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Abstract

Let Cm,n be the graph on the vertex set {1, . . . ,m} × {0, . . . , n − 1} in which
there is an edge between (a, b) and (c, d) if and only if either (a, b) = (c, d ± 1) or
(a, b) = (c ± 1, d), where the second index is computed modulo n. One may view
Cm,n as a unit square grid on a cylinder with circumference n units. For odd n, we
prove that the Euler characteristic of the simplicial complex Σm,n of independent
sets in Cm,n is either 2 or −1, depending on whether or not gcd(m−1, n) is divisble
by 3. The proof relies heavily on previous work due to Thapper, who reduced
the problem of computing the Euler characteristic of Σm,n to that of analyzing a
certain subfamily of sets with attractive properties. The situation for even n remains
unclear. In the language of statistical mechanics, the reduced Euler characteristic of
Σm,n coincides with minus the partition function of the corresponding hard square
model with activity −1.

1 Introduction

An independent set in a simple and loopless graph G is a subset of the vertex set of G with
the property that no two vertices in the subset are adjacent. The family of independent
sets in G forms a simplicial complex, the independence complex Σ(G) of G.

The purpose of this paper is to analyze the independence complex of square grids with
cylindrical boundary conditions. Specifically, define Cm to be the graph with vertex set
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[m]×Z and with an edge between (a, b) and (c, d) if and only if either (a, b) = (c, d±1) or
(a, b) = (c± 1, d). Define Cm,n by identifying the vertices (a, b) and (a, d) whenever d− b
is a multiple of n. Equivalently, the vertex set of Cm,n is the set of cosets of {0} × nZ in
[m] × Z, meaning that each vertex is of the form {(i, j + kn) : k ∈ Z} for some i ∈ [m]
and j ∈ Z. We write

〈i, j〉 = {(i, j + kn) : k ∈ Z}. (1)

There is an edge between two vertices 〈a, b〉 and 〈c, d〉 in Cm,n if and only if there are
integers r and s such that (a, b+ rn) and (c, d+ sn) form an edge in Cm.

To avoid misconceptions, we state already at this point that we label elements in Z
2

according to the matrix convention; (i, j) is the element in the ith row below row 0 and
the jth column to the right of column 0.

Figure 1: Configuration of hard squares invariant under translation with the vector (0, 7).
The corresponding member of Σ5,7 is the set of cosets of [5] × 7Z containing the square
centers.

Properties of Σm,n := Σ(Cm,n) were discussed by Fendley, Schoutens, and van Eerten
[6] in the context of the “hard square model” in statistical mechanics. This model deals
with configurations of non-overlapping (“hard”) squares in R

2 such that the four corners
of any square in the configuration coincide with the four neighbors (x, y±1) and (x±1, y)
of a lattice point (x, y) ∈ [m]×Z. Identifying each such square with its center (x, y), one
obtains a bijection between members of the complex Σm,n and hard square configurations
that are invariant under the translation map (x, y) 7→ (x, y + n). See Figure 1 for an
example.

Let ∆ be a family of subsets of a finite set. Borrowing terminology from statistical
mechanics, we define the partition function Z(∆; z) of ∆ as

Z(∆; z) :=
∑

σ∈∆

z|σ|.

Observe that the coefficient of zk in Z(∆; z) is the number of sets in ∆ of size k. In
particular, if ∆ is a simplicial complex, then −Z(∆;−1) coincides with the reduced Euler
characteristic of ∆. Write Z(∆) := Z(∆;−1).

In a previous paper, the following was conjectured:
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Conjecture 1.1 (Jonsson [8]) For odd n, we have that

Z(Σm,n) =

{

−2 if 3 divides gcd(m− 1, n);
1 otherwise.

Our goal is to prove this conjecture, following the approach of Thapper [11, §2.4]. Specif-
ically, Thapper defined a matching on Σm,n, pairing odd sets (i.e., sets of odd size) with
even sets, and reduced Conjecture 1.1 to a conjecture about Z(Q2) being zero for a certain
subfamily Q2 of Σm,n whenever n is odd. We obtain our proof by defining a matching on
Q2, and this matching is perfect whenever n is odd.

Our approach does not seem to explain very well what is going on for even n. In
particular, the important question whether {Z(Σm,n) : n ≥ 1} forms a periodic sequence
for each m remains unanswered. Computational evidence for small m [8] suggests that
this sequence is indeed periodic.

