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Abstract

For a Coxeter group (W,S), a permutation of the set S is called a Coxeter
word and the group element represented by the product is called a Coxeter element.
Moving the first letter to the end of the word is called a rotation and two Coxeter
elements are rotation equivalent if their words can be transformed into each other
through a sequence of rotations and legal commutations.

We prove that Coxeter elements are conjugate if and only if they are rotation
equivalent. This was known for some special cases but not for Coxeter groups in
general.

1 Introduction

Consider the Coxeter group defined by the Coxeter graph below. A Coxeter word is a list
of all generators in any order, so there are 24 Coxeter words in our example. Interpreting
words as products we get 12 different Coxeter elements (s0 commutes with s2 and s3),
which fall into two different conjugacy classes.
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Conjugation by the first letter of a Coxeter word will have the effect of moving this letter
to the end of the word. For example, if w = s0s1s2s3 then s0ws0 = s1s2s3s0. We call this
a rotation of the word. Say that two words are rotation equivalent if one can be obtained
from the other by a series of rotations and commutations. For example,

s0s1s2s3 ∼ s1s2s3s0 ∼ s1s2s0s3 ∼ s2s0s3s1

Our aim is to prove the following characterization of conjugacy of Coxeter elements.
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Theorem 1.1. Coxeter elements are conjugate if and only if they are rotation equivalent.

We stated this result at the FPSAC meeting in 1994, but gave proofs only for the two
important special cases when the Coxeter graph is a tree or a cycle (covering all finite
and affine groups). For these special cases, the result has since been rediscovered by Shi
[4], who extended it to cycles with trees attached. Here we present the first proof of the
general result.

2 Edge orientations and chip-firing

For a graph G, an acyclic edge orientation is an assignment of directions to all edges, such
that the resulting digraph is acyclic. This is always possible. A simple observation is that
the resulting digraph contains at least one sink, i.e. a vertex with no outgoing edges.

If each arrowhead is detached and pronounced a chip, we get a distribution of chips
on the vertices and can play the chip-firing game introduced in [2]. Translated into edge
orientations, a legal move consists in choosing a sink and firing it, that is changing it into
a source by reversing all its edges. Since neither sinks nor sources belong to any cycles,
the graph will still be acyclic and contain a sink, so the game goes on forever.

Several authors have rediscovered and analysed this edge reorientation game. All the
following facts can be derived from the work of Pretzel [5], but for convenience we give a
self-contained presentation.

Proposition 2.1. If a vertex s is fired in an acyclic edge orientation, there is a contin-
uation in which every other vertex is fired exactly once. Such a game sequence restores
the original edge orientation.

Proof. Induction over the number of vertices proves the proposition: After firing s, use
the induction hypothesis to fire all remaining nodes. The base case is trivial as is the
restoration of original orientation.

Corollary 2.2. There is a play sequence from u to v if and only if there is a play sequence
from v to u.

Proof. If a single move can be inverted, so can a sequence of moves. Thus, it is sufficient
to consider the case when v is the result of firing a single vertex in position u, so the
proposition applies.

According to this result, reachability of positions in this game constitutes an equiva-
lence relation that partitions acyclic edge orientations into reachability classes. For many
graphs, it is now a rather simple matter to enumerate acyclic edge orientations and reach-
ability classes. Two basic cases are covered by our next proposition.

Proposition 2.3. For a tree with n nodes, there are 2n−1 acyclic edge orientations but
only one reachability class. For an n-cycle, there are 2n − 2 acyclic edge orientations and
n − 1 reachability classes of sizes
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Proof. An n-vertex tree has got n − 1 edges with no restrictions on orientations, for all
directed trees are acyclic. The statement that all edge orientations are reachable from
each other has a simple induction proof: choose a leaf, play to give the rest of the tree the
desired orientation, firing the leaf when necessary, finally fire the chosen leaf once more if
needed to reorient its edge.

