ {∅}) ∗ C3 is given in Figure 1 (the pair
(S, j) is written as Sj with set brackets omitted).

Recall that for a poset P , the order complex ∆P is the abstract simplicial complex
whose vertices are the elements of P and whose k-simplices are totally ordered subsets of
size k + 1 from P . The (reduced) homology of P is given by H̃k(P ) := H̃k(∆P ; C). A
poset P is said to be Cohen-Macualay if the homology of each open interval of P ∪{0̂, 1̂} is
concentrated in its top dimension, where 0̂ and 1̂ are respective minimum and maximum
elements appended to P . A poset is said to be acyclic if its homology is trivial in all
dimensions. Björner and Welker [8, Corollary 2] prove that the Rees product of any
Cohen-Macaulay poset with any acyclic Cohen-Macaualy poset is Cohen-Macaulay. Hence
(Bn \ {∅}) ∗Cn is Cohen-Macaulay, since both Bn \ {∅} and Cn are Cohen-Macaulay and
Cn is acyclic.

For any poset P with a minimum element 0̂, let P− denote the truncated poset P \{0̂}.
The theorem of Jonsson as conjectured by Björner and Welker in [8] is as follows.

Theorem 1.1 (Jonsson [25]). We have

dim H̃n−1(B
−
n ∗ Cn) = dn,

where dn is the number of derangements (fixed-point-free elements) in the symmetric group
Sn.

Our refinement of Theorem 1.1 is Theorem 1.2 below. Indeed, Theorem 1.1 follows
immediately from Theorem 1.2, the Euler characteristic interpretation of the Mobius
function, the recursive definition of the Mobius function, and the well-known formula

dn =
n∑

m=0

(−1)m

(
n

m

)
(n−m)! . (1.1)

Let P be a ranked and bounded poset of length n with minimum element 0̂ and
maximum element 1̂. The maximal elements of P− ∗ Cn are of the form (1̂, j), for j =
0 . . . , n − 1. Let Ij(P ) denote the open principal order ideal generated by (1̂, j). If P
is Cohen-Macaulay then the homology of the order complex of Ij(P ) is concentrated in
dimension n− 2.
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Theorem 1.2. For all j = 0, . . . , n− 1, we have

dim H̃n−2(Ij(Bn)) = an,j,

where an,j is the Eulerian number indexed by n and j; that is an,j is the number of
permutations in Sn with j descents, equivalently with j excedances.

We have obtained two different proofs of Theorem 1.2 both as applications of general
results on Rees products that we derive. One of these proofs, which appears in [34],
involves the theory of lexicographical shellability [3]. The other, which is given in Sec-
tions 3 and 4, is based on the recursive definition of the Möbius function applied to the
Rees product of Bn with a poset whose Hasse diagram is a tree. This proof yields a
q-analog (Theorem 1.3) of Theorem 1.2, in which the Boolean algebra Bn is replaced by
its q-analog, Bn(q), the lattice of subspaces of the n-dimensional vector space Fn

q over the
q element field Fq, and the Eulerian number an,j is replaced by a q-Eulerian number. The
proof also yields an Sn-equivariant version (Theorem 1.5) of Theorem 1.2. The proofs
of these results also appear in Sections 3 and 4. A q-analog and equivariant version of
Theorem 1.1 are derived as consequences in Section 5.

Recall that the major index, maj(σ), of a permutation σ ∈ Sn is the sum of all the
descents of σ, i.e.

maj(σ) :=
∑

i:σ(i)>σ(i+1)

i,

and the excedance number, exc(σ), is the number of excedances of σ, i.e.,

exc(σ) := |{i ∈ [n− 1] : σ(i) > i}|.

Recall that the excedance number is equidistributed with the number of descents on Sn.
The Eulerian polynomials are defined by

An(t) =

n−1∑

j=0

an,jt
j =

∑

σ∈Sn

texc(σ),

for n ≥ 1, and A0(t) = 1. (Note that it is common in the literature to define the Eulerian
polynomials to be tAn(t).) For n ≥ 1, define the q-Eulerian polynomial

Amaj,exc
n (q, t) :=

∑

σ∈Sn

qmaj(σ)texc(σ)

and let Amaj,exc
0 (q, t) = 1. For example,

Amaj,exc
3 (q, t) := 1 + (2q + q2 + q3)t+ q2t2.

For all j, the q-Eulerian number amaj,exc
n,j (q) is the coefficient of tj in Amaj,exc

n (q, t). The
study of the q-Eulerian polynomials Amaj,exc

n (q, t) was initiated in our recent paper [32] and
was subsequently further investigated in [33, 14, 15, 16]. There are various other q-analogs
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of the Eulerian polynomials that had been extensively studied in the literature prior to our
paper; for a sample see [1, 2, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 29, 30, 35, 37, 38, 42].
They involve different combinations of Mahonian and Eulerian permutation statistics,
such as the major index and the descent number, the inversion index and the descent
number, the inversion index and the excedance number.

Like B−
n ∗ Cn, the q-analog Bn(q)− ∗ Cn is Cohen-Macaulay. Hence Ij(Bn(q)) has

vanishing homology below its top dimension n − 2. We prove the following q-analog of
Theorem 1.2.

Theorem 1.3. For all j = 0, 1, . . . , n− 1,

dim H̃n−2(Ij(Bn(q))) = q(
n
2)+j amaj,exc

n,j (q−1). (1.2)

As a consequence we obtain the following q-analog of Theorem 1.1.

Corollary 1.4. For all n ≥ 0, let Dn be the set of derangements in Sn. Then

dim H̃n−1(Bn(q)− ∗ Cn) =
∑

σ∈Dn

q(
n
2)−maj(σ)+exc(σ).

The symmetric group Sn acts on Bn in an obvious way and this induces an action
on B−

n ∗ Cn and on each Ij(Bn). From these actions, we obtain a representation of Sn

on H̃n−1(B
−
n ∗ Cn) and on each H̃n−2(Ij(Bn)). We show that these representations can

be described in terms of the Eulerian quasisymmetric functions that we introduced in
[32, 33].

The Eulerian quasisymmetric function Qn,j is defined as a sum of fundamental qua-
sisymmetric functions associated with permutations in Sn having j excedances. The
fixed-point Eulerian quasisymmetric function Qn,j,k refines this; it is a sum of fundamen-
tal quasisymmetric functions associated with permutations in Sn having j excedances
and k fixed points. (The precise definitions are given in Section 2.1.) Although it’s not
apparent from their definition, the Qn,j,k, and thus the Qn,j , are actually symmetric func-
tions. A key result of [33] is the following formula, which reduces to the classical formula
for the exponential generating function for Eulerian polynomials,

∑

n,j,k≥0

Qn,j,k(x)tjrkzn =
(1 − t)H(rz)

H(zt) − tH(z)
, (1.3)

where H(z) :=
∑

n≥0 hnz
n, and hn denotes the nth complete homogeneous symmetric

function.
Our equivariant version of Theorem 1.2 is as follows.

Theorem 1.5. For all j = 0, 1, . . . , n− 1,

chH̃n−2(Ij(Bn)) = ωQn,j, (1.4)

where ch denotes the Frobenius characteristic and ω denotes the standard involution on
the ring of symmetric functions.
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We derive the following equivariant version of Theorem 1.1 as a consequence.

