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Abstract

We introduce a sequence of posets closely related to the associahedra. In this we
are motivated by reasons similar to those of Stasheff in the case of the associahedra.
We make a study of this poset showing that it has an inductive structure with
proper downwards intervals being products of smaller posets in the same series and
associahedra. Using this we also show that they are thin dual CL-shellable and in
particular that they are the face poset of a regular cell decomposition of the ball.

1 Introduction

The purpose of this article is to introduce a sequence of posets closely related to the face
lattices of the associahedra and study their combinatorial properties, in particular it will
be shown that they are shellable. The origin of these posets are in principle not relevant
for such a study, nevertheless I shall start by briefly discussing it. The associahedra
are relevant to the description of products which are associative only up to homotopy
(“Ay"-spaces). The prototypical such example is the path space of a topological space
where the composition of paths is not associative but is associative up to homotopy and
two maps from one space to another constructed out of such homotopies are homotopic
and so on. Suppose now that the space is a manifold M and that we are really only
interested in smooth paths. The problem is that the composition of smooth paths is
usually not smooth. The solution would seem to be to smooth the composition but the
problem then is that such a smoothing is not unique. Thus one is forced to speak about
a composition and will have to contend with the ambiguities inherent in that. A direct
way of expressing a composition is as a smooth map from the standard 2-simplex A, to
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M, where the original two paths are the restriction of that map to the first two edges and
the particular composite is the restriction to the third edge. The map itself is then the
particular smoothing of the composition of the first two edges to the third edge. We write
this as a - b — ab, where a and b are the original paths, a - b represents the composition,
ab the smoothing and the arrow represents a particular smoothing with ab as end result.

Following the pattern of higher coherence conditions that made the associahedra ap-
pear in the first place, we assume that we have different choices of compositions a-b — ab,
b-c — be, a-bc — abc and ab-c — abc and we are looking for some supplementary coherence
condition that would express that these choices of composites are coherently associative.
In this particular case the composites fit together to give a smooth map from the boundary
of A3z to M and we could demand that this map extend smoothly to Aj itself. However,
we would rather have conditions that can be formulated in terms of composition of paths
and the A-structure. Hence using the homotopies given by the smoothings together with
the associativity homotopy a - (b- ¢) @b (a-b) - c gives us a mapping from the boundary
of the pentagon into the path space of M:

a-(b-c)—2  (q-b)-c

a-be ab-c

~

abce

The coherence condition should then be that this map extend to the full pentagon. The
pentagon of course is the second associahedron indicating that there is indeed a relation
between this condition and the associahedron. If one analyses the next coherence condi-
tion, one arrives at something that is not an associahedron (see Fig. 2) but is visibly a
polyhedron. In this note we shall give a general definition of these coherence conditions
leading to posets that share the simplest combinatorial properties with the face posets of
polyhedra such as being a lattice and being shellable. From the point of view of the origi-
nal motivation shellability has the important consequence that the posets are face posets
of a regular cell decomposition of a ball. However, its close relation with the associahedra
seems to me an indication that they should be interesting from a purely combinatorial
perspective.

Just as for the associahedra themselves everything is best phrased in terms of trian-
gulations of n-gons. A new notion appears however. We shall need to consider not just
triangulations of a fixed polygon but also triangulations of a subpolygon all of whose
vertices are vertices of the larger polygon as well as a simple way of passing from a partial
triangulation to a partial triangulation of a smaller polygon.

Concerning specific results our principal poset is CC,,, the poset of compound collapses;
by adding a smallest element we get CC," which is proved to be a graded poset (Corollary
3.5) and a lattice (Proposition 3.7). Finally it is shown in Theorem 4.2 that CC;' is dual
CL-shellable and thin. Analogously to the case of the associahedron we also have a local
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structure theorem in that every interval ]@, x] is a product of smaller posets of compound
collapses and face posets of associahedra (Proposition 3.3). As CC,, will be seen to be
very analogous to the face poset of the associahedron the following problem comes very
naturally.

Problem: Is CC,, the face poset of a convex polytope?