For an n-cycle, exactly two orientations are forbidden, namely all n clockwise or all n

anti-clockwise. Consider the
(

n

k

)

orientations with k anti-clockwise edges. Firing a node
may be seen as moving the anti-clockwise arrow one step forward, e.g. � - � �q q q q q to
� � - �q q q q q

It is obvious that any position with k anti-clockwise arrows can be reached in this
way.
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Figure 1: A trunk with four limbs and three joints.

A connected graph that is not a tree may be decomposed uniquely as a leafless trunk (the
subgraph obtained by successive removal of leaves until none are left) and a collection of
limbs, defined as trees that connect to the trunk at one vertex only, called a joint. We
may then apply the same induction argument as we used for trees to obtain the following
useful result.

Proposition 2.4. In an acyclic edge orientation, if edges on limbs are arbitrarily redi-
rected, the result is a new acyclic orientation in the same reachability class.

3 Words with intervening neighbours

Let G be the Coxeter graph of a Coxeter group with generators S. Consider a word w in
the alphabet S. If there is an edge between s and t and if the first occurrence of s in w

precedes the first occurrence of t, we orient the edge like s→ t. In this way we edge-orient
the subgraph of G spanned by the letters in w.

Now, consider this edge orientation as a right-to-left process on the word w. The
rightmost letter orients no edge, the two rightmost letters orient the edge between the
corresponding vertices (if there is one) and the larger the segment, the more edges get
oriented. When a letter t reappears, we may have to reverse some arrows s→ t, namely
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when the new situation is t · · · s · · · t · · · , and if all t-neighbours occur in between the first
and the second t, this will be a chip-firing move.
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Figure 2: Successive edge orientation by the word abca

Definition 3.1. A word has the intervening neighbours property if any two occurrences
of the same letter are separated by all its graph neighbours.

If w has this property and if all letters of S occur in w, eventually the right-to-left process
will have oriented all edges in G, so giving such a word w is equivalent to giving an initial
edge orientation and a play sequence.

If two words, w and w′, represent the the same group element, are the corresponding
edge orientations necessarily in the same reachability class? For a leafless graph the
answer is yes.

Proposition 3.2. Let G be a trunk without limbs and let w be a word with the intervening
neighbours property in which all letters of S occur. Then w is a reduced word for the group
element it represents, all reduced words for this element are obtained by commutations in
w and all edge orientations defined by these words belong to the same reachability class.

Proof. When two occurrences of the same letter are separated by two or more neighbours,
no braid relations such as sts = tst apply, so commutations are the only applicable rewrit-
ing rules. Commutations preserve the intervening neighbours property and no reduction
is possible. Nor do commutations affect the edge orientation.

Now let G be a general graph, regarded as a trunk with limbs. It is no longer true
that the intervening neighbours property is an invariant under rewritings — for example,
if s is a leaf connected to the trunk vertex t, the braid transformation sts = tst will
produce two occurrences of t with only one intervening neighbour. It turns out that only
limb letters are involved in braid transformations and that the intervening neighbours
property stays true for the other trunk letters, with a slight modification for the joints
(vertices in which a limb connects with the trunk). Obviously, trunk letters never occur
in higher braid transformations like stst = tsts.

The following lemma states properties that are true for a word with the intervening
neighbours property and which stay true under rewritings.

Lemma 3.3. The following word properties are invariant under commutations st = ts

and braid transformations sts = tst.

• The intervening neighbours property holds for trunk letters that are not joints,
i.e. any two occurrences of such a letter are separated by all its neighbours.
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• Two occurrences of the same joint are either separated by all its trunk neighbours
(it has at least two) or by no trunk neighbour (but by at least one limb neighbour).

Proof. Invariance under commutations is trivial. A braid transformation must involve
two limb letters (one of which may be a joint) so the first property stays true. If s is a
joint or t is a joint, the second property still stays true after sts = tst.

We are now almost ready to extend Prop. 3.2 to trunks with limbs. The missing piece
was provided by David Speyer [6].

Lemma 3.4 (Speyer, 2008). For infinite irreducible Coxeter groups, all words with the
intervening neighbours property are reduced.