Corollary 1.6. For all n ≥ 1,

chH̃n−1(B
−
n ∗ Cn) =

n−1∑

j=0

ωQn,j,0.

The expression on the right hand side of (1.3) has occurred several times in the lit-
erature (see [33, Sec. 7]), and these occurrences yield corollaries of Theorem 1.5 and
Corollary 1.6. We discuss three of these corollaries in Section 5. One is a consequence of
a formula of Procesi [28] and Stanley [39] on the representation of the symmetric group on
the cohomology of the toric variety associated with the Coxeter complex of Sn. Another
corollary is a consequence of a refinement of a result of Carlitz, Scoville and Vaughan [11]
due to Stanley (cf. [33, Theorem 7.2]) on words with no adjecent repeats. The third is a
consequence of MacMahon’s formula [26, Sec. III, Ch.III] for multiset derangements.

In Section 6, we present type BC analogs (in the context of Coxeter groups) of both
Theorem 1.1 and its q-analog, Corollary 1.4. In the type BC analog of Theorem 1.1, the
Boolean algebra Bn is replaced by the poset of faces of the n-dimensional cross polytope
(whose order complex is the Coxeter complex of type BC). The type BC derangements
are the elements of the type BC Coxeter group that have no fixed points in their action
on the vertices of the cross polytope. In the type BC analog of Corollary 1.4, the lattice
of subspaces Bn(q) is replaced by the poset of totally isotropic subspaces of F2n

q (whose
order complex is the building of type BC).

2 Preliminaries

2.1 Quasisymmetric functions and permutation statistics

In this section we review some of our work in [33].
A permutation statistic is a function f :

⋃
n≥1 Sn → N. (Here N is the set of non-

negative integers and P is the set of positive integers.) Two well studied permutation
statistics are the excedance statistic exc and the major index maj. For σ ∈ Sn, exc(σ) is
the number of excedances of σ and maj(σ) is the sum of all descents of σ, as described
above. We also define the fixed point statistic fix(σ) to be the number of i ∈ [n] satisfying
σ(i) = i, and the comajor index comaj by

comaj(σ) :=

(
n

2

)
− maj(σ).

Remark 2.1. Note that our definition of comaj is different from a commonly used definition
in which the comajor index of σ ∈ Sn is defined to be n des(σ)−maj(σ), where des(σ) is
the number of descents of σ.
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For any collection f1, . . . , fr of permutation statistics, and any n ∈ P, we define the
generating polynomial

Af1,...fr
n (t1, . . . , tr) :=

∑

σ∈Sn

r∏

i=1

t
fi(σ)
i .

A symmetric function is a power series of bounded degree (with coefficients in some
given ring R) in countably many variables x1, x2, . . . that is invariant under any permu-
tation of the variables. A quasisymmetric function is a power series f in these same
variables such that for any k ∈ P and any three k-tuples (i1 > . . . > ik), (j1 > . . . > jk)
and (a1, . . . , ak) from Pk, the coefficients in f of

∏k
s=1 x

as

is and
∏k

s=1 x
as

js
are equal. Every

symmetric function is a quasisymmetric function. We write f(x) for any power series
f(x1, x2, . . .).

Recall that, for n ∈ N, the complete homogeneous symmetric function hn(x) is the sum
of all monomials of degree n in x1, x2, . . ., and the elementary symmetric function en(x) is
the sum of all such monomials that are squarefree. The Frobenius characteristic map ch
sends each virtual Sn-representation to a symmetric function (with integer coefficients)
that is homogeneous of degree n. There is a unique involutory automorphism ω of the ring
of symmetric functions that maps hn(x) to en(x) for every n ∈ N. For any representation
V of Sn, we have

ω(ch(V )) = ch(V ⊗ sgn), (2.1)

where sgn is the sign representation of Sn.
For n ∈ P and S ⊆ [n− 1], define

FS,n = FS,n(x) :=
∑

i1 ≥ . . . ≥ in ≥ 1
j ∈ S ⇒ ij > ij+1

xi1 . . . xin

and let F∅,0 = 1. Each FS,n is a quasisymmetric function. The involution ω extends to an
involution on the ring of quasisymmetric functions. In fact,

ω(FS,n) = F[n−1]\S,n.

For n ∈ P, set [n] := {1, . . . , n} and order [n] ∪ [n] by

1 < . . . < n < 1 < . . . < n. (2.2)

For σ = σ1 . . . σn ∈ Sn, written in one line notation, we obtain σ by replacing σi with σi

whenever i is an excedance of σ. We now define DEX(σ) to be the set of all i ∈ [n − 1]
such that i is a descent of σ, i.e. the element in position i of σ is larger, with respect to
the order (2.2), than that in position i + 1. For example, if σ = 42153, then σ = 42153
and DEX(σ) = {2, 3}.

For n ∈ P, 0 ≤ j < n−1 and 0 ≤ k ≤ n, we introduced in [33] the fixed point Eulerian
quasisymmetric functions

Qn,j,k = Qn,j,k(x) :=
∑

σ ∈ Sn

exc(σ) = j
fix(σ) = k

FDEX(σ),n(x),
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and the Eulerian quasisymmetric functions

Qn,j :=
n∑

k=0

Qn,j,k.

We also set Q0,0 = Q0,0,0 = 1. It turns out that the fixed point Eulerian quasisymmetric
functions (and therefore the Eulerian quasisymmetric functions) are symmetric.

We define two power series in the variable z with coefficients in the ring of symmetric
functions,

H(z) :=
∑

n≥0

hn(x)zn,

and
E(z) :=

∑

n≥0

en(x)zn.

The key result in [33] is as follows.

Theorem 2.2 ([33], Theorem 1.2). We have

∑

n,j,k≥0

Qn,j,k(x)tjrkzn =
(1 − t)H(rz)

H(zt) − tH(z)
(2.3)

=
H(rz)

1 −
∑

n≥2 t[n− 1]thnzn
, (2.4)

where [n]t = 1 + t+ · · ·+ tn−1.

It is shown in [33] that the stable principal specialization (that is, substitution of qi−1

for each variable xi) of FDEX(σ),n is given by

FDEX(σ),n(1, q, q2, . . . ) = (q; q)−1
n qmaj(σ)−exc(s),

where (p; q)n :=
∏n

i=1(1 − pqi−1). Hence

∑

j,k≥0

Qn,j,k(1, q, . . . )t
jrk := (q; q)−1

n Amaj,exc,fix
n (q; q−1t, r).

Using the stable principal specialization we obtained from Theorem 2.2 a formula for
Amaj,exc,fix

n . From that formula, we derived the two following results. Before stating them,
we recall the following q-analogs: for 0 ≤ k ≤ n,

[n]q := 1 + q + · · ·+ qn−1,

[n]q! :=
∏n

j=1[j]q,

[
n
k

]

q

:= [n]q!
[k]q![n−k]q!