In the case that 3 does not divide gcd(m−1, n), the conjecture is equivalent to saying
that the unreduced Euler characteristic χ(Σm,n) := −Z(Σm,n) + 1 vanishes. In the paper
just cited [8], it was shown that the same is true for a slightly different complex whenever
gcd(m,n) = 1. The complex under consideration was a torical variant of Σm,n obtained
by adding edges between (1, j) and (m, j) for all j.

There has been quite some activity recently pertaining to the problem of computing
the activity at −1 for various lattices, both among physicists [1, 5, 6, 3] and among
combinatorialists [2, 4, 8, 9, 11]. For a very good overview of the physical background
and further references, we refer to Huijse and Schoutens [7]. In the context of the present
paper, the work of Bousquet-Mélou, Linusson and Nevo [2] is worth a particular mention.
They consider a variant of Σm,n, roughly obtained via a 45 degree rotation, and obtain
results not only about the Euler characteristic but also about the homotopy type and
homology.

Acknowledgments

I thank Svante Linusson and Johan Thapper for interesting discussions and also for intro-
ducing me to the approach [11, §2.4]. I also thank an anonymous referee for an extremely
careful review and several useful comments and remarks.

2 Conventions for figures

Before proceeding, we introduce some conventions for figures, which we will use through-
out the remainder of the paper.

We identify each point in [m] × Zn or [m] × Z with a unit square; two vertices being
joined by an edge means that the corresponding squares share a common side. In any
picture illustrating an independent set σ restricted to a given piece of [m]×Zn or [m]×Z,
the following conventions apply for a given vertex x:

• x ∈ σ: there is a large dark disk on the square representing x.
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Figure 2: The restriction of a set σ to a 3 × 3 piece of [m] × Zn or [m] × Z. The squares
a and b marked with dark gray disks belong to σ, the white square c does not belong to
σ, and the status is unknown or unimportant for the gray square d. All other squares in
the figure are neighbors of either a or b and do not belong to σ if σ is independent.

• x /∈ σ: the square is white.

• The status of x is unknown or unimportant: the square is gray.

See Figure 2 for an example.

3 The approach of Thapper

We describe Thapper’s approach [11] to proving Conjecture 1.1 and explain what remains
to prove the conjecture. We also introduce some notation that we will use in later sections.

a b c d e

−7 −5 0 4 7

1

2

3

Figure 3: We have that pσ(7) = pσ(6) = pσ(5) = 4 and pσ(4) = pσ(3) = pσ(2) = pσ(1) = 0.
The vertices b and d are in even positions, whereas c and e are in odd positions.

For the time being, we make no assumptions about the parity of n, which hence may
be any odd or even positive integer. For σ ∈ Σm,n, define π(σ) to be the set of elements
in σ that appear in the first row;

π(σ) = σ ∩ {〈1, j〉 : j ∈ Zn},

where 〈1, j〉 is defined as in (1).
Assume that π(σ) is nonempty. For each j ∈ Z, let p = pσ(j) be maximal such that

p < j and 〈1, p〉 ∈ π(σ). Clearly, pσ(j + nr) = pσ(j) + nr for each integer r. Following
Thapper [11], we refer to an element 〈1, j〉 as being in an even position in σ if j− pσ(j) is
even; otherwise 〈1, j〉 is in an odd position. Define πo(σ) to be the subset of π(σ) consisting
of those 〈1, j〉 that are in an odd position and let πe(σ) = π(σ) \ πo(σ). See Figure 3 for
an illustration.
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An element x is free with respect to σ if no neighbor of x is contained in σ. This
means that we can add x to σ and stay in Σm,n. Otherwise, we say that x is blocked in σ.
By convention, all elements outside the cylinder Cm,n are blocked. Define π̂e(σ) to be the
set of elements in even positions in the first row, inside or outside σ, that are free with
respect to σ. If π(σ) = ∅, then we define π̂e(σ) = ∅. Again following Thapper, we define

σ̂ = σ ∪ π̂e(σ).

This means that π(σ̂) = πo(σ) ∪ π̂e(σ). Let Xσ be the family of sets τ such that σ̂ = τ̂ .

Lemma 3.1 Suppose that πo(σ) is nonempty and assume that x ∈ π̂e(σ). Then πo(σ \
{x}) = πo(σ ∪ {x}) and π̂e(σ \ {x}) = π̂e(σ ∪ {x}). In particular, πo(σ) = πo(σ̂) and

π̂e(σ) = π̂e(σ̂).

