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tWe introdu
e a sequen
e of posets 
losely related to the asso
iahedra. In this weare motivated by reasons similar to those of Stashe� in the 
ase of the asso
iahedra.We make a study of this poset showing that it has an indu
tive stru
ture withproper downwards intervals being produ
ts of smaller posets in the same series andasso
iahedra. Using this we also show that they are thin dual CL-shellable and inparti
ular that they are the fa
e poset of a regular 
ell de
omposition of the ball.1 Introdu
tionThe purpose of this arti
le is to introdu
e a sequen
e of posets 
losely related to the fa
elatti
es of the asso
iahedra and study their 
ombinatorial properties, in parti
ular it willbe shown that they are shellable. The origin of these posets are in prin
iple not relevantfor su
h a study, nevertheless I shall start by brie�y dis
ussing it. The asso
iahedraare relevant to the des
ription of produ
ts whi
h are asso
iative only up to homotopy(�A∞�-spa
es). The prototypi
al su
h example is the path spa
e of a topologi
al spa
ewhere the 
omposition of paths is not asso
iative but is asso
iative up to homotopy andtwo maps from one spa
e to another 
onstru
ted out of su
h homotopies are homotopi
and so on. Suppose now that the spa
e is a manifold M and that we are really onlyinterested in smooth paths. The problem is that the 
omposition of smooth paths isusually not smooth. The solution would seem to be to smooth the 
omposition but theproblem then is that su
h a smoothing is not unique. Thus one is for
ed to speak abouta 
omposition and will have to 
ontend with the ambiguities inherent in that. A dire
tway of expressing a 
omposition is as a smooth map from the standard 2-simplex ∆2 to
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M , where the original two paths are the restri
tion of that map to the �rst two edges andthe parti
ular 
omposite is the restri
tion to the third edge. The map itself is then theparti
ular smoothing of the 
omposition of the �rst two edges to the third edge. We writethis as a · b → ab, where a and b are the original paths, a · b represents the 
omposition,
ab the smoothing and the arrow represents a parti
ular smoothing with ab as end result.Following the pattern of higher 
oheren
e 
onditions that made the asso
iahedra ap-pear in the �rst pla
e, we assume that we have di�erent 
hoi
es of 
ompositions a ·b → ab,
b·c → bc, a·bc → abc and ab·c → abc and we are looking for some supplementary 
oheren
e
ondition that would express that these 
hoi
es of 
omposites are 
oherently asso
iative.In this parti
ular 
ase the 
omposites �t together to give a smooth map from the boundaryof ∆3 to M and we 
ould demand that this map extend smoothly to ∆3 itself. However,we would rather have 
onditions that 
an be formulated in terms of 
omposition of pathsand the A∞-stru
ture. Hen
e using the homotopies given by the smoothings together withthe asso
iativity homotopy a · (b · c)

a·b·c
−→ (a · b) · c gives us a mapping from the boundaryof the pentagon into the path spa
e of M :

a · (b · c) a·b·c
(a · b) · c

a · bc ab · c

abcThe 
oheren
e 
ondition should then be that this map extend to the full pentagon. Thepentagon of 
ourse is the se
ond asso
iahedron indi
ating that there is indeed a relationbetween this 
ondition and the asso
iahedron. If one analyses the next 
oheren
e 
ondi-tion, one arrives at something that is not an asso
iahedron (see Fig. 2) but is visibly apolyhedron. In this note we shall give a general de�nition of these 
oheren
e 
onditionsleading to posets that share the simplest 
ombinatorial properties with the fa
e posets ofpolyhedra su
h as being a latti
e and being shellable. From the point of view of the origi-nal motivation shellability has the important 
onsequen
e that the posets are fa
e posetsof a regular 
ell de
omposition of a ball. However, its 
lose relation with the asso
iahedraseems to me an indi
ation that they should be interesting from a purely 
ombinatorialperspe
tive.Just as for the asso
iahedra themselves everything is best phrased in terms of trian-gulations of n-gons. A new notion appears however. We shall need to 
onsider not justtriangulations of a �xed polygon but also triangulations of a subpolygon all of whoseverti
es are verti
es of the larger polygon as well as a simple way of passing from a partialtriangulation to a partial triangulation of a smaller polygon.Con
erning spe
i�
 results our prin
ipal poset is CCn, the poset of 
ompound 
ollapses;by adding a smallest element we get CC+

n whi
h is proved to be a graded poset (Corollary3.5) and a latti
e (Proposition 3.7). Finally it is shown in Theorem 4.2 that CC+