,

Expq(z) :=
∑

n≥0 q
(n

2) zn

[n]q!
, expq(z) :=

∑
n≥0

zn

[n]q!
.
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Corollary 2.3 ([33], Corollary 4.5). We have

∑

n≥0

Acomaj,exc,fix
n (q, t, r)

zn

[n]q!
=

(1 − tq−1)Expq(rz)

Expq(ztq
−1) − (tq−1)Expq(z)

. (2.5)

Corollary 2.4 ([33], Corollary 4.6). For all n ≥ 0, we have

∑

σ ∈ Sn

fix(σ) = k

qcomaj(σ)texc(σ) = q(
k

2)
[
n
k

]

q

∑

σ∈Dn−k

qcomaj(σ)texc(σ).

Consequently,

∑

σ∈Dn

qcomaj(σ)texc(σ) =
n∑

k=0

(−1)k

[
n
k

]

q

Acomaj,exc
n−k (q, t).

2.2 Homology of posets

We say that a poset P is bounded if it has a minimum element 0̂P and a maximum element
1̂P . For any poset P , let P̂ be the bounded poset obtained from P by adding a minimum
element and a maximum element and let P+ be the poset obtained from P by adding only
a maximum element. For a poset P with minimum element 0̂P , let P− = P \ {0̂P}. For
x ≤ y in P , let (x, y) denote the open interval {z ∈ P : x < z < y} and [x, y] denote the
closed interval {z ∈ P : x ≤ z ≤ y}. A subset I of a poset P is said to be a lower order
ideal of P if for all x < y ∈ P , we have y ∈ I implies x ∈ I. For y ∈ P , by closed principal
lower order ideal generated by y, we mean the subposet {x ∈ P : x ≤ y}. Similarly the
open principal lower order ideal generated by y is the subposet {x ∈ P : x < y}. Upper
order ideals are defined similarly. A chain of length n in P is an n + 1 element subposet
of P for which the induced order relation is a total order.

A poset P is said to be ranked (or pure) if all its maximal chains are of the same
length. The length of a ranked poset P is the common length of its maximal chains. If P
is a ranked poset, the rank rP (y) of an element y ∈ P is the length of the closed principal
lower order ideal generated by y.

A poset P is said to be homotopy Cohen-Macaulay if each open interval (x, y) of P̂
has the homotopy type of a wedge of (l([x, y]) − 2)-spheres. Clearly homotopy Cohen-
Macaulay is a stronger property than Cohen-Macaulay. We will make use of the following
tool for establishing homotopy Cohen-Macaulayness.

Definition 2.5 ([6, 7]). A bounded poset P is said to admit a recursive atom ordering if
its length l(P ) is 1, or if l(P ) > 1 and there is an ordering a1, a2, . . . , at of the atoms of
P that satisfies:

(i) For all j = 1, 2, . . . , t the interval [aj , 1̂P ] admits a recursive atom ordering in which
the atoms of [aj , 1̂P ] that belong to [ai, 1̂P ] for some i < j come first.
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(ii) For all i < j, if ai, aj < y then there is a k < j and an atom z of [aj , 1̂P ] such that
ak < z ≤ y.

Björner and Wachs [6] prove that every bounded ranked poset that admits a recursive
atom ordering is homotopy Cohen-Macaulay (see also [43, Section 4.2]).

The Möbius invariant of a bounded poset P is given by

µ(P ) := µP (0̂P , 1̂P ),

where µP is the Möbius function on P . It follows from a well known result of P. Hall (see
[40, Proposition 3.8.5]) and the Euler-Poincaré formula that if poset P has length n then

µ(P̂ ) =

n∑

i=0

(−1)i dim H̃i(P ). (2.6)

Hence if P is Cohen-Macaulay then for all x ≤ y in P̂

µP (x, y) = (−1)r dim H̃r((x, y)), (2.7)

where r = rP (y) − rP (x) − 2, and if y = x or y covers x we set H̃r((x, y)) = C.
Suppose a group G acts on a poset P by order preserving bijections (we say that P is

a G-poset). The group G acts simplicially on ∆P and thus arises a linear representation
of G on each homology group of P . Now suppose P is ranked of length n. The given
action also determines an action of G on P ∗X for any length n ranked poset X defined
by g(a, x) = (ga, x) for all a ∈ P , x ∈ X and g ∈ G. For a ranked G-poset P of length
n with a minimum element 0̂, the action of G on P restricts to an action on P−, which
gives an action of G on P− ∗Cn. This action restricts to an action of G on each subposet
Ij(P ).

We will need the following result of Sundaram [41] (see [43, Theorem 4.4.1]): If G acts
on a bounded poset P of length n then we have the virtual G-module isomorphism,

n⊕

r=0

(−1)r
⊕

x∈P/G

H̃r−2((0̂, x)) ↑
G
Gx

∼=G 0, (2.8)

where P/G denotes a complete set of orbit representatives, Gx denotes the stabilizer of
x, and ↑G

Gx
denotes the induction of the Gx module from Gx to G. Here Hr−2((0̂, x)) is

the trivial representation of Gx if x = 0̂ or x covers 0̂.

3 Rees products with trees

We prove the results stated in the introduction by working with the Rees product of the
(nontruncated) Boolean algebra Bn with a tree and its q-analog, the Rees product of the
(nontruncated) subspace lattice Bn(q) with a tree. Theorems 4.1 and 4.5 will then be
used to relate these Rees products to the ones considered in the introduction.
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For n, t ∈ P, let Tt,n be the poset whose Hasse diagram is a complete t-ary tree of
height n, with the root at the bottom. By complete we mean that every nonleaf node has
exactly t children and that all the leaves are distance n from the root.

Since Bn and Bn(q) are homotopy Cohen-Macaulay, it is an immediate consequence
of the following result that Bn ∗ Tt,n and Bn(q) ∗ Tt,n are also homotopy Cohen-Macaulay.

Theorem 3.1. Let P be a ranked poset of length n. If P is (homotopy) Cohen-Macaulay
then so is P ∗ Tt,n.

Proof. Given a ranked poset Q of length l and a set S ⊆ {0, . . . , l}, the rank selected
subposet QS is defined to be the induced partial order on the subset {q ∈ Q : rQ(q) ∈ S}.
By Lemma 11 of [8],

P ∗ Tt,n = P ◦ (Tt,n × Cn+1){0,...,n},

where ◦ is the Segre product introduced in [8]. Björner and Welker [8] prove that the
Segre product of (homotopy) Cohen-Macaulay posets is (homotopy) Cohen-Macaulay.
Hence to prove the theorem we need only show that (Tt,n × Cn+1){0,...,n} is homotopy
Cohen-Macaulay. We do this by showing that (Tt,n×Cn+1)

+
{0,...,n} admits a recursive atom

ordering.
In order to describe the recursive atom ordering, we first describe a natural bijection

x 7→ wx from Tt,n to {w ∈ [t]∗ : l(w) ≤ n}, where [t]∗ denotes the set of all words over the
alphabet [t] and l(w) denotes the length of w. First let wx be the empty word if x is the
root of Tt,n. Then assuming the word wx ∈ [t]∗ has already been assigned to the parent x
of the node y, we let wy = wxi, where y is the ith child of x (under some fixed ordering
of the children of each node). Next we define a partial order relation ≤W on

Wn := {0kw : w ∈ [t]∗, 0 ≤ k + l(w) ≤ n}

by
0ku ≤W 0jv

if k ≤ j and u ∈ [t]∗ is a prefix of v ∈ [t]∗, that is, v = uw for some w ∈ [t]∗. The map
ϕ : (Tt,n × Cn+1){0,...,n} →Wn defined by

ϕ(x, k) = 0kwx,

is clearly a poset isomorphism.
We now describe a recursive atom ordering of W+

n . The atoms are the words of length
1,

0, 1, 2, . . . , t.