Proof. First, assume that we remove a vertex 〈1, j〉 from πe(σ) to obtain a new set ρ.
Then πo(ρ) = πo(σ). Namely, let 〈1, k〉 ∈ π(ρ) be such that pσ(k) = j. We obtain that

k − pρ(k) = k − pσ(j) = (k − j) + (j − pσ(j)) ≡ k − pσ(k) (mod 2),

because j − pσ(j) is even by assumption. In particular, 〈1, k〉 ∈ πo(ρ) if and only if
〈1, k〉 ∈ πo(σ). Using the same argument, we deduce that π̂e(ρ) = π̂e(σ); the neighbors of
〈1, j〉 in the first row are in odd positions and thus remain outside π̂e(ρ) even if they are
free in ρ.

Next, assume that we form the set ρ by adding a free vertex 〈1, j〉 in an even position
to σ. Then 〈1, j〉 remains a free vertex in ρ. By the above discussion, we obtain the
desired result. �

Lemma 3.2 (Thapper [11, Lemma 4.1]) π̂e(σ) is empty whenever πo(σ) is nonempty

and Xσ = {σ}.

Proof. By Lemma 3.1, π̂e(σ \ {x}) = π̂e(σ ∪ {x}) for every x ∈ π̂e(σ). In particular,
σ \ {x}, σ ∪ {x} ∈ Xσ for every such x. Since Xσ = {σ}, we conclude that π̂e(σ) = ∅. �

Thapper partitioned Σm,n into a number of subfamilies. We tweak Thapper’s partition
slightly by moving the elements in his family Q3 to our family P2.

• P1 is the family of sets σ such that |Xσ| > 1 and πo(σ) 6= ∅.

• P2 is the family of sets σ such that πo(σ) = ∅.

• P3 is the family of sets σ such that Xσ = {σ} and πo(σ) 6= ∅.

– Q1 is the subfamily of P3 consisting of all sets σ such that j− pσ(j) = 3 for all
〈1, j〉 ∈ π(σ).

– Q2 is the subfamily of P3 consisting of all sets σ such that j − pσ(j) ≥ 5 for
some 〈1, j〉 ∈ π(σ).
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By Lemma 3.2, P3 is indeed the disjoint union of Q1 and Q2; the difference j − pσ(j) is
odd for all 〈1, j〉 ∈ π(σ).

Thapper obtained a formula for Z(X) for X ∈ {P1, P2, Q1}.

Proposition 3.3 (Thapper [11]) The following hold for all m,n ≥ 1.

(a) Z(P1) = 0.

(b) Z(P2) =







−Z(Σm−1,n) + 2 · (−1)mn/4 if m and n are even;

−Z(Σm−1,n) if m is odd and n is even;

Z(Σm−1,n) if n is odd.

(c) Z(Q1) =







0 if m mod 3 = 0 or 36 |n;
3 · (−1)n/3 if m mod 3 = 1 and 3|n;
3 if m mod 3 = 2 and 3|n.

Since Thapper’s thesis is not easily available, we present a proof of Proposition 3.3 in an
appendix at the end of the paper.

Corollary 3.4 For n odd, we have that

Z(Σm,n) = Z(Σm−1,n) + Z(Q2) +







0 if m mod 3 = 0 or 36 |n;
−3 if m mod 3 = 1 and 3|n;
3 if m mod 3 = 2 and 3|n.

Thapper [11] conjectured that
Z(Q2) = 0 (2)

whenever n is odd and applied Corollary 3.4 to prove that his conjecture implies Conjec-
ture 1.1. Specifically, this follows immediately from induction on m and the well-known
fact [10, Prop. 5.2] that Conjecture 1.1 is true for m = 1. We prove Conjecture 1.1 by
demonstrating that Thapper’s conjecture (2) is indeed true.

Theorem 3.5 For all m and all odd n, we have that Z(Q2) = 0.

The proof of Theorem 3.5 ranges over several sections. In Section 4, we define a matching
onQ2 such that a set σ belongs to the family Λ of unmatched sets precisely when x+(1,−1)
is blocked for each x ∈ σ. In Section 5, we analyze Λ and develop the tools necessary
to process this family further. In Section 6, we define a matching on Λ such that the
remaining family Π has certain attractive properties. Specifically, in Section 7, we show
that Π is empty unless n is even. The matchings have the property that even sets are
paired with odd sets, leaving us with the conclusion that Z(Q2) is indeed zero whenever
n is odd.

the electronic journal of combinatorics 16(2) (2009), #R5 6



4 Reducing Q2 to the family Λ of sets σ with totally

blocked sw(σ)

To start with, we assume that n is arbitrary, making no assumption about the parity
of n. For any element x in [m] × Z (or in [m] × Zn), define s(x) := x + (1, 0) (south),
e(x) := x+(0, 1) (east), n(x) := x+(−1, 0) (north), and w(x) := x+(0,−1) (west); recall
our matrix convention for indexing elements in Z

2. In this section, we show that there
is a matching on Q2, pairing even sets with odd sets, such that the unmatched sets are
those σ with the property that sw(x) is blocked for each x ∈ σ. Recall that this means
that either a neighbor of sw(x) belongs to σ or sw(x) lies outside Cm,n. We denote by Λ
the family of such sets.