n is dualCL-shellable and thin. Analogously to the 
ase of the asso
iahedron we also have a lo
al
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stru
ture theorem in that every interval ]0̂, x] is a produ
t of smaller posets of 
ompound
ollapses and fa
e posets of asso
iahedra (Proposition 3.3). As CCn will be seen to bevery analogous to the fa
e poset of the asso
iahedron the following problem 
omes verynaturally.Problem: Is CCn the fa
e poset of a 
onvex polytope?My own experien
e with polytopes is too meager to allow me to venture an opinion.2 A low dimensional exampleTo motivate our subsequent deliberations we start by des
ribing CC5, the �rst non-trivialexample. (Note that in order to simplify we shall disregard some terminologi
al distin
-tions that will be made later.)We 
an as usual des
ribe 
ell de
ompositions of the n-gon as partial parenthesisationsof a produ
t of n−1 symbols. As we shall deal also with k-gons for k 6 n we shall do thefollowing: We atta
h symbols, letters starting with a in our example, to the initial edgesof the n-gon and then to an arbitrary edge we atta
h the 
on
atenation of the symbolsin order of the initial edges 
onne
ting the initial vertex of the edge to the �nal. (Aninitial vertex has been 
hosen and the polygon is then oriented 
ounter
lo
kwise.) Hen
e,if we atta
h a, b, and c to the initial edges of the 4-gon, the edge from the �rst to thethird vertex will get label ab. The �nal edge will in general get the label obtained by
on
atenating all the labels of the initial edges. For instan
e if we start with a 6-gonwith initial edge labels a, b, c, d, and e, then the 6-gon itself will 
orrespond to theunparenthesised expression a · b · c · d · e whereas the 4-gon 
onsisting of the edge fromthe �rst to the third vertex, from the third to the fourth, from the fourth to the sixth,and the �nal edge will 
orrespond to the unparenthesised expression ab · c · de (
f., Fig.1). The full 
on
atenation abcde will then 
orrespond to the 1-gon 
onsisting just of the

a

b

c

e
d

abcde

de

ab

c
a·b·c·d·e ab·c·de

Figure 1: A 6-gon and a 4-gon and 1-gon 
ontained in it.�nal edge (idem).Furthermore a 
ell de
omposition of a k-gon, whi
h is the 
onvex hull of a set ofverti
es of the n-gon 
ontaining the initial and �nal vertex, will 
orrespond to a partially
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parenthesised expression of 
on
atenations of the labels of the initial edges su
h that thelabels appear in in
reasing order. Thus ab · cd 
orresponds to the 
ell de
omposition,using edges of the 5-gon, 
onsisting of the edge 
onne
ting the �rst vertex to the third,the edge 
onne
ting the third to the fourth and (as always) the �nal edge. A 
ompound
ollapse then 
orresponds to repla
ing possibly several but disjoint unparenthesised sub-expressions with the 
orresponding 
on
atenation. Continuing the last example (a·b)·(c·d)
ollapses to any of ab · (c · d), (a · b) · cd, and ab · cd.Note further that a

ording to our de�nitions any 
ell de
omposition 
ollapses to itselfand we shall denote C → C ∈ CCn also by just C.In Figure 2 we have assembled all the 
ollapses (or as they shall be 
alled later
ompound 
ollapses) inside of a 5-gon ex
ept the ones 
orresponding to a · b · c · d and
a · b · c · d → abcd. Edges represent in
ompletely parenthesised expressions with their (twoas it were) 
omplete parenthesisations at their ends. The arrows represent 
ompound 
ol-lapses, where the dotted arrows give those that 
orrespond to 2-
ells in what is obviouslya regular 
ell de
omposition of a 2-
ell. Together with a · b · c · d and a · b · c · d → abcd weget a regular 
ell de
omposition of the 3-
ell.

(a·(b·c))·d a·((b·c)·d)

(a·bc)·d

(a·b)·(c·d)

ab·(c·d) (a·b)·cd

ab·cd

abcdabc·d

a·b·cdab·c·d
((a·b)·c)·d a·(b·(c·d))

(a·b·c)·d a·(b·c·d)

a·(b·c)·d

a·bc·d a·(bc·d)

(a·b)·c·d a·b·(c·d)

(ab·c)·d a·(b·cd)

a·bcd

Figure 2: Convex 
ell de
ompositions of a 5-gon.
3 Combinatori
sWe start with a 
onvex planar n-gon, Pn. In indu
tive arguments we shall deal with manypolygons and use Pn for the polygon 
urrently 
onsidered, we shall also not parti
ularlydistinguish between a polygon as a 
onvex set and as the set of its boundary edges oreven verti
es. We also pi
k one of its edges whi
h we 
all the �nal edge and 
all the otheredges its initial edges. We further orient the �nal edge so that it gets an initial vertex
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and a �nal vertex. The other edges are then oriented so that they point away from theinitial vertex and towards the �nal one. (If Pn is expli
itly embedded in the plane it seemsreasonable to orient the edges so that one moves 
ounter
lo
kwise when moving along theinitial edges from the initial to the �nal vertex.) In this way we also get a total order onthe set of verti
es of Pn; we go from a lower vertex to a higher one by moving along initialedges. A 
onvex polygon whose verti
es are a subset of the verti
es of Pn will then havea unique edge 
onne
ting the �rst of its verti
es to its last, 
alled its �nal edge, the restare its initial edges and 
ome with natural orientations just as for Pn itself. We shall 
allsu
h a polygon a 
ap or 
ell. For 
aps, but not for 
ells, we also allow the degenerate 
ase
onsisting of just one edge.We let CDn be the set of 
ell de
ompositions of Pn, where a 
ell de
omposition is asubset C of the set of edges 
onne
ting the verti
es of Pn su
h that
• the �nal edge is a member of C,
• edges of C meet only at verti
es of Pn and
• any edge whi
h is a part of the boundary of the 
onvex hull C of C is a member of