For each atom j, the interval [j, 1̂] is isomorphic to W+
n−1 with element 0kju of [j, 1̂]

corresponding to element 0ku of Wn−1. We claim that the increasing order 0 < 1 <
· · · < t on the atoms of W+

n is a recursive atom ordering. Indeed, the atoms of [j, 1̂]
are 0j, j1, j2, . . . , jt and the only atom that can belong to some [i, 1̂] where i < j is 0j.
By induction we can assume that 0j, j1, j2, . . . , jt is a recursive atom ordering of [j, 1̂],
since this atom ordering corresponds to the atom ordering 0, 1, 2, . . . , t of Wn−1. Hence
condition (i) of Definition 2.5 holds. For condition (ii) we note that if y is greater than
atoms i < j of Wn then y ≥W 0j, which is an atom of both [0, 1̂] and [j, 1̂].

the electronic journal of combinatorics 16(2) (2009), #R20 11



The following result, which is interesting in its own right, will be used to prove the
results stated in the introduction.

Theorem 3.2. For all n, t ≥ 1 we have

dim H̃n−2((Bn ∗ Tt,n)−) = tAn(t) (3.1)

dim H̃n−2((Bn(q) ∗ Tt,n)−) = tAcomaj,exc
n (q, qt) (3.2)

chH̃n−2((Bn ∗ Tt,n)−) = t
n−1∑

j=0

ωQn,jt
j . (3.3)

Corollary 3.3. For all n ≥ 1 we have

dim H̃n−2((Bn ∗ Cn+1)
−) = n!

dim H̃n−2((Bn(q) ∗ Cn+1)
−) =

∑

σ∈Sn

qcomaj(σ)+exc(σ)

chH̃n−2((Bn ∗ Cn+1)
−) =

n−1∑

j=0

ωQn,j.

To prove (3.1) and (3.2), we make use of two easy Rees product results. A bounded
ranked poset P is said to be uniform if [x, 1̂P ] ∼= [y, 1̂P ] whenever rP (x) = rP (y) (see [40,
Exercise 3.50]). We will say that a sequence of posets (P0, P1, . . . , Pn) is uniform if for
each k = 0, 1, . . . , n, the poset Pk is uniform of length k and

Pk
∼= [x, 1̂Pn

]

for each x ∈ Pn of rank n − k. The sequences (B0, . . . , Bn) and (B0(q), . . . , Bn(q)) are
examples of uniform sequences as are the sequence of set partition lattices (Π0, . . . ,Πn)

and the sequence of face lattices of cross polytopes (P̂CP0, . . . , P̂CPn).
The following result is easy to verify.

Proposition 3.4. Suppose P is a uniform poset of length n. Then for all t ∈ P, the
poset R := (P ∗ Tt,n)+ is uniform of length n + 1. Moreover, if x ∈ P and y ∈ R with
rP (x) = rR(y) = k then

[y, 1̂R] ∼= ([x, 1̂P ] ∗ Tt,n−k)
+.

Proposition 3.5. Let (P0, P1, . . . , Pn) be a uniform sequence of posets. Then for all
t ∈ P,

1 +

n∑

k=0

Wk(Pn)[k + 1]tµ((Pn−k ∗ Tt,n−k)
+) = 0, (3.4)

where Wk(P ) is the number of elements of rank k in P .
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Proof. Let R := (Pn ∗ Tt,n)+ and let y have rank k in R. By Proposition 3.4,

µR(y, 1̂R) = µ((Pn−k ∗ Tt,n−k)
+).

Clearly
Wk(R) = Wk(Pn)[k + 1]t

for all 0 ≤ k ≤ n. Hence (3.4) is just the recursive definition of the Möbius function
applied to the dual of R.

To prove (3.1) either take dimension in (3.3) or set q = 1 in the proof of (3.2) below.

Proof of (3.2). We apply Proposition 3.5 to the uniform sequence (B0(q), B1(q), . . . ,
Bn(q)). The number of k-dimensional subspaces of Fn

q is given by

Wk(Bn(q)) =

[
n
k

]

q

.

Write µn(q, t) for µ((Bn(q) ∗ Tt,n)+). Hence by Proposition 3.5,

n∑

k=0

[
n
k

]

q

[k + 1]tµn−k(q, t) = −1. (3.5)

Setting

Fq,t(z) :=
∑

j≥0

µj(q, t)
zj

[j]q!

and

Gq,t(z) :=
∑

k≥0

[k + 1]t
zk

[k]q!
,

we derive from (3.5) that
Fq,t(z) = − expq(z)Gq,t(z)

−1. (3.6)

If we assume t > 1 we have

Gq,t(z) =
1

1 − t

∑

k≥0

(1 − tk+1)
zk

[k]q!

=
expq(z) − t expq(tz)

1 − t
.

We calculate that

Fq,t(−z) = −(1 − t) − t
(1 − t) expq(−tz)

expq(−z) − t expq(−tz)
.
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Using the fact that expq(−z)Expq(z) = 1, we have

Fq,t(−z) = −(1 − t) − t
(1 − t)Expq(z)

Expq(tz) − tExpq(z)
.

It now follows from Corollary 2.3 that for all n ≥ 1 and t > 1,

µn(q, t) = (−1)n−1t
∑

σ∈Sn

qcomaj(σ)+exc(σ)texc(σ). (3.7)

One can see from (3.5) and induction that µn(q, t) is a polynomial in t. Hence since
(3.7) holds for infinitely many integers t, it holds as an identity of polynomials, which
implies that it holds for t = 1.

Since by Theorem 3.1, the poset (Bn(q) ∗ Tt,n)− is Cohen-Macaulay, equation (3.2)
holds.

We say that a bounded ranked G-poset P is G-uniform if the following holds,

• P is uniform

• Gx
∼= Gy for all x, y ∈ P such that rP (x) = rP (y)

• there is an isomorphism between [x, 1̂P ] and [y, 1̂P ] that intertwines the actions of
Gx and Gy for all x, y ∈ P such that rP (x) = rP (y). We will write

[x, 1̂P ] ∼=Gx,Gy
[y, 1̂P ].

Given a sequence of groups G = (G0, G1, . . . , Gn), we say that a sequence of posets
(P0, P1, . . . , Pn) is G-uniform if

• Pk is Gk-uniform of length k for each k

• Gk
∼= (Gn)x and Pk

∼=Gk,(Gn)x
[x, 1̂Pn

] whenever rPn
(x) = n− k.