My own experience with polytopes is too meager to allow me to venture an opinion.

2 A low dimensional example

To motivate our subsequent deliberations we start by describing CCs, the first non-trivial
example. (Note that in order to simplify we shall disregard some terminological distinc-
tions that will be made later.)

We can as usual describe cell decompositions of the n-gon as partial parenthesisations
of a product of n — 1 symbols. As we shall deal also with k-gons for £ < n we shall do the
following: We attach symbols, letters starting with a in our example, to the initial edges
of the n-gon and then to an arbitrary edge we attach the concatenation of the symbols
in order of the initial edges connecting the initial vertex of the edge to the final. (An
initial vertex has been chosen and the polygon is then oriented counterclockwise.) Hence,
if we attach a, b, and ¢ to the initial edges of the 4-gon, the edge from the first to the
third vertex will get label ab. The final edge will in general get the label obtained by
concatenating all the labels of the initial edges. For instance if we start with a 6-gon
with initial edge labels a, b, ¢, d, and e, then the 6-gon itself will correspond to the
unparenthesised expression a - b - c - d - e whereas the 4-gon consisting of the edge from
the first to the third vertex, from the third to the fourth, from the fourth to the sixth,
and the final edge will correspond to the unparenthesised expression ab - ¢ - de (cf., Fig.
1). The full concatenation abcde will then correspond to the 1-gon consisting just of the

e

de

ab-c-de abcde

ab

a

Figure 1: A 6-gon and a 4-gon and 1-gon contained in it.

final edge (idem).
Furthermore a cell decomposition of a k-gon, which is the convex hull of a set of
vertices of the n-gon containing the initial and final vertex, will correspond to a partially
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parenthesised expression of concatenations of the labels of the initial edges such that the
labels appear in increasing order. Thus ab - c¢d corresponds to the cell decomposition,
using edges of the 5-gon, consisting of the edge connecting the first vertex to the third,
the edge connecting the third to the fourth and (as always) the final edge. A compound
collapse then corresponds to replacing possibly several but disjoint unparenthesised sub-
expressions with the corresponding concatenation. Continuing the last example (a-b)-(c-d)
collapses to any of ab- (c¢-d), (a-b)-cd, and ab - cd.

Note further that according to our definitions any cell decomposition collapses to itself
and we shall denote C' — C € CC,, also by just C.

In Figure 2 we have assembled all the collapses (or as they shall be called later
compound collapses) inside of a 5-gon except the ones corresponding to a - b- ¢ - d and
a-b-c-d— abed. Edges represent incompletely parenthesised expressions with their (two
as it were) complete parenthesisations at their ends. The arrows represent compound col-
lapses, where the dotted arrows give those that correspond to 2-cells in what is obviously
a regular cell decomposition of a 2-cell. Together with a-b-c-dand a-b-c-d — abed we
get a regular cell decomposition of the 3-cell.

(a-b)-(c-d)
. ab(cd)
@vora W \a ' Cd/ wd PR
(ab c)-d \ J a- (b cd)
(@b-c)-d /’, abe-d—- at:Cd% & de :\ ””””””” a-(b-c-d
(a-bc)-d a-L)c-d a-(bc-d)
7 ! ™S
(a-(b-c))-d a-((b-c)-d)
a-(b-c)-d

Figure 2: Convex cell decompositions of a 5-gon.

3 Combinatorics

We start with a convex planar n-gon, P,. In inductive arguments we shall deal with many
polygons and use P, for the polygon currently considered, we shall also not particularly
distinguish between a polygon as a convex set and as the set of its boundary edges or
even vertices. We also pick one of its edges which we call the final edge and call the other
edges its initial edges. We further orient the final edge so that it gets an initial vertex
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and a final verter. The other edges are then oriented so that they point away from the
initial vertex and towards the final one. (If P, is explicitly embedded in the plane it seems
reasonable to orient the edges so that one moves counterclockwise when moving along the
initial edges from the initial to the final vertex.) In this way we also get a total order on
the set of vertices of P,; we go from a lower vertex to a higher one by moving along initial
edges. A convex polygon whose vertices are a subset of the vertices of P, will then have
a unique edge connecting the first of its vertices to its last, called its final edge, the rest
are its initial edges and come with natural orientations just as for P, itself. We shall call
such a polygon a cap or cell. For caps, but not for cells, we also allow the degenerate case
consisting of just one edge.