C.We shall also 
all the 
onvex hull, C, of C the support of C. If C is a 
onvex 
ellde
omposition, the 
losure of a 
omponent of C \ C (i.e., C minus the edges of C) is a
ell and will be 
alled a 
ell of the 
ell de
omposition. It is 
lear that the boundary of Cis a polygon, the boundary polygon of C.When speaking of the interior, Zo, of a subset of R2 we shall mean the relative interior,i.e., the interior of Z as a subset of the smallest a�ne subspa
e 
ontaining Z. If C ∈ CDn,then we put C · Z := {ℓ ∈ C | ℓo ⊆ Z }.If C, D ∈ CDn, then we say that D is a 
ompound 
ollapse of C, denoted C → D, if
D ⊆ C and C \D is 
ontained in the boundary polygon of C. We say then that C is the
ollapser, denoted (C → D)r, and D the 
ollapsee, denoted (C → D)e, of the 
ompound
ollapse. As C is the union of D and the boundary polygon of C when spe
ifying a
ompound 
ollapse it is enough to spe
ify D and the boundary polygon something weshall do without further 
omment. If C, D ∈ CDn, then D is said to be a re�nement of
C, denoted C > D, if C and D have the same support and C ⊆ D. If C, D ∈ CDn, thenwe say that D is a 
ollapse of C, denoted C ։ D, if there is a re�nement C ′ of C anda 
ompound 
ollapse C ′ → D, i.e., C > C ′ → D. If C, D ∈ CDn, then we say that D isa lapse, denoted C ֌ D, of C if D is a re�nement of some D′ and there is a 
ompound
ollapse D′ → C, i.e., D 6 D′ → C. We now let CCn be the set of pairs C, D ∈ CDn su
hthat C → D. We de�ne a relation on CCn by (C, D) > (E, F ) if C ։ E and D ֌ F . If
P is a parti
ular 
onvex n-gon we shall also use CC(P ) for the 
ompound 
ollapses of P .Remark: These de�nitions 
ould probably do with some further elaboration. Anexample of a 
ompound 
ollapse 
onsists of the 
ollapsing of a 
ap formed by some bound-ary edges of C and one interior edge of D onto the interior edge or more dire
tly one justremoves its boundary edges. A general 
ompound 
ollapse 
onsists of several su
h 
ol-lapses done simultaneously whi
h means in parti
ular that the 
aps involved meet at most
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in verti
es. For a 
ollapse one wants to 
ollapse 
ertain 
onvex regions onto one of theirsides but is stopped from doing it be
ause some of the sides do not belong to C thoughthe regions are 
ontained in C and all but one of their fa
es lie in the boundary of C.One thus starts by adding those sides to C and has the liberty of adding other edges tooas long as they don't lie in one of the regions. A lapse is formulated in a way so as tomake it dual to a 
ollapse but as we shall see in the next lemma one gets from C to Dby adding any number of edges (in su
h a way so that we still get a 
ell de
omposition).We shall later give a very pre
ise des
ription of the 
over relation asso
iated to >. It willindeed be seen to be a partial order.If C, D ∈ CDn and C ⊆ D, then a residual boundary edge of the pair (D, C) is an edgewhi
h lies in the boundary of D but is not 
ontained in C. The set of residual boundaryedges will be denoted R(D, C).Lemma 3.1 Let A, B ∈ CDn.i) We have that A → B pre
isely when B ⊆ A, A ·(A\B)o = ∅, and A = B∪R(A, B).ii) We have that A ։ B pre
isely when B ⊆ A, A·(A\B)o = ∅, and A ⊆ B∪R(A, B).iii) We have that A ֌ B pre
isely when A ⊆ B.Proof: Assume that A → B as B ⊆ A we have B ⊆ A and as all ℓ ∈ C \ D lie inthe boundary of C we have A · (A \ B)o = ∅ but also that ℓ ∈ R(A, B) whi
h gives
A = B ∪ R(A, B). Conversely, assume B ⊆ A, A · (A \ B)o = ∅, and A = B ∪ R(A, B)the last 
learly giving B ⊆ A. An ℓ ∈ A \ B lies in R(A, B) and thus in the boundary of
A. This proves i).Assume now A ։ B and assume that A > C → B. By i) we have B ⊆ C and byde�nition A = C so that B ⊆ A. As A ⊆ C and C ·(C \B) = ∅ by i) we get A ·(A\B) = ∅and also A ⊆ C = B∪R(C, B) again by i) and R(C, B) = R(A, B) as A = C. Conversely,assume B ⊆ A, A · (A \ B)o = ∅, and A ⊆ B ∪ R(A, B). Putting C := B ∪ R(A, B), Cand A have the same support so that C = B ∪R(C, B) and we have C → B by i) and as
A ⊆ Cwe also have A > C whi
h �nishes the proof of ii).Finally, if A ֌ B there is a C with B 6 C → A we have B ⊇ C and C ⊇ A by i).Conversely, if B ⊇ A we let C 
onsist of the union of A and the elements of B that arenot part of the boundary of B. Then we have B 6 C → A, whi
h gives A ֌ B. �Proposition 3.2 The relation 6 on CCn is a partial order.Proof: The only property whi
h is not 
lear is transitivity. Hen
e assume that we have
A → B, C → D, and E → F as well as A ։ C, C ։ E, B ֌ D, and D ֌ F . Itis obvious from Lemma 3.1 that B ֌ F . Now, again from Lemma 3.1, we have that
B ⊆ D ⊆ F ⊆ E ⊆ C ⊆ A and A · (A \ B)o = ∅ and thus A · (A \ E)o = ∅. What is leftto show is then that A ⊆ E ∪ R(A, E). Let ℓ ∈ A and assume �rst that ℓ ∈ A · E. Aswe have that A ⊆ C ∪ R(A, C) and E ⊆ C we get that ℓ ∈ C and thus that ℓ ∈ C · E.The fa
t that C ⊆ E ∪ R(C, E) then implies that ℓ ∈ E. Hen
e we may assume that
ℓ ∈ A · (A\E) but as we already know that A · (A \E)o = ∅ this implies that ℓ ∈ R(A, E)whi
h �nishes the proof. �If C → D is a 
ompound 
ollapse, a 
ap of it is the 
losure of a 
omponent of C \ D. Itis 
lear that it is a 
ap in the sense introdu
ed above.
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We let Kn be the poset of partial triangulations of an n + 1-gon.1 With this indexingone of the 
onsequen
es of the next proposition is that Kn−1 is a 
oatom of CCn. In orderto be able to deal with several 
opies of this poset at the same time, if P is a polygonthen we shall also use K(P ) for the partial triangulations of P .Proposition 3.3 Suppose (C → D) > (E → F ) in CCn. Let E ′ := E · D and for ea
h
ap γ of C → D let Eγ := E ·γ resp. Fγ := F ·γ. Then E ′ is a re�nement of D, Eγ → Fγ,
E = E ′∪∪γEγ and F = E ′∪∪γFγ. Conversely, given C → D, a re�nement E ′ of D and
ompound 
ollapses Eγ → Fγ for ea
h 
ap γ of C → D then we have a 
ompound 
ollapse
E → F where E = E ′ ∪ ∪γEγ and F = E ′ ∪ ∪γFγ and (C → D) > (E → F ).In parti
ular, the interval of elements below C → D is isomorphi
 to Km ×