For example, the sequence (B0, B1, . . . , Bn) is (S0×Sn,S1×Sn−1, . . . ,Sn×S0)-uniform,
where the action of Si × Sn−i on Bi is given by

(σ, τ){a1, . . . , as} = {σ(a1), . . . , σ(as)}

for σ ∈ Si, τ ∈ Sn−i and {a1, . . . , as} ∈ Bi. In other words Si acts on subsets of [i] in
the usual way and Sn−i acts trivially.

The following proposition is easy to verify.

Proposition 3.6 (Equivariant version of Proposition 3.4). Suppose P is a G-uniform
poset of length n. Then for all t ∈ P, the G-poset R := (P ∗ Tt,n)+ is G-uniform of length
n+ 1. Moreover, if x ∈ P and y ∈ R with rP (x) = rR(y) = k then

[y, 1̂R] ∼=Gy,Gx
([x, 1̂P ] ∗ Tt,n−k)

+.
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If (P0, P1, . . . , Pn) is a (G0, G1, . . . , Gn)-uniform sequence of posets, we can view Gk

as a subgroup of Gn for each k = 0, . . . , n. For G-uniform poset P , let Wk(P ;G) be the
number of G-orbits of the rank k elements of P . The Lefschetz character of a G-poset P
of length n ≥ 0 is defined to be the virtual representation

L(P ;G) :=
n⊕

j=0

(−1)jH̃j(P ).

Note that by (2.6) the dimension of the Lefschetz character L(P ;G) is precisely µ(P̂ ).

Proposition 3.7 (Equivariant version of Proposition 3.5). Let (P0, P1, . . . , Pn) be a
(G0, G1, . . . , Gn)-uniform sequence of posets. Then for all t ∈ P,

1Gn
⊕

n⊕

k=0

Wk(Pn;Gn)[k + 1]tL((Pn−k ∗ Tt,n−k)
−;Gn−k) ↑

Gn

Gn−k
= 0. (3.8)

Proof. Sundaram’s equation (2.8) applied to the dual of a G-poset P is equivalent to the
following equivariant version of the recursive definition of the Möbius function:

⊕

y∈P/G

L((y, 1̂P );Gy) ↑
G
Gy

= 0, (3.9)

where L((y, 1̂P );Gy) is the trivial representation if y = 1̂P and is the negative of the
trivial representation if y is covered by 1̂P . We apply (3.9) to the Gn-uniform poset
R := (Pn ∗ Tt,n)+. Let y have rank k in R. It follows from Proposition 3.6 that

L((y, 1̂R); (Gn)y) ↑
Gn

(Gn)y

∼= L((Pn−k ∗ Tt,n−k)
−;Gn−k) ↑

Gn

Gn−k
.

Clearly,
Wk(R;Gn) = Wk(Pn;Gn)[k + 1]t

for all k. Thus (3.8) follows from (3.9).

Proof of (3.3). Now we apply Proposition 3.7 to the (S0 ×Sn,S1 ×Sn−1, . . . ,Sn ×S0)-
uniform sequence (B0, B1, . . . , Bn). Let

Ln(t) := chL((Bn ∗ Tt,n)−; Sn).

Clearly Wk(Bn; Sn) = 1 for all k = 0, . . . , n. Therefore by Proposition 3.7,

n∑

k=0

[k + 1]thkLn−k(t) = −hn. (3.10)

Setting

Ft(z) :=
∑

j≥0

Lj(t)z
j
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and
Gt(z) :=

∑

k≥0

[k + 1]thkz
k,

we derive from (3.10) that
Ft(z)Gt(z) = −H(z). (3.11)

Now if t > 1,

Gt(z) =
1

1 − t

∑

k≥0

(1 − tk+1)hkz
k

=
H(z) − tH(tz)

1 − t
,

and we thus have

Ft(z) = −
(1 − t)H(z)

H(z) − tH(tz)
. (3.12)

We calculate that

Ft(−z) = −(1 − t) − t
(1 − t)H(−tz)

H(−z) − tH(−tz)
. (3.13)

Using the fact that H(−z)E(z) = 1 we have

Ft(−z) = −(1 − t) − t
(1 − t)E(z)

E(tz) − tE(z)
.

By applying the standard symmetric function involution ω, we obtain

ωFt(−z) = −(1 − t) − t
(1 − t)H(z)

H(tz) − tH(z)
.

It follows from this and Theorem 2.2 that for all n ≥ 1 and t > 1,

ωLn(t) = (−1)n−1t
n−1∑

j=0

Qn,jt
j . (3.14)

By (3.10) and induction, Ln(t) is a polynomial in t. Hence (3.14) holds for t = 1 as
well. Since (Bn ∗ Tt,n)− is Cohen-Macaulay we are done.

4 The tree lemma

The following result and Theorem 3.2 are all that is needed to prove Theorems 1.2 and 1.3,
since Bn and Bn(q) are self-dual and Cohen-Macaulay.

Theorem 4.1 (Tree Lemma). Let P be a bounded, ranked poset of length n. Then for all
t ∈ P,

n∑

j=1

µ( ̂Ij−1(P ))tj = −µ((P ∗ ∗ Tt,n)+), (4.1)

where P ∗ is the dual of P .
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Before we can prove Theorem 4.1, we need a few lemmas. Set

R(P ) := P ∗ {x0 < x1 < . . . < xn}

and for i ∈ [n], let Ri(P ) be the closed principal lower order ideal in R(P ) generated by
(1̂P , xi). Set

R+
i (P ) := {(a, xj) ∈ Ri(P ) : j > 0}

and
R−

i (P ) := Ri(P ) \R+
i (P ).

Lemma 4.2. The posets R+
i (P ) and Ii−1(P )+ are isomorphic.

Proof. The map that sends (a, xj) to (a, j − 1) is an isomorphism.

An antiisomorphism from poset X to a poset Y is an isomorphism ψ from X to Y ∗.
In other words, ψ is an order reversing bijection from X to Y with order reversing inverse.

Lemma 4.3. For 0 ≤ i ≤ n, the map ψi : Ri(P ) → Ri(P
∗) given by ψi((a, xj)) = (a, xi−j)

is an antiisomorphism.

Proof. We show first that ψi is well-defined, that is, if (a, xj) ∈ Ri(P ) then (a, xi−j) ∈
Ri(P

∗). For a ∈ P and j ∈ {0, . . . , n} we have (a, xj) ∈ Ri(P ) if and only if the three
conditions

(1) 0 ≤ j ≤ i

(2) rP (a) ≥ j

(3) n− rP (a) ≥ i− j

hold. If (1), (2), (3) hold then so do all of

(1′) 0 ≤ i− j ≤ i

(2′) rP ∗(a) = n− rP (a) ≥ i− j

(3′) n− rP ∗(a) = rP (a) ≥ j = i− (i− j),

and (1′), (2′), (3′) together imply that (a, xi−j) ∈ Ri(P
∗). The map ψ∗

i : Ri(P
∗) → Ri(P )

given by ψ∗
i ((a, xj)) = (a, xi−j) is also well-defined by the argument just given, and ψ∗

i =
ψ−1

i , so ψi is a bijection.
Now for (a, xj) and (b, xk) in Ri(P ), we have (a, xj) < (b, xk) if and only if the three

conditions

(4) a ≤P b

(5) j ≤ k

(6) rP (b) − rP (a) ≥ k − j
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hold. If (4), (5), (6) hold then so do all of

(4′) b ≤P ∗ a

(5′) i− k ≤ i− j

(6′) rP ∗(a) − rP ∗(b) = rP (b) − rP (a) ≥ k − j = (i− j) − (i− k),

and (4′), (5′), (6′) together imply that in Ri(P
∗) we have (b, xi−k) ≤ (a, xi−j). Therefore,

ψi is order reversing, and the same argument shows that ψ∗
i is order reversing.