We let CD,, be the set of cell decompositions of P,, where a cell decomposition is a
subset C' of the set of edges connecting the vertices of P, such that

e the final edge is a member of C,
e edges of C' meet only at vertices of P, and

e any edge which is a part of the boundary of the convex hull C of C is a member of

C.

We shall also call the convex hull, C, of C the support of C. If C is a convex cell
decomposition, the closure of a component of C'\ C (i.e., C minus the edges of ) is a
cell and will be called a cell of the cell decomposition. It is clear that the boundary of C'
is a polygon, the boundary polygon of C'

When speaking of the interior, Z°, of a subset of R? we shall mean the relative interior,
i.e., the interior of Z as a subset of the smallest affine subspace containing Z. If C' € CD,,,
then we put C-Z:= {{ e C |(°C Z}.

If C,D € CD,, then we say that D is a compound collapse of C', denoted C' — D, if
D C C and C'\ D is contained in the boundary polygon of C'. We say then that C' is the
collapser, denoted (C'— D),, and D the collapsee, denoted (C' — D)., of the compound
collapse. As C' is the union of D and the boundary polygon of C' when specifying a
compound collapse it is enough to specify D and the boundary polygon something we
shall do without further comment. If C, D € CD,, then D is said to be a refinement of
C, denoted C' > D, if C' and D have the same support and C' C D. If C, D € CD,,, then
we say that D is a collapse of C, denoted C — D, if there is a refinement C” of C' and
a compound collapse C' — D, ie.,C > C" — D. If C,D € CD,,, then we say that D is
a lapse, denoted C' »— D, of C' if D is a refinement of some D’ and there is a compound
collapse D' — C, i.e., D < D' — C. We now let CC,, be the set of pairs C, D € CD,, such
that C' — D. We define a relation on CC,, by (C,D) > (E,F)if C - E and D — F. If
P is a particular convex n-gon we shall also use CC(P) for the compound collapses of P.

Remark: These definitions could probably do with some further elaboration. An
example of a compound collapse consists of the collapsing of a cap formed by some bound-
ary edges of C' and one interior edge of D onto the interior edge or more directly one just
removes its boundary edges. A general compound collapse consists of several such col-
lapses done simultaneously which means in particular that the caps involved meet at most
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in vertices. For a collapse one wants to collapse certain convex regions onto one of their
sides but is stopped from doing it because some of the sides do not belong to C' though
the regions are contained in C' and all but one of their faces lie in the boundary of C.
One thus starts by adding those sides to C' and has the liberty of adding other edges too
as long as they don’t lie in one of the regions. A lapse is formulated in a way so as to
make it dual to a collapse but as we shall see in the next lemma one gets from C' to D
by adding any number of edges (in such a way so that we still get a cell decomposition).
We shall later give a very precise description of the cover relation associated to >. It will
indeed be seen to be a partial order.

If C,D € CD, and C C D, then a residual boundary edge of the pair (D, C) is an edge
which lies in the boundary of D but is not contained in C. The set of residual boundary
edges will be denoted R(D,C).

Lemma 3.1 Let A, B € CD,,.

i) We have that A — B precisely when B C A, A-(A\B)° =0, and A= BUR( ).

i) We have that A — B precisely when B C Z A-(A\B)° =0, and A C BUR( ).

iii) We have that A — B precisely when A C B.

Proor: Assume that A — B as B C A we have B C A and as all £ € C \ D lie in
the boundary of C we have A - (A\ B)° = () but also that £ € R(A, B) which gives
A = BUR(A, B). Conversely, assume B C A, A-(A\ B)° =0, and A = BU R(A, B)
the last clearly giving B C A. An £ € A\ B lies in R(A, B) and thus in the boundary of
A. This proves i).