As Thapper [11, Lemma 4.1] observed, a set σ ∈ Σm,n belongs to Q1 ∪Q2 if and only
if j−pσ(j) is odd for all 〈1, j〉 ∈ π(σ) and all 〈1, k〉 in even positions are blocked, meaning
that either 〈1, k + 1〉 or 〈2, k〉 belongs to σ.

x0

x1

x2

x3

y0

y1

y2

y3

x0

x1

x2

x3

y0

y1

y2

y3

σ (sw)∗(σ)

Figure 4: x1 and x2 belong to (sw)∗(σ); they are both free in σ, and (sw)−2(x2) =
(sw)−1(x1) = x0 ∈ σ. However, x3, y0, y1, and y2 do not belong to (sw)∗(σ); x3 and y0 are
blocked, whereas (sw)−2(y2) = (sw)−1(y1) = y0.

For a set σ ∈ Q2, define (sw)∗(σ) to be the set of elements 〈a, b〉 ∈ [m]×Zn such that
(sw)−r〈a, b〉 = (ne)r〈a, b〉 = 〈a− r, b+ r〉 ∈ σ for some r ∈ {0, . . . , a− 1} and such that

(sw)−r〈a, b〉, (sw)−(r−1)〈a, b〉, . . . , (sw)−1〈a, b〉, 〈a, b〉

are all free in σ. See Figure 4 for an illustration. We say that 〈a, b〉 is r-free if this holds.
Choose r minimal with this property and define ξσ〈a, b〉 = r.

Lemma 4.1 We have that (sw)∗(σ) ∈ Q2 whenever σ ∈ Q2.

Proof. Assume the opposite; (sw)∗(σ) contains two neighbors x and y. By construction,
(sw)−r(x) and (sw)−s(y) are free whenever r ≤ ξσ(x) and s ≤ ξσ(y). Now, (sw)−ξσ(y)(x)
is blocked by (sw)−ξσ(y)(y) in σ or in row 0, which implies that ξσ(x) < ξσ(y). However,
we also have that (sw)−ξσ(x)(y) is blocked by (sw)−ξσ(x)(x) in σ or in row 0, which implies
that ξσ(y) < ξσ(x), a contradiction. �

Lemma 4.2 We have that (sw)∗(τ) = (sw)∗(σ) whenever σ ⊆ τ ⊆ (sw)∗(σ).
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Proof. It suffices to consider the case that τ = σ∪{y} for some element y. First, assume
that there is an element z ∈ (sw)∗(τ) \ (sw)∗(σ). The only possibility is that z is r-free in
τ , where r satisfies (sw)−r(z) = y. However, since y ∈ (sw)∗(σ), we have that y is s-free
in σ for some s ≥ 1. Since any free element in τ is also free in σ, it follows that z is
(r + s)-free in σ, meaning that z ∈ (sw)∗(σ), a contradiction. Next, assume that there is
an element z ∈ (sw)∗(σ)\ (sw)∗(τ). Then there is some r such that z is r-free in σ but not
in τ . The only possibility is that y blocks some element (sw)−k(z) for some k ∈ {0, . . . , r}.
However, (sw)−k(z) is (r − k)-free in σ. Since (sw)∗(σ) ∈ Σm,n by Lemma 4.1, it follows
that (sw)−k(z) is free in τ , a contradiction. �

Note that Lemma 4.2 implies that (sw)∗((sw)∗(σ)) = (sw)∗(σ) for all σ ∈ Q2. This
means that (sw)∗ defines a closure operator on Q2, viewed as a partially ordered set
ordered by inclusion.

For any τ such that (sw)∗(τ) = τ , we define

Q2(τ) = {σ ∈ Q2 : (sw)∗(σ) = τ}.