∏

γ CCmγ
,where D is an m + 1-gon and the 
ap γ is an mγ-gon.Proof: By the de�nition of 
ompound 
ollapse we have that D ⊆ C and F ⊆ E and byLemma 3.1 D ⊆ F so that D is 
ontained in C, E and F . In parti
ular, E ′ is a re�nementof D. Now, γ lies in the 
losure of C \D whi
h implies that all boundary edges of Eγ liesin Eγ. As E → F , F · (Eγ \ Fγ) = ∅ whi
h gives Eγ → Fγ . As C is the union of D andthe (support of) the 
aps γ we get E = E ′ ∪ ∪γEγ and F = E ′ ∪ ∪γFγ . The 
onverse issimilar.This result then shows that an element below C → D is spe
i�ed by a re�nement of

D and a 
ompound 
ollapse of ea
h 
ap whi
h gives the bije
tion of the �nal result andit is 
lear that partial order on su
h elements is the produ
t order. �Note that CCn has a maximal element C → D where D is the �nal edge and C is the
n-polygon itself. As is standard we shall denote it 1̂.Proposition 3.4 i) For 1 < i < n we let Fi be the 
ompound 
ollapse Ci → Di where
Di 
onsists of just the �nal edge and Ci 
onsists of boundary edges of the 
onvex hull ofall the verti
es but the i'th. For S a subset of {1, n} ⊂ S ⊆ {1, . . . , n} we let F ′

S be the
ompound 
ollapse C ′

S → D′

S where C ′

S is the polygon Pn and D′

S is the 
onvex hull of theverti
es whose positions appear in S. Then the Fi and the F ′

S are exa
tly the 
o
overs ofthe maximal element of CCn.ii) The 
overs of a 
ompound 
ollapse A → B are of one of the following forms andall su
h forms are 
overs:
• An internal edge is removed from B ( �edge removal�).
• A 
ap of B is 
ollapsed ( �
ap 
ollapse�).
• A small 
ap of A is added ( �small 
ap addition�).Proof: If (C ′ → D′) > (C → D), then D′ ⊆ D and C ′ is a 
oarsening of a 
ellde
omposition that has a 
ompound 
ollapse to C. In parti
ular if D is a polygon theneither D′ = D or D′ 
onsists only of the �nal edge. On the other hand if C 
ontains the1There are di�erent 
hoi
es of the indexing for the asso
iahedra in the literature. We adopt hereStashe�'s original, [St63a℄, indexing.
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boundary of Pn then there is no non-trivial 
ompound 
ollapse to C and hen
e C wouldbe a re�nement of C ′. Together this shows that if C → D = F ′