Assume now A — B and assume that A > C — B. By i) we have B C
definition A = C so that BC A. As AC C and C-(C\B) =0 by i) we get A- (
and also A C C = BUR(C, B) again by i) and R(C, B) = R(A, B) as A = C. Conversely,
assume B C A, A- (A\ B)° =0, and A C BU R(A, B). Putting C := BUR(A, B), C
and A have the same support so that C = BU R(C, B) and we have C' — B by i) and as
A C Cwe also have A > C which finishes the proof of ii).

Finally, if A — B there is a C' with B < C' — A we have B O C and C O A by 1i).
Conversely, if B O A we let C' consist of the union of A and the elements of B that are
not part of the boundary of B. Then we have B < C' — A, which gives A — B. O

A, B
A'B

by

T and
A\B) =0

Proposition 3.2 The relation < on CC,, is a partial order.

Proor: The only property which is not clear is transitivity. Hence assume that we have
A— B, C —>D,and E - Faswellas A » C,C » E, B— D,and D — F. It
is obvious from Lemma 3.1 that B — F. Now, again from Lemma 3.1, we have that
BCDCFCECCCAand A-(A\ B)° =0 and thus A-(A\ E)° = (. What is left
to show is then that A C FU R(A, E). Let £ € A and assume first that £ € A-E. As
we have that A C C U R(A,C) and E C C we get that £ € C and thus that £ € C - E.
The fact that C € E U R(C, E) then implies that ¢ € E. Hence we may assume that
¢ € A-(A\ E) but as we already know that A-(A\ E)° = () this implies that £ € R(A, E)
which finishes the proof. U

If C — D is a compound collapse, a cap of it is the closure of a component of C'\ D. It
is clear that it is a cap in the sense introduced above.
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We let KC,, be the poset of partial triangulations of an n + 1-gon.! With this indexing
one of the consequences of the next proposition is that /C,,_; is a coatom of CC,,. In order
to be able to deal with several copies of this poset at the same time, if P is a polygon
then we shall also use KC(P) for the partial triangulations of P.

Proposition 3.3 Suppose (C — D) > (E — F) in CC,. Let E' := E - D and for each
capy of C — D let E, := E -~ resp. F, := F-~. Then E' is a refinement of D, E,, — F.,
E=FEUU,E, and F = E'UU, F,. Conversely, given C — D, a refinement E' of D and
compound collapses £, — F. for each cap v of C'— D then we have a compound collapse
E — F where E=E UU,E, and F = E'UU,F, and (C — D) > (E — F).

In particular, the interval of elements below C' — D is isomorphic to K,, X Hv CCpn,,
where D is an m + 1-gon and the cap vy is an My -gOomn.
Proor: By the definition of compound collapse we have that D C C and F C E and by
Lemma 3.1 D C F so that D is contained in C, E and F. In particular, E’ is a refinement
of D. Now, 7 lies in the closure of C'\ D which implies that all boundary edges ofE lies
in E,. As E — F, F-(E,\ F,) =0 which gives E, — F,. As C is the union of D and
the (support of) the caps v we get £ = E' UU,E, and F = E' UU,F,. The converse is
similar.

This result then shows that an element below C' — D is specified by a refinement of
D and a compound collapse of each cap which gives the bijection of the final result and
it is clear that partial order on such elements is the product order. L]

Note that CC,, has a maximal element C' — D where D is the final edge and C' is the
n-polygon itself. As is standard we shall denote it 1.

Proposition 3.4 i) For 1 <i < n we let F; be the compound collapse C; — D; where
D; consists of just the final edge and C; consists of boundary edges of the convex hull of
all the vertices but the i’th. For S a subset of {1,n} C S C {1,...,n} we let F§ be the
compound collapse C'y — DY where C§ is the polygon P, and DY is the convex hull of the
vertices whose positions appear in S. Then the F; and the F§ are exactly the cocovers of
the maximal element of CC,.

ii) The covers of a compound collapse A — B are of one of the following forms and
all such forms are covers:

e An internal edge is removed from B (“edge removal” ).
o A cap of B is collapsed (“cap collapse” ).
o A small cap of A is added (“small cap addition”).