Corollary 4.4. For 1 ≤ i ≤ n we have

µ( ̂Ii−1(P )) =
∑

(a,xi)∈Ri(P ∗)

µRi(P ∗)((1̂P , x0), (a, xi)). (4.2)

In case the notation has confused the reader, we remark before proving Corollary 4.4
that the sum on the right side of equality (4.2) is taken over all pairs (a, xi) such that
a ∈ P with rP (a) ≤ n − i (so rP ∗(a) ≥ i), and that 1̂P , being the maximum element of
P , is the minimum element of P ∗ (so (1̂P , x0) is the minimum element of Ri(P

∗)).

Proof. We have

µ( ̂Ii−1(P )) = −
∑

α∈Ii−1(P )+

µ ̂Ii−1(P )
(α, (1̂P , i− 1))

= −
∑

β∈R+

i (P )

µR+

i (P )(β, (1̂P , xi))

=
∑

γ=(a,x0)∈R−

i (P )

µRi(P )(γ, (1̂P , xi))

=
∑

γ=(a,x0)∈R−

i (P )

µRi(P ∗)(ψi((1̂P , xi)), ψi(γ))

=
∑

γ=(a,x0)∈R−

i (P )

µRi(P ∗)((1̂P , x0), (a, xi))

=
∑

(a,xi)∈Ri(P ∗)

µRi(P ∗)((1̂P , x0), (a, xi)).

Indeed, the first equality follows from the definition of the Möbius function; the second
follows from Lemma 4.2; the third follows from the definition of the Möbius function and
the fact that µR+

i (P ) is the restriction of µRi(P ) to R+
i (P )×R+

i (P ) (as R+
i (P ) is an upper

order ideal in Ri(P )); the fourth follows from Lemma 4.3 and the last two follow from the
definition of ψi.
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Proof of Tree Lemma (Theorem 4.1). The poset Tt,n has exactly tj elements of rank j for
each j = 0, . . . , n. Let rT be the rank function of Tt,n and let 0̂T be the minimum element
of Tt,n.

We have

µ((P ∗ ∗ Tt,n)+) = −
∑

α∈P ∗∗Tt,n

µP ∗∗Tt,n
((1̂P , 0̂T ), α)

= −
n∑

j=0

∑

α∈P ∗

n,t,j

µP ∗∗Tt,n
((1̂P , 0̂T ), α),

where
P ∗

n,t,j := {(a, w) ∈ P ∗ ∗ Tt,n : rT (w) = j}.

We have

∑

α∈P ∗

n,t,0

µP ∗∗Tt,n
((1̂P , 0̂T ), α) =

∑

a∈P ∗

µP ∗∗Tt,n
((1̂P , 0̂T ), (a, 0̂T ))

=
∑

a∈P ∗

µP ∗(1̂P , a)

= 0.

Now fix j ∈ [n]. For any w ∈ Tt,n with rT (w) = j, the interval [0̂T , w] in Tt,n is a chain
of length j. Therefore, for any (a, w) ∈ P ∗

n,t,j, the interval [(1̂P , 0̂T ), (a, w)] in P ∗ ∗ Tt,n

is isomorphic with the interval [(1̂P , x0), (a, xj)] in Rj(P
∗). For any a ∈ P ∗, the four

conditions

• rP ∗(a) ≥ j,

• (a, w) ∈ P ∗
n,t,j for some w ∈ Tt,n,

• (a, v) ∈ P ∗
n,t,j for every v ∈ Tt,n satisfying rT (v) = j,

• (a, xj) ∈ Rj(P
∗)

are all equivalent. There are exactly tj elements v ∈ Tt,n of rank j. It follows that

∑

α∈P ∗

n,t,j

µP ∗∗Tt,n
((1̂P , 0̂T ), α) = tj

∑

(a,xj)∈Rj(P ∗)

µRj(P ∗)((1̂P , x0), (a, xj)),

and the Tree Lemma now follows from Corollary 4.4.

Since Bn is Cohen-Macaulay and self-dual, the following result shows that Theorem
1.5 is equivalent to (3.3).
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Theorem 4.5 (Equivariant Tree Lemma). Let P be a bounded, ranked G-poset of length
n. Then for all t ∈ P,

n⊕

j=1

tjL(Ij−1(P );G) ∼=G −L((P ∗ ∗ Tt,n)−;G). (4.3)

Consequently, if P is Cohen-Macaulay then for all t ∈ P,

n⊕

j=1

tjH̃n−2(Ij−1(P )) ∼=G H̃n−1((P
∗ ∗ Tt,n)−).

Proof. The proof is an equivariant version of the proof of the Tree Lemma. In particular,
the isomorphism of Lemma 4.2 is G-equivariant, as is the antiisomorphism of Lemma 4.3.

The equivariant version of (4.2) is

L(Ii−1(P );G) =
⊕

(a,xi)∈Ri(P ∗)/G

L(((1̂P , x0), (a, xi));Ga) ↑
G
Ga
. (4.4)

To prove (4.4) we let (3.9) play the role of the recursive definition of Möbius function in
the proof of (4.2).

To prove (4.3) we follow the proof of the Tree Lemma again letting (3.9) play the role
of the recursive definition of Möbius function, and in the last step applying (4.4) instead
of (4.2).

5 Corollaries

In this section we restate and prove Corollaries 1.4 and 1.6 and discuss some other corol-
laries that were mentioned in the introduction.

Corollary 5.1 (to Theorem 1.3). For all n ≥ 0, let Dn be the set of derangements in Sn.
Then

dim H̃n−1(Bn(q)− ∗ Cn) =
∑

σ∈Dn

qcomaj(σ)+exc(σ).

Proof. Since Bn(q)− ∗Cn is Cohen-Macaulay and the number of m-dimensional subspaces

of Fn
q is

[
n
m

]

q

, the Möbius function recurrence for (Bn(q)− ∗ Cn) ∪ {0̂, 1̂} is equivalent

to

dim H̃n−1(Bn(q)− ∗ Cn) =
n∑

m=0

[
n
m

]

q

(−1)n−m
m−1∑

j=0

dim H̃m−2(Ij(Bm(q))).

It therefore follows from Theorem 1.3 that

dim H̃n−1(Bn(q)− ∗ Cn) =
n∑

m=0

[
n
m

]

q

(−1)n−m
∑

σ∈Sm

qcomaj(σ)+exc(σ).