S then C ′ → D′ = 1̂ sothat F ′

S is a 
o
over of 1̂. The argument for Fi is similar.Conversely assume C → D is a 
o
over of 1̂. By our previous 
onsiderations we
on
lude that D is a polygon. Assume �rst that it is not equal to the �nal edge. Then if
D is not equal to Pn, then there is a boundary edge ℓ of D that is not in the boundary of
Pn. It is the �nal edge of a polygon γ whose edges other than ℓ lie in the boundary of Pn.Putting C ′ := C ∪ γ \ ℓ we have that C ′ → D and (C ′ → D) > (C → D) and C ′ → D isnot equal to 1̂ whi
h is a 
ontradi
tion and the 
on
lusion is that C → D = F ′

S for some
S. The 
ase when D is the �nal edge leads in a similar fashion to Fi. This proves i).As for ii) it follows immediately from Proposition 3.3 and i). �We now let K+

n be the poset obtained by adding an arti�
ial minimal element 0̂ to Knand similarly CC+

n is obtained from CCn by adding 0̂.Corollary 3.5 CC+

n is graded of length n − 2.Proof: We argue by indu
tion on n. It is enough, by Proposition 3.4, to show that theintervals [0̂, Fi] and [0̂, F ′

S] are graded of length n−3. In the 
ase of the Fi it follows fromProposition 3.3 that [0̂, Fi] is isomorphi
 to CC+

n−1 whi
h by indu
tion is indeed graded oflength n − 3. In the 
ase of FS, let γ1, . . . , γk be the 
aps of F ′

S. We assume that D is an
m-gon and γj an mj-gon. Then we have that ∑

j mj − 2 +m = n. On the other hand, byProposition 3.3 we have that [0̂, F ′

S] is isomorphi
 to (

Km−1 ×
∏

j CCmj

)+. Now, K+

m−1is graded of length m − 2 and by indu
tion CC+

mj
is graded of length mj − 2 and hen
e

[0̂, F ′

S] is graded of length ∑

j mj − 2 + m − 2 = n − 2. �We say that two 
ell de
ompositions C and D are 
ompatible if for any edge ℓ of Cand any edge ℓ′ of D distin
t from ℓ, ℓ and ℓ′ interse
t at most in verti
es of Pn.Lemma 3.6 If C and D are 
ompatible then C ∪ D is a 
ell de
omposition.Proof: The only 
ondition that is not trivially ful�lled is that C∪D 
ontains any edge ofthe boundary polygon of its 
onvex hull. Assume therefore that E is su
h an edge whi
his not 
ontained in C ∪ D. Its two endpoints p and q must be endpoints of elements of
C ∪D but E 
annot be an edge of C or D. Hen
e we may assume that p is larger than q(in the total order of the verti
es of Pn) and is the �nal endpoint of E ′ ∈ C and q is theinitial endpoint of E ′′ ∈ D. Now, as E ′′ lies in the 
onvex hull of C ∪D its �nal endpointmust 
ome after the �nal endpoint of E, i.e., p and similarly the initial endpoint of E ′must 
ome before q. That however implies that E ′ and E ′′ must meet in the interior ofthe 
onvex hull C ∪ D whi
h is a 
ontradi
tion. �Proposition 3.7 CC+

n is a latti
e. More pre
isely, the in�mum of A → B and A′ → B′is 0̂ unless B and B′ are 
ompatible and B ∪B′ ⊆ A∩A′. If these 
onditions are ful�lledthe in�mum A′′ → B′′ is given as follows: B′′ = B ∪ B′ and the boundary of A′′ is thelargest polygon 
ontained in A ∩ A′.
the electronic journal of combinatorics 16(2) (2009), #R23 8



Proof: If we have (A → B), (A′ → B′) > (C → D), then D ⊇ B, B′ so that B and B′are 
ompatible. Furthermore we have B ⊆ D ⊆ CA′ and by symmetry B ∪ B′ ⊆ A ∩ A′.Hen
e, if either B and B′ are not 
ompatible or B ∪ B′ ( A ∩ A′, then the in�mum is
0̂. Assume now that the 
onditions are ful�lled. For any C → D dominated as above by
A → B and A′ → B′ we have B′′ ⊆ D. By Proposition 3.6 B′′ is a 
ell de
omposition.It is also 
lear that A → B′′ and A′ → B′′ and as we have (A → B) > (A → B′′),
(A′ → B′) > (A′ → B′′) as well as C → D being dominated by A → B′′ and A′ → B′′we may assume that B = B′. This means that the di�eren
e between B and A resp. A′are just edges that lie in the respe
tive boundaries. Also, C ⊆ A∩ A′ and it is 
lear thatthere is a largest polygon 
ontained in A ∩ A′ and adding its boundary edges to B thusgives an in�mum. �4 ShellabilityOur aim is now to show that CC+