Proor: If (C" — D') > (C — D), then D’ C D and C’ is a coarsening of a cell
decomposition that has a compound collapse to C. In particular if D is a polygon then
either D' = D or D’ consists only of the final edge. On the other hand if C' contains the

!There are different choices of the indexing for the associahedra in the literature. We adopt here
Stasheft’s original, [St63a], indexing.
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boundary of P, then there is no non-trivial compound collapse to C' and hence C' would
be a refinement of C’. Together this shows that if C' — D = F% then ' — D' = 1 so
that F{ is a cocover of 1. The argument for F} is similar.

Conversely assume C' — D is a cocover of 1. By our previous considerations we
conclude that D is a polygon. Assume first that it is not equal to the final edge. Then if
D is not equal to P,, then there is a boundary edge ¢ of D that is not in the boundary of
P,. Tt is the final edge of a polygon v whose edges other than ¢ lie in the boundary of P,.
Putting C’ := C' U~ \ £ we have that ¢’ — D and (C" — D) > (C — D) and C" — D is
not equal to 1 which is a contradiction and the conclusion is that ' — D = F§ for some
S. The case when D is the final edge leads in a similar fashion to F;. This proves i).

As for ii) it follows immediately from Proposition 3.3 and 1i). U

We now let P be the poset obtained by adding an artificial minimal element 0 to K,
and similarly CC is obtained from CC,, by adding 0.

Corollary 3.5 CC is graded of length n — 2.

Proor: We argue by induction on n. It is enough, by Proposition 3.4, to show that the
intervals [0, Fj] and [0, F%] are graded of length n — 3. In the case of the Fj it follows from
Proposition 3.3 that [0, F}] is isomorphic to CC,”_; which by induction is indeed graded of
length n — 3. In the case of Fg, let 71, ..., be the caps of F{. We assume that D is an
m-gon and ~y; an m;-gon. Then we have that Zj mj —2+m = n. On the other hand, by

. +
Proposition 3.3 we have that [0, F§] is isomorphic to (lCm_l x [, Cij) . Now, K},
is graded of length m — 2 and by induction CC;CLJ_ is graded of length m; — 2 and hence
[0, F%] is graded of length dymj—2+m—2=n-2 O

We say that two cell decompositions C' and D are compatible if for any edge ¢ of C'
and any edge (' of D distinct from ¢, ¢ and ¢ intersect at most in vertices of B,.

Lemma 3.6 If C and D are compatible then C'U D 1is a cell decomposition.

Proor: The only condition that is not trivially fulfilled is that C'U D contains any edge of
the boundary polygon of its convex hull. Assume therefore that E is such an edge which
is not contained in C'U D. Its two endpoints p and ¢ must be endpoints of elements of
C'UD but E cannot be an edge of C' or D. Hence we may assume that p is larger than ¢
(in the total order of the vertices of P,) and is the final endpoint of E’ € C' and ¢ is the
initial endpoint of E” € D. Now, as E” lies in the convex hull of C'U D its final endpoint
must come after the final endpoint of F, i.e., p and similarly the initial endpoint of E’
must come before ¢. That however implies that £’ and E” must meet in the interior of
the convex hull C'U D which is a contradiction. 0

Pr0p0s1t10n 3.7 CC/ is a lattice. More precisely, the infimum of A — B and A’ — B’
is 0 unless B and B’ are compatible and BUB’ C ANA’. If these conditions are fulfilled
the infimum A” — B" is given as follows: B" = B U B’ and the boundary of A” is the
largest polygon contained in AN A’
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Proor: If we have (A — B), (A’ — B') > (C — D), then D D B, B’ so that B and B’
are compatible. Furthermore we have B C D C C A’ and by symmetry BUB' C AN A’.
Hence, if either B and B’ are not compatible or B U B’ - AN A, then the infimum is
0. Assume now that the conditions are fulfilled. For any C' — D dominated as above by
A — B and A’ — B’ we have B” C D. By Proposition 3.6 B” is a cell decomposition.
It is also clear that A — B” and A’ — B” and as we have (A — B) > (A — B"),
(A — B') > (A — B”) as well as C — D being dominated by A — B” and A’ — B”
we may assume that B = B’. This means that the difference between B and A resp. A’
are just edges that lie in the respective boundaries. Also, C C AN A’ and it is clear that
there is a largest polygon contained in A N A’ and adding its boundary edges to B thus
gives an infimum. U