The result thus follows from Corollary 2.4.
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Corollary 5.2 (to Theorem 1.5). We have

∑

n≥0

chH̃n−1(B
−
n ∗ Cn)zn =

1

1 −
∑

i≥2(i− 1)eizi
. (5.1)

Equivalently,

chH̃n−1(B
−
n ∗ Cn) =

n−1∑

j=0

ωQn,j,0. (5.2)

Proof. Applying (2.8) to the Cohen-Macaulay Sn-poset B̂−
n ∗ Cn, we have

H̃n−1(B
−
n ∗ Cn) ∼=Sn

n⊕

m=0

(−1)n−m

m−1⊕

j=0

(
H̃m−2(Ij(Bm)) ⊗ 1Sn−m

)
↑Sn

Sm×Sn−m
,

where 1G denotes the trivial representation of a group G. From this we obtain

chH̃n−1(B
−
n ∗ Cn) =

n∑

m=0

(−1)n−m
m−1∑

j=0

chH̃m−2(Ij(Bm))hn−m. (5.3)

Hence

∑

n≥0

chH̃n−1(B
−
n ∗ Cn) zn = H(−z)

∑

n≥0

zn

n−1∑

j=0

chH̃n−2(Ij(Bn)).

It follows from Theorem 1.5 and (2.4) that

∑

n≥0

zn

n−1∑

j=0

chH̃n−2(Ij(Bn))tj =
E(z)

1 −
∑

n≥2 t[n− 1]tenzn
.

By setting t = 1 and using the fact that E(z)H(−z) = 1, we obtain (5.1). Equation (5.2)
follows from (5.1) and (2.4).

We now present some additional corollaries of Theorem 1.5 and Corollary 1.6, which
follow from the occurrence of the right hand side of (1.3) in various results in the literature.

Let Xn be the toric variety naturally associated to the Coxeter complex ∆n for the
reflection group Sn. (See, for example, [9] for a discussion of Coxeter complexes and [19]
for an explanation of how toric varieties are associated to polytopes.) The action of Sn

on ∆n induces an action on Xn and thus a representation on each cohomology group of
Xn. Now Xn can have nontrivial cohomology only in dimensions 2j, for 0 ≤ j ≤ n − 1.
(See for example [19, Section 4.5].) Using work of Procesi [28], Stanley shows in [39] that

∑

n≥0

n−1∑

j=0

chH2j(Xn) tjzn =
(1 − t)H(z)

H(zt) − tH(z)
.

Combining this with Theorem 1.5 and equations (1.3) and (2.1), we obtain the following
result.
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Corollary 5.3 (to Theorem 1.5). For all j = 0, . . . , n− 1, we have the following isomor-
phism of Sn-modules

H̃n−2(Ij(Bn)) ∼=Sn
H2j(Xn) ⊗ sgn.

It would be interesting to find a topological explanation for this isomorphism, in
particular one that extends the isomorphism to other Coxeter groups.

Another corollary is an immediate consequence of a refinement of a result of Carlitz,
Scoville and Vaughan [11] due to Stanley (cf. [33, Theorem 7.2]).

Corollary 5.4. For all j = 0, . . . , n− 1, let Wn,j be the set of all words of length n over
the alphabet of positive integers with the properties that no adjacent letters are equal and
there are exactly j descents. Then

chH̃n−2(Ij(Bn)) =
∑

w:=w1···wn∈Wn,j

xw1
xw2

· · ·xwn
.

The following equivariant version of Theorem 1.1 is an immediate consequence of
Corollary 5.2 and MacMahon’s formula [26, Sec. III, Ch.III] for multiset derangements.
A multiset derangement of order n is a 2 × n matrix D = (di,j) of positive integers such
that

• d1,j ≤ d1,j+1 for all j ∈ [n− 1],

• the multisets {d1,j : j ∈ [n]} and {d2,j : j ∈ [n]} are equal, and

• d1,j 6= d2,j for all j ∈ [n].

Given a multiset derangement D, we write xD for
∏n

j=1 xd1,j
.

Corollary 5.5 (to Corollary 5.2). For all n ≥ 1, we have

chH̃n−1(B
−
n ∗ Cn) =

∑

D∈MDn

xD, (5.4)

where MDn, is the set of all multiset derangements of order n.

6 Type BC-analogs

In this section we present type BC analogs (in the context of Coxeter groups) of both
the Björner-Welker-Jonsson derangement result (Theorem 1.1) and its q-analog (Corol-
lary 1.4).

A poset P with a 0̂P is said to be a simplicial poset if [0̂P , x] is a Boolean algebra for all
x ∈ P . The prototypical example of a simplicial poset is the poset of faces of a simplicial
complex. In fact, every simplicial poset is isomorphic to the face poset of some regular
CW complex (see [4]). The next result follows immediately from Theorem 1.2 and the
definition of the Möbius function. For a ranked poset P of length n and r ∈ {0, 1, . . . , n},
let Wr(P ) be the rth Whitney number of the second kind of P , that is, the number of
elements of rank r in P .
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Corollary 6.1 (of Theorem 1.2). Let P be a ranked simplicial poset of length n. Then

µ( ̂P− ∗ Cn) =
n∑

r=0

(−1)r−1Wr(P )r!.

We think of Bn as the poset of faces of an (n−1)-simplex whose barycentric subdivision
is the Coxeter complex of type A. Then dn is the number of derangements in the action
of the associated Coxeter group Sn on the vertices of the simplex. Let PCPn be the
poset of simplicial (that is, proper) faces of the n-dimensional crosspolytope CPn (see
for example [5, Section 2.3]), whose barycentric subdivision is the Coxeter complex of
type BC. The associated Weyl group, which is isomorphic to the wreath product Sn[Z2],
acts by reflections on CPn and therefore on its vertex set. Let dBC

n be the number of
derangements in this action on vertices.

Theorem 6.2. For all n, we have

dim H̃n−1(PCP
−
n ∗ Cn) = dBC

n .

Proof. It is well known and straightforward to prove by induction on n that, for 0 ≤ r ≤ n,
the number of (r − 1)-dimensional faces of CPn is 2r

(
n
r

)
. Corollary 6.1 gives

µ( ̂PCP−
n ∗ Cn) =

n∑

r=0

(−1)r−12r

(
n

r

)
r!.

Hence since PCP−
n is Cohen-Macaulay, we have,

dim H̃n−1(PCP
−
n ∗ Cn) =

n∑

r=0

(−1)n−r2r

(
n

r

)
r!.

On the other hand, we may identify the vertices of CPn with elements of [n] ∪ [n],
where [n] = {1̄, . . . , n̄}, so that the action of the Weyl group W ∼= Sn[Z2] is determined
by the following facts.

• Each element w ∈W can be written uniquely as w = (σ, v) with σ ∈ Sn and v ∈ Zn
2 .

• Any element of the form (σ, 0) maps i ∈ [n] to σ(i) and i ∈ [n] to σ(i).

• Any element of the form (1, ei), where ei is the ith standard basis vector in Zn
2 ,

exchanges i and i, and fixes all other vertices.

It follows that for each S ⊆ [n], the pointwise stabilizer of S in W is exactly the pointwise
stabilizer of S := {i : i ∈ S} and is isomorphic to Sn−|S|[Z2]. Using inclusion-exclusion
as is done to calculate dn, we get

dBC
n =

n∑

j=0

(−1)j

(
n

j

)
2n−j(n− j)!.
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Muldoon and Readdy [27] have recently obtained a dual version of Theorem 6.2 in
which the Rees product of the dual of PCPn with the chain is considered.