n is a thin shellable poset. More pre
isely we shall showthat it is dual CL-shellable, 
f., [BW83℄. In our proof of the dual CL-shellability of CCnwe are going to use the equivalent 
ondition of having a re
ursive 
oatom ordering. In there
ursion ne
essary to verify that a parti
ular 
oatom ordering is indeed a re
ursive one weare going to use the produ
t stru
ture of Proposition 3.3. It is however formulated in termsof CCn's rather than CC+

n so we start by formulating the 
ondition of having a re
ursive
oatom orderability in a way that uses a poset P (possibly) without a least element (andwhi
h is of 
ourse should be equivalent to the usual 
ondition for P+, the poset with aleast element added). (We are otherwise using the notation and formulation of [BVSWZ,Def. 4.7.17℄ whi
h appeared somewhat more 
onvenient than the original one of [BW83,Def. 3.1℄.) Thus we assume that P+ is graded and put, for x ∈ P , [x] := {y ∈ P | y 6 x }.A re
ursive 
oatom ordering of P 
onsists of a total ordering <c of its 
oatoms and either
length(P+) 6 2 or length(P+) > 2 and for any 
oatom x there is a distinguished subset
Qx with Qx 6= ∅ when x is not <c-�rst su
h that1. [x] ∩ (∪x′<x[x

′]) = ∪y∈Qx
[y] and2. [x] has a re
ursive 
oatom ordering in whi
h the elements of Qx 
ome �rst.(The 
ondition of non-emptiness of Qj takes 
are of 
overing 0̂ of P+.)The fa
t we re
ursively are dealing with produ
ts of smaller posets will be used togetherwith the fa
t that the 
ondition of CL-shellability is inherited by produ
ts (noted in[BW83℄ with referen
e to [Bj08, Thm. 4.3℄) with two modi�
ations. First, as (P ×Q)+ 6=

P+ × Q+ we are not talking about exa
tly the same produ
t. Se
ond, we are goingto use this result re
ursively, i.e., apply it to the [xj ], with the above notation, whi
hfor
es us to verify an external 
ondition on the re
ursive 
oatom ordering. Hen
e weneed to be expli
it on how the re
ursive 
oatom ordering on a produ
t is obtained fromorderings on the fa
tors and during our arguments we shall in fa
t need to deal with severalways of obtaining su
h an ordering. (The fa
t that produ
ts of posets with re
ursive
oatom orderings have some re
ursive 
oatom ordering is of 
ourse well-known, 
f., [BW83,
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Comment before Thm. 8.3℄.) The following lemma takes 
are of the di�erent versions thatwe shall need.Lemma 4.1 Let P and P ′ be posets with P+ and P ′+ graded. Assume given re
ursive
oatom orderings of P and P ′ together with initial sequen
es of them. Order the 
oatomsof P × P ′ as follows: Start with (x, 1̂) where x runs over the initial segment for P ,inthe order given, then take (1̂, x′), where x′ runs over the initial segment for P ′, then take
(x, 1̂) with x running over the rest of the 
oatoms for P and �nally end with (1̂, x′) where
x′ runs over the rest of the 
oatoms of P ′. This 
oatom ordering is a re
ursive 
oatomordering.Proof: We have to verify the re
ursive 
onditions and let us start with the 
ase of the
oatom being of the form (x, 1̂) with x in the initial segment of the 
oatom ordering of P .We then 
hoose a re
ursive 
oatom ordering of [x] and an initial segment Qx for whi
h
[x] ∩ ∪z<x[z] = ∪y∈Qx

[y]. We then order the 
oatoms of [(x, 1̂)] = [x] × P ′ by putting the
oatoms (y, 1̂) �rst and in the order given and the 
oatoms (x, y) last in the given re
ursive
oatom ordering of P ′. If we let the Q for (x, 1̂) be {(y, 1̂) | y ∈ Qx } we easily see thatthe 
onditions needed are ful�lled. The 
ase of a 
oatom of the form (1̂, x′) with x′ in theinitial segment of P ′ is 
ompletely analogous. Consider next the 
ase when the 
oatom isof the form (x, 1̂) with x not in the initial segment. Choose as before a re
ursive 
oatomordering of [x] with a Qx as above. We de�ne a 
oatom ordering on [(x, 1̂)] = [x] × P ′ bytaking the (Qx, 1̂) �rst, then the given initial segment of P ′ times x, then the rest of the
oatoms of P (times 1̂ ∈ P ′) and last the rest of the 
oatoms of P ′ (times x). By indu
tionthis gives a re
ursive 
oatom ordering of [(x, 1̂)] and letting the Q for this element be theunion of (Qx, 1̂) and the initial segment of P ′ the ne
essary 
onditions are ful�lled. The
ase of 
oatoms of the form (1̂, x′) with x′ not in the initial segment of P ′ is analogous. �With this lemma we are now ready to prove dual CL-shellability after having introdu
edone more notion. For a 
over (A → B) ≺ (C → D) we de�ne its residual as follows. Ifthe 
over is a small 
ap addition the residual is the small 
ap added, if it is a 
ap 
ollapseit is the 
ap that is 
ollapsed and if it is an edge removal the residual is the removed edge.Theorem 4.2 CC+