4 Shellability

Our aim is now to show that CC is a thin shellable poset. More precisely we shall show
that it is dual CL-shellable, cf., [BW83]. In our proof of the dual CL-shellability of CC,,
we are going to use the equivalent condition of having a recursive coatom ordering. In the
recursion necessary to verify that a particular coatom ordering is indeed a recursive one we
are going to use the product structure of Proposition 3.3. It is however formulated in terms
of CC,’s rather than CC} so we start by formulating the condition of having a recursive
coatom orderability in a way that uses a poset P (possibly) without a least element (and
which is of course should be equivalent to the usual condition for P*, the poset with a
least element added). (We are otherwise using the notation and formulation of [BVSWZ,
Def. 4.7.17| which appeared somewhat more convenient than the original one of |[BW83,
Def. 3.1].) Thus we assume that PT is graded and put, forx € P, [z] := {y € P |y < x }.
A recursive coatom ordering of P consists of a total ordering <¢ of its coatoms and either
length(PT) < 2 or length(P™) > 2 and for any coatom z there is a distinguished subset
Q. with Q, # () when z is not <®-first such that

L 2] N (Upr<a[2']) = Uyeq, [y] and
2. [x] has a recursive coatom ordering in which the elements of (), come first.

(The condition of non-emptiness of (); takes care of covering 0 of Pt.)

The fact we recursively are dealing with products of smaller posets will be used together
with the fact that the condition of CL-shellability is inherited by products (noted in
[BWS83] with reference to [Bj08, Thm. 4.3]) with two modifications. First, as (P x Q)" #
P* x QT we are not talking about exactly the same product. Second, we are going
to use this result recursively, i.e., apply it to the [z;], with the above notation, which
forces us to verify an external condition on the recursive coatom ordering. Hence we
need to be explicit on how the recursive coatom ordering on a product is obtained from
orderings on the factors and during our arguments we shall in fact need to deal with several
ways of obtaining such an ordering. (The fact that products of posets with recursive
coatom orderings have some recursive coatom ordering is of course well-known, cf., |[BW83,
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Comment before Thm. 8.3].) The following lemma takes care of the different versions that
we shall need.

Lemma 4.1 Let P and P’ be posets with PT and P'" graded. Assume given recursive
coatom orderings of P and P’ together with initial sequences of them. Order the coatoms
of P x P as follows: Start with (x,1) where x runs over the initial segment for P,in
the order given, then take (1,'), where 2’ runs over the initial segment for P, then take
(z,1) with x running over the rest of the coatoms for P and finally end with (1, ') where
' runs over the rest of the coatoms of P'. This coatom ordering is a recursive coatom
ordering.

Proor: We have to verify the recursive conditions and let us start with the case of the
coatom being of the form (z, i) with x in the initial segment of the coatom ordering of P.
We then choose a recursive coatom ordering of [z] and an initial segment ), for which
[#] N U.<2[2] = Uyeq, [y]. We then order the coatoms of [(z,1)] = [x] x P’ by putting the
coatoms (y, 1) first and in the order given and the coatoms (z, ) last in the given recursive
coatom ordering of P’. If we let the Q for (x,1) be {(y,1) | ¥ € Q. } we easily see that
the conditions needed are fulfilled. The case of a coatom of the form (1, ') with 2/ in the
initial segment of P’ is completely analogous. Consider next the case when the coatom is
of the form (z,1) with 2 not in the initial segment. Choose as before a recursive coatom
ordering of [#] with a @, as above. We define a coatom ordering on [(x,1)] =[] x P’ by
taking the (Q,,1) first, then the given initial segment of P’ times z, then the rest of the
coatoms of P (times 1 € P’) and last the rest of the coatoms of P’ (times z). By induction
this gives a recursive coatom ordering of [(x,1)] and letting the @ for this element be the
union of (Q,,1) and the initial segment of P’ the necessary conditions are fulfilled. The
case of coatoms of the form (1, ') with 2’ not in the initial segment of P’ is analogous. [J