Next we consider a poset that can be viewed as both a q-analog of PCPn and a type
BC analog of Bn(q). Let 〈·, ·〉 be a nondegenerate, alternating bilinear form on the vector
space F2n

q . A subspace U of F2n
q is said to be totally isotropic if 〈u, v〉 = 0 for all u, v ∈ U .

Let PCPn(q) be the poset of totally isotropic subspaces of F2n
q . The order complex of

PCPn(q) is the building of type BC, naturally associated to a finite group of Lie type B
or C (see for example [9, Chapter V], [31, Appendix 6]). Thus we have both a q-analog of
PCPn and a type BC analog of Bn(q) (since the order complex of Bn(q) is the building
of type A).

Clearly PCPn(q) is a lower order ideal of B2n(q).

Proposition 6.3. The maximal elements of PCPn(q) all have dimension n. For r =
0, . . . , n, the number of r-dimensional isotropic subspaces of F2n

q is given by

Wr(PCPn(q)) =

[
n
r

]

q

(qn + 1)(qn−1 + 1) · · · (qn−r+1 + 1).

Proof. The first claim of the proposition is a well known fact (see for example [31, Chapter
1]). The second claim is also a known fact; we sketch a proof here. The number of ordered
bases for any k-dimensional subspace of F2n

q is

k−1∏

j=0

(qk − qj).

On the other hand, we can produce an ordered basis for a k-dimensional totally
isotropic subspace of F2n

q in k steps, at each step i choosing

vi ∈ 〈v1, . . . , vi−1〉
⊥ \ 〈v1, . . . , vi−1〉.

The number of ways to do this is

k−1∏

j=0

(q2n−j − qj),

and the proof is completed by division and manipulation.

It was shown by Solomon [36] that PCPn(q) is Cohen-Macaulay. Hence so is the Rees
product PCPn(q)

− ∗ Cn. We will show that the dimension of H̃n−1(PCPn(q)
− ∗ Cn) is a

polynomial in q with nonnegative integral coefficients and give a combinatorial interpre-
tation of the coefficients. We first need the following q-analog of Corollary 6.1. We say
that a poset P with 0̂P is q-simplicial if each interval [0̂P , x] is isomorphic to Bj(q) for
some j.
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Corollary 6.4 (of Theorem 1.3). Let P be a ranked q-simplicial poset of length n. Then

µ( ̂P− ∗ Cn) =
n∑

r=0

(−1)r−1Wr(P )
∑

σ∈Sr

qcomaj(σ)+exc(σ).

Theorem 6.5. For all n ≥ 0, let dn(q) :=
∑

σ∈Dn
qcomaj(σ)+exc(σ). Then

dim H̃n−1(PCPn(q)
− ∗ Cn) =

n∑

k=0

[
n
k

]

q

qk2

n∏

i=k+1

(1 + qi) dn−k(q). (6.1)

Consequently, dim H̃n−1(PCPn(q)
− ∗ Cn) is a polynomial in q with nonnegative integer

coefficients.

Proof. We have by Proposition 6.3, Corollary 6.4, and the fact that PCPn(q)
− ∗ Cn is

Cohen-Macaulay,

dim H̃n−1(PCPn(q)
− ∗ Cn) =

n∑

j=0

(−1)j

[
n
j

]

q

n∏

i=j+1

(1 + qi) an−j(q),

where an(q) :=
∑

σ∈Sn
qcomaj(σ)+exc(σ). On the other hand by Corollary 2.4, the right hand

side of (6.1) equals

n∑

k=0

[
n
k

]

q

qk2

n∏

i=k+1

(1 + qi)

n−k∑

m=0

(−1)m

[
n− k
m

]

q

an−k−m(q)

=
∑

j≥0

an−j(q)
∑

k≥0

[
n
k

]

q

qk2

n∏

i=k+1

(1 + qi)(−1)j−k

[
n− k
j − k

]

q

=
∑

j≥0

an−j(q)

[
n
j

]

q

∑

k≥0

[
j
k

]

q

qk2

n∏

i=k+1

(1 + qi)(−1)j−k.

Thus to prove (6.1) we need only show that

n∏

i=j+1

(1 + qi) =
∑

k≥0

[
j
k

]

q

qk2

n∏

i=k+1

(1 + qi)(−1)k,

holds for all n and j. By Gaussian inversion this is equivalent to,

qj2

(−1)j
n∏

i=j+1

(1 + qi) =
∑

k≥0

[
j
k

]

q

(−1)j−kq(
j−k
2 )

n∏

i=k+1

(1 + qi),

which is in turn equivalent to,

qj2

(−1)j =
∑

k≥0

[
j
k

]

q

(−1)j−kq(
j−k
2 )

j∏

i=k+1

(1 + qi). (6.2)
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To prove (6.2) we use the q-binomial formula,

n−1∏

i=0

(x+ yqi) =
∑

k≥0

[
n
k

]

q

q(
k
2)xn−kyk.

Set y = 1 and use Gaussian inversion to obtain

xn =
∑

k≥0

[
n
k

]

q

(−1)n−k

k−1∏

i=0

(x+ qi).

Now set x = qn to obtain

qn2

=
∑

k≥0

[
n
k

]

q

(−1)n−k

k−1∏

i=0

(qn + qi)

=
∑

k≥0

[
n
k

]

q

(−1)n−kq(
k
2)

k−1∏

i=0

(qn−i + 1).

Using the standard identification of elements of Sn[Z2] with barred permutations
(i.e., permutations written in one line notation with some subset of the letters barred),
the derangements of Theorem 6.2 are the barred permutations σ = σ1 · · ·σn for which
σi 6= i for all i ∈ [n]. Let DBC

n be the set of such barred permutations. If σ is a barred
permutation, let |σ| be the ordinary permutation obtained by removing the bars from σ.
For σ ∈ DBC

n , let σ̃ be the word obtained by rearranging the letters of σ so that the fixed
points of |σ|, which are all barred in σ, come first in increasing order with bars intact,
followed by subword of nonfixed points of |σ| also with bars intact. Now let S be the set
of positions in which bars appear in σ̃. Define the bar index, bnd(σ) of σ to be

∑
i∈S i.

For example if σ = 3̄2̄54̄6̄17̄ then σ̃ = 2̄4̄7̄3̄56̄1 and so bnd(σ) = 1 + 2 + 3 + 4 + 6.

Corollary 6.6.

dim H̃n−1(PCPn(q)
− ∗ Cn) =

∑

σ∈DBC
n

qcomaj(|σ|)+exc(|σ|)+bnd(σ).

Proof. By Corollary 2.4 we have,
∑

σ∈DBC
n

qcomaj(|σ|)+exc(|σ|)pbnd(σ)

=
n∑

k=0

∑

σ ∈ Sn

fix(σ) = k

qcomaj(σ)+exc(σ)p(
k+1

2 )
n∏

i=k+1

(1 + pi)

=

n∑

k=0

[
n
k

]

q

q(
k

2)dn−k(q)p
(k+1

2 )
n∏

i=k+1

(1 + pi).

Now set p = q and apply Theorem 6.5.
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