n is a thin dual CL-shellable latti
e.Proof: To begin let us re
ord that we shall use without further mention that as CC+

nand K+
n are latti
es, the interse
tion [x] ∩ [y] in CCn resp. Kn is, when non-empty, equalto [x ∧ y].In order to verify the re
ursive 
onditions of a (proposed) re
ursive 
oatom ordering weshall use Proposition 3.3. This for
es us to �rst dis
uss re
ursive 
oatom orderings on Kn.We 
an de�ne a partial pseudo-order, the 
hord order, on the 
hords (i.e., non-boundaryline segments 
onne
ting two verti
es) of Pn+1 by saying that ℓ1 6c ℓ2 if they interse
t inat most verti
es of Pn+1 and if the interior of ℓ1 lies in the 
omponent of Pn+1 \ ℓ2 that
ontains the �nal edge. An extension of the 
hord order to a total order on the 
hordswill be a 
alled an admissible order. Ea
h 
hord ℓ de�nes a 
oatom, xℓ, of Kn given by theunion of ℓ and Pn+1 and all 
oatoms are obtained in that way. Hen
e an admissible ordergives a total order on the 
oatoms of Pn+1 and the 
ontention is that any admissible order
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gives a re
ursive 
oatom order. A 
hord ℓ of Pn+1 de
omposes Pn+1 into two polygons,one, P ′, whi
h has the �nal edge of Pn+1 as its �nal edge and one, P ′′, whi
h has ℓ as its�nal edge. It is 
lear that the 
hord orders on P ′ and P ′′ are the orders indu
ed from the
hord order on Pn+1 and in parti
ular an admissible order on the 
hords of Pn+1 indu
esan admissible order on the 
hords of P ′ and P ′′. Hen
e by indu
tion we may assumethat these latter orders give re
ursive 
oatom orderings. Furthermore, the interval [xℓ] isisomorphi
 to the produ
t K(P ′) × K(P ′′) and thus has a re
ursive 
oatom ordering byLemma 4.1 and indu
tion. Now, every 
oatom of [xℓ] whose se
ond 
omponent in theprodu
t de
omposition is 1̂ is of the form xℓ′ ∧ xℓ, in the latti
e stru
ture of Kn, for some
ℓ′ 6c ℓ. This means that we may 
hoose the Q for xℓ to be equal to the 
oatoms of theform xℓ′ ∧ xℓ for ℓ′ smaller than ℓ in the admissible order.Turning to CCn we shall use the same te
hnique as for Kn using Proposition 3.3. Thismeans that to begin with we 
hoose on
e and for all an admissible order on the 
hords of Pnwhi
h indu
es a re
ursive 
oatom ordering on ea
h K-subposet arising from a subpolygonof Pn. We are going to use the following 
onvention to des
ribe the 
oatoms and moregenerally elements of an interval [x]. By Proposition 3.3 this interval is the produ
t ofthe CC's of the 
aps of x and the K of its 
ollapsee. Hen
e, ea
h 
oatom 
orresponds to a
oatom of either the CC of a 
ap or the K of the 
ollapsee and we shall say that the 
oatombelongs to that 
ap or 
ollapsee. General elements 
orrespond to sequen
es of elementsin the CC's of the 
aps and one element of the K of the 
ollapsee and the 
omponentsof that sequen
e will be 
alled the 
omponents of the elements in the respe
tive 
aps or
ollapsee. We now have to 
hoose an ordering of the 
oatoms of CCn in a uniform enoughway so that it applies also to all subpolygons but we also have to tell in whi
h order weare going to write the fa
tors of an interval as it is needed to get a 
oatom ordering onthe produ
t. Starting with the 
oatom ordering we have by Proposition 3.4 two typesof 
oatoms, the Fi, whi
h we shall say are of small 
ap type, for 1 < i < n and F ′

S, of
ap type, for {1, n} ⊂ S ⊆ {1, . . . , n}. We now put the Fi �rst, ordered by the reverse ofthe natural order of the i (even though as we shall see the order among the Fi doesn'tmatter). After that we take the F ′