With this lemma we are now ready to prove dual CL-shellability after having introduced
one more notion. For a cover (A — B) < (C' — D) we define its residual as follows. If
the cover is a small cap addition the residual is the small cap added, if it is a cap collapse
it is the cap that is collapsed and if it is an edge removal the residual is the removed edge.

Theorem 4.2 CC/ is a thin dual CL-shellable lattice.

Proor: To begin let us record that we shall use without further mention that as CC;}
and K are lattices, the intersection [z] N [y] in CC,, resp. K, is, when non-empty, equal
to [z Ay].

In order to verify the recursive conditions of a (proposed) recursive coatom ordering we
shall use Proposition 3.3. This forces us to first discuss recursive coatom orderings on /C,.
We can define a partial pseudo-order, the chord order, on the chords (i.e., non-boundary
line segments connecting two vertices) of P, by saying that ¢; <¢ /5 if they intersect in
at most vertices of P,,; and if the interior of ¢; lies in the component of P, \ /5 that
contains the final edge. An extension of the chord order to a total order on the chords
will be a called an admissible order. Each chord ¢ defines a coatom, x,, of IC,, given by the
union of ¢ and P, and all coatoms are obtained in that way. Hence an admissible order
gives a total order on the coatoms of P, and the contention is that any admissible order
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gives a recursive coatom order. A chord ¢ of P,,; decomposes P, into two polygons,
one, P’, which has the final edge of P, as its final edge and one, P”, which has ¢ as its
final edge. It is clear that the chord orders on P’ and P” are the orders induced from the
chord order on P,,; and in particular an admissible order on the chords of P, ; induces
an admissible order on the chords of P’ and P”. Hence by induction we may assume
that these latter orders give recursive coatom orderings. Furthermore, the interval [z,] is
isomorphic to the product K(P’) x IC(P") and thus has a recursive coatom ordering by
Lemma 4.1 and induction. Now, every coatom of [z,] whose second component in the
product decomposition is 1 is of the form xp A z, in the lattice structure of K,,, for some
¢ < ¢. This means that we may choose the @ for x, to be equal to the coatoms of the
form xy A z, for ¢/ smaller than ¢ in the admissible order.

Turning to CC,, we shall use the same technique as for IC,, using Proposition 3.3. This
means that to begin with we choose once and for all an admissible order on the chords of P,
which induces a recursive coatom ordering on each K-subposet arising from a subpolygon
of P,. We are going to use the following convention to describe the coatoms and more
generally elements of an interval [x]. By Proposition 3.3 this interval is the product of
the CC’s of the caps of x and the I of its collapsee. Hence, each coatom corresponds to a
coatom of either the CC of a cap or the IC of the collapsee and we shall say that the coatom
belongs to that cap or collapsee. General elements correspond to sequences of elements
in the CC’s of the caps and one element of the K of the collapsee and the components
of that sequence will be called the components of the elements in the respective caps or
collapsee. We now have to choose an ordering of the coatoms of CC,, in a uniform enough
way so that it applies also to all subpolygons but we also have to tell in which order we
are going to write the factors of an interval as it is needed to get a coatom ordering on
the product. Starting with the coatom ordering we have by Proposition 3.4 two types
of coatoms, the F;, which we shall say are of small cap type, for 1 < i < n and Fg, of
cap type, for {1,n} € S C{1,...,n}. We now put the F; first, ordered by the reverse of
the natural order of the i (even though as we shall see the order among the F; doesn’t
matter). After that we take the F§ ordered as follows: We put S before T if there is an ¢
such that j >i= (j€ S <= j€T)and i€ T but i ¢ S. We shall call this order the
lez-order.