Speyer actually states the result for c-admissible sequences, that is valid play sequences
from edge orientation c, but as we have noted, the concepts are equivalent.

Proposition 3.5. Let G be any connected non-tree graph and let w be a word with the
intervening neighbours property in which all letters of S occur. Then w is a reduced
word, all reduced words for this element are obtained by commutations in w and braid
transformations involving only limb letters, and all edge orientations defined by these
words belong to the same reachability class.

Proof. All non-tree Coxeter graphs define infinite groups, so Speyer’s result applies. Ob-
serve that, by Prop. 2.4, the orientation of limb edges is insignificant for reachability,
and neither commutations nor braid transformations of limb letters influence the edge
orientations in the trunk. Hence, we may disregard all limb letters except for the joints.
According to Lemma 3.3, the intervening neighbours property with respect to the set
of trunk letters that are not joints will hold under rewriting. Joints may duplicate, but
as there are only limb neighbours between the duplicates, the argument in the proof of
Prop. 3.2 goes through with respect to the trunk letters. When two occurrences of the
same letter are separated by two or more neighbours, no braid relations of type sts = tst

apply, so commutations are the only applicable rewriting rules. Commutations preserve
the intervening neighbours property and no reduction is possible. Nor do commutations
affect the edge orientation.

4 Coxeter elements

A Coxeter word has one instance of each letter, so it defines an acyclic orientation of
the Coxeter graph. This orientation is in fact well defined by the Coxeter element, as all
words representing the same element are obtainable by commutations. And in Prop. 2.1
we noted that for every acyclic orientation there is a play sequence in which all vertices
are fired once, i.e. a corresponding Coxeter word.

So, Coxeter elements correspond bijectively to acyclic edge orientations of the Coxeter
graph. And we have seen that moving the first letter of a Coxeter word to the end is the
same as firing the corresponding vertex. This proves the following proposition from [3].
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Proposition 4.1. Rotation of Coxeter words induces an equivalence relation on the set
of Coxeter elements, that corresponds precisely to the reachability relation on the set of
acyclic edge orientations.

Proof of theorem 1.1. Our main theorem states that reachability classes and con-
jugacy classes coincide. Rotating a letter s from the beginning to the end is the same
thing as conjugating by s, therefore rotation equivalent elements are indeed conjugate.
Proving that two conjugate Coxeter elements w and w′ = uwu−1 must belong to the same
reachability class is harder, but because of Prop. 2.3 we need only prove it for connected
non-tree graphs.

The trick is to consider a power (w′)k = uwku−1 with k sufficiently large. Note that
(w′)k and uwku−1 are two different words for the same group element, so the second one
must be reducible. The proof will have three steps:

1. The word (w′)k is reduced.

2. The word uwku−1 has a reduced form u1wu2.

3. Since w and w′ appear in words representing the same element, they belong to the
same reachability class and are rotation equivalent (as explained in detail below).

We regard the graph as a trunk with limbs. The proof is easiest if there are no limbs, but
in the end, the limbs will turn out to be of no consequence.

1. Since (w′)k has the intervening neighbours property, Prop. 3.5 implies that (w′)k is
reduced,

2. The well-known deletion property for Coxeter groups (see [1]) states that any word
can be brought to a reduced form through a series of successive deletions of pairs of
letters (not necessarily adjacent). For uwku−1, the number of such deletions is the
same as the number of letters in u. For any k, greater than this number, at least
one instance of w will remain intact after the deletions.

3. Prop. 3.5 tells us that all edge orientations obtained from the words (w′)k and u1wu2

by the right-to-left process are in the same reachability class. When the sequence w

in the middle of the second word has just been processed, the edge orientation is of
course completely defined by w. Therefore w′ and w are rotation equivalent.

Note. Pretzel [5] showed that two acyclic orientations belong to the same class if they
have the same circulation around every cycle, so we have a very explicit characterization
of the conjugacy classes.

Acknowledgments. We thank Henning Mortveit and Matthew Macauley for urging us
to publish the lost proof.
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