S ordered as follows: We put S before T if there is an isu
h that j > i ⇒ (j ∈ S ⇐⇒ j ∈ T ) and i ∈ T but i /∈ S. We shall 
all this order thelex-order.Next we need to de
ide in whi
h order to put the fa
tors when representing an interval
[x]. We do this by going through the 
aps of x starting with the one 
ontaining the largestverti
es, in their polygon order, and 
ontinuing with the next largest and so on. Finally,for an arbitrary x ∈ CCn we order its 
oatoms as follows: We �rst take all the 
oatoms ofsmall 
ap type of the 
aps of x ordered within ea
h 
ap as above and between 
aps by theorder of the 
aps that has just been given. We then take all 
oatoms of 
ap type of the
aps ordered within 
aps as per above and between 
aps by the 
ap order. Last, we take allthe 
oatoms 
orresponding to the K of the 
ollapsee of x ordered by the given admissibletotal order of 
hords of Pn. Combining Lemma 4.1 and Proposition 3.3, the result wehave already obtained about re
ursive 
oatom orderings of K's and using indu
tion wemay assume that these 
oatom orderings give re
ursive 
oatom orderings on all [x] but
x = 1̂.
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It thus remains to prove that this ordering is a re
ursive 
oatom ordering of CCn and forthat we need to identify the Qx and show that they ful�l the required 
onditions. We startwith the 
ase when the 
oatom x is equal to Fi. The interval [Fi] is just CCn−1 = CC((Fi)r).Furthermore, the 
oatoms of [Fi] of small 
ap type are exa
tly the 
ompound 
ollapses ofthe form Fi ∧ Fj for i 6= j and the order on the Fj indu
es the 
oatom ordering we havere
ursively de�ned on [Fi]. Hen
e we 
an let the Q for Fi 
onsist of its 
oatoms of small
ap type. This veri�es the re
ursive 
ondition for the 
ase when x is of small 
ap type.Assume now instead that we are dealing with a 
oatom F ′

S of 
ap type. We let its
Q 
onsist of all the 
oatoms of its 
aps. This is an initial segment of its 
oatoms and itremains to verify the �rst part of the re
ursive 
oatom ordering 
onditions.It is 
lear that [Fi] ∩ [F ′

S ] is empty unless i /∈ S and is otherwise the 
oatom of [F ′

S]belonging to the 
ap of F ′

S whi
h 
ontains i and there it is the small 
ap type 
oatomwhose 
ollapser does not 
ontain i. This means that the interval of any small 
ap type
oatom belonging to the 
aps of F ′

S are of the form [Fi] ∩ [F ′

S] and thus all interse
tions
[Fi] ∩ [F ′

S] are 
ontained in interse
tions whi
h are 
oatoms in [Fi] ∩ [F ′

S].Assume now that T 
omes before S in the lex-order. Hen
e there is an i su
h that
j > i ⇒ (j ∈ S ⇐⇒ j ∈ T ) and i ∈ T but i /∈ S. Let γ be the 
ap of F ′

S 
ontaining
i. In the produ
t de
omposition of [F ′

S] we have that the 
omponent of F ′

T ∧ F ′

S in a 
apthat 
omes before γ is 1̂ while the 
omponent in γ is not 1̂ but rather a 
oatom c of 
aptype. There then is a T ′ su
h that F ′

T ′ ∧F ′

S is a 
oatom belonging to γ and its 
omponentin γ is c. (In fa
t T ′ is given by the 
onditions that S ⊂ T ′ and T ′ \ S are the verti
esof c not in S.) In parti
ular we have that F ′

T ∧ F ′

S is below F ′

T ′ ∧ F ′

S in the partial orderof CCn. As also every 
oatom of F ′

S belonging to a 
ap where it is of 
ap type is of theform F ′

T ′ ∧F ′

S (with T ′ 
onstru
ted as above) we have veri�ed the required 
onditions fora re
ursive 
oatom ordering.For thinness let us assume that x ≺ y ≺ z.If x ≺ y and y ≺ z have di�erent forms then it is 
lear that there is a x ≺ y′ ≺ zsu
h that the residual of x ≺ y′ is equal to that of y ≺ z and the residual for y′ ≺ z tothat of x ≺ y and that y and y′ are the only elements in the interval (x, z). If x ≺ y and
y ≺ z both are edge removals, then x and z di�er by two internal edges and they 
an beremoved in any order giving again two elements in (x, z). For the 
ase when both are 
ap
ollapses, then the 
aps 
an be 
ollapsed in any order unless the �nal edge of one of themis an initial edge of the other. In that 
ase we get an x ≺ y′ ≺ z by letting x ≺ y′ bethe edge removal where the edge removed is the 
ommon �nal edge of one 
ap and initialedge of the other and y′ ≺ z is the 
ap 
ollapse 
ollapsing the union of the two 
aps (seeFig. 3).The remaining 
ase is that both 
overs are small 
ap additions. Again if the two small
ap residuals do not have an edge in 
ommon they 
an be added in any order. If they dohave a 
ommon edge their union is a quadrangle with the 
ommon edge as a diagonal.One may then make two small 
ap additions by using the other diagonal (see Fig. 3). �We have an immediate 
orollary.Corollary 4.3 CCn is the fa
e poset of a regular PL-
ell de
omposition of a ball.
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Figure 3: Interfering 
ap 
ollapses and small 
ap additions.Proof: This follows from [Bj84℄. �Referen
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