Next we need to decide in which order to put the factors when representing an interval
[z]. We do this by going through the caps of x starting with the one containing the largest
vertices, in their polygon order, and continuing with the next largest and so on. Finally,
for an arbitrary x € CC,, we order its coatoms as follows: We first take all the coatoms of
small cap type of the caps of x ordered within each cap as above and between caps by the
order of the caps that has just been given. We then take all coatoms of cap type of the
caps ordered within caps as per above and between caps by the cap order. Last, we take all
the coatoms corresponding to the IC of the collapsee of z ordered by the given admissible
total order of chords of P,. Combining Lemma 4.1 and Proposition 3.3, the result we
have already obtained about recursive coatom orderings of K’s and using induction we
may assume that these coatom orderings give recursive coatom orderings on all [z] but
r =1
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It thus remains to prove that this ordering is a recursive coatom ordering of CC,, and for
that we need to identify the @), and show that they fulfil the required conditions. We start
with the case when the coatom z is equal to F;. The interval [F;] is just CC,,—1 = CC((F}),).
Furthermore, the coatoms of [F;] of small cap type are exactly the compound collapses of
the form F; A F} for ¢ # j and the order on the Fj induces the coatom ordering we have
recursively defined on [F;]. Hence we can let the @ for F; consist of its coatoms of small
cap type. This verifies the recursive condition for the case when x is of small cap type.

Assume now instead that we are dealing with a coatom F{ of cap type. We let its
(@ consist of all the coatoms of its caps. This is an initial segment of its coatoms and it
remains to verify the first part of the recursive coatom ordering conditions.

It is clear that [F;] N [F{] is empty unless ¢ ¢ S and is otherwise the coatom of [F{]
belonging to the cap of F§ which contains i and there it is the small cap type coatom
whose collapser does not contain 7. This means that the interval of any small cap type
coatom belonging to the caps of F{ are of the form [F;] N [F§] and thus all intersections
[F;] N [F§] are contained in intersections which are coatoms in [F;] N [FY].

Assume now that 7" comes before S in the lex-order. Hence there is an i such that
j>i=(j€eS < jeT)andi e T buti¢S. Let v be the cap of F¢ containing
i. In the product decomposition of [F¢] we have that the component of F. A F§ in a cap
that comes before v is 1 while the component in v is not 1 but rather a coatom ¢ of cap
type. There then is a 7" such that F;, A F§ is a coatom belonging to v and its component
in v is ¢. (In fact 7" is given by the conditions that S C 7" and 7"\ S are the vertices
of ¢ not in S.) In particular we have that F A F§ is below Fj, A F§ in the partial order
of CC,. As also every coatom of F§ belonging to a cap where it is of cap type is of the
form F}, A F§ (with T constructed as above) we have verified the required conditions for
a recursive coatom ordering.

For thinness let us assume that * <y < z.

If + < y and y < z have different forms then it is clear that there is a z < ¢y < 2
such that the residual of x < ¢ is equal to that of y < z and the residual for 3’ < z to
that of x < y and that y and y" are the only elements in the interval (z, z). If z < y and
y < z both are edge removals, then x and z differ by two internal edges and they can be
removed in any order giving again two elements in (z, z). For the case when both are cap
collapses, then the caps can be collapsed in any order unless the final edge of one of them
is an initial edge of the other. In that case we get an x < 1y’ < z by letting z < v’ be
the edge removal where the edge removed is the common final edge of one cap and initial
edge of the other and 3’ < z is the cap collapse collapsing the union of the two caps (see
Fig. 3).

The remaining case is that both covers are small cap additions. Again if the two small
cap residuals do not have an edge in common they can be added in any order. If they do
have a common edge their union is a quadrangle with the common edge as a diagonal.
One may then make two small cap additions by using the other diagonal (see Fig. 3). O

We have an immediate corollary.

Corollary 4.3 CC,, is the face poset of a reqular PL-cell decomposition of a ball.
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Figure 3: Interfering cap collapses and small cap additions.

Proor: This follows from [Bj84]. O
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