Assume that x, y ∈ τ and y = sw(x). Then σ \{y} ∈ Q2(τ) if and only if σ∪{y} ∈ Q2(τ).
Namely, if (sw)∗(σ \ {y}) = τ , then Lemma 4.2 yields that (sw)∗(σ) = (sw)∗(σ \ {y}) = τ ,
because y ∈ τ . Conversely, suppose that (sw)∗(σ ∪ {y}) = τ . We have that y ∈ (sw)∗(σ \
{y}). Namely, x is r-free in σ ∪ {y} and hence also in σ \ {y} for some r, because y is
equal to sw(x) and hence distinct from (sw)−r(x) for all nonnegative r. It follows that y is
(r+1)-free in σ \ {y}. Again, Lemma 4.2 yields that (sw)∗(σ \ {y}) = (sw)∗(σ∪{y}) = τ .

Let Λ be the subfamily of Q2 consisting of those τ such that for each x ∈ τ we have
that sw(x) is blocked in τ . By Lemma 4.2, τ belongs to Λ if and only if (sw)∗(τ) = τ and
Q2(τ) = {τ}.

We conclude the following.

Lemma 4.3 Suppose that τ = (sw)∗(τ) and that τ contains elements x, y such that y =
sw(x). Then Z(Q2(τ)) = 0. In particular,

Z(Q2) = Z(Λ).

5 Analyzing the family Λ

Let τ ∈ Λ. Recall that if 〈1, j〉, 〈1, j+2t+1〉 ∈ π(τ) and pσ(j+2t+1) = j, then 〈1, j+2k〉
is blocked in τ by some element not in the first row for 1 ≤ k ≤ t− 1. The only possible
element is 〈2, j + 2k〉. Let ψ(τ) be the set consisting of all (2, i) such that 〈2, i〉 is such a
blocking element in τ and also all (1, i) such that 〈1, i〉 ∈ τ . Note that ψ(τ) is a subset of
{1, 2} × Z rather than {1, 2} × Zn. We make this choice to facilitate analysis.

List the elements of ψ(τ) in increasing column order as

ψ(τ) = {xi := (ai, bi) : −∞ < i <∞}.

Hence bi < bj whenever i < j. Note that ai ∈ {1, 2} for all i. See Figure 5 for an example.
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Figure 5: Illustrating example with n = 21 and m ≥ 3. We have that ψ(τ) =
{(1, 1), (1, 4), (2, 6), (1, 9), (1, 12), (2, 14), (2, 16), (1, 19)}+{0}×21Z. Note that ψ(τ) does
not contain any other elements (2, i) such that 〈2, i〉 ∈ τ .

bi bi+3

d+

i
d−

i+3

Figure 6: The digraph D(τ ∗) for a certain τ ∈ Λ in the case that m = 5 and n = 18.
Note that d−i+3 − d+

i = bi+3 − bi + 3 as predicted by Lemma 5.2.

By construction, sw(y) is blocked in τ for every y ∈ τ . In particular, unless y lies in
row m, either s2

w(y) or sw2(y) belongs to τ . Let τ ∗ be the set of vertices (r, s) in [m]×Z

such that 〈r, s〉 ∈ τ . Form a directed graph D(τ ∗) on the vertex set τ ∗ by introducing an
edge from a vertex y to another vertex z in τ ∗ whenever z = s

2
w(y) or z = sw

2(y). See
Figure 6 for an example. It is an easy task to check that there is a directed path from y
to some element on row m for each y ∈ τ ∗. Namely, if such a path stopped at row k < m
with an element z, then sw(z) would be free in τ , a contradiction.

For each i, let d−i be minimal and let d+
i be maximal such that there are paths from

xi to y−i := (m, d−i ) and y+
i := (m, d+

i ) in D(τ ∗). Note that d−i and d+
i may well coincide.

For a vertex y = (r, s), define ν(y) := s− r. Now, we make the following key observa-
tion:

• If there is a path from y = (a, b) to z = (c, d), then ν(y) = b − a and ν(z) = d − c
are congruent modulo three.

In particular, ν(xi) ≡ ν(y+
i ) ≡ ν(y−i ) (mod 3). Moreover, if ν(xi) and ν(xj) belong to

different congruence classes modulo three, then a directed path starting in xi cannot
intersect a directed path starting in xj . Thus we have the following fact:

Lemma 5.1 If ν(xi+1) − ν(xi) ≡ 1 (mod 3), then

ν(y−i+1) − ν(y+
i ) = d−i+1 − d+

i ≥ 4.
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If instead ν(xi+1) − ν(xi) ≡ 2 (mod 3), then

ν(y−i+1) − ν(y+
i ) = d−i+1 − d+

i ≥ 2.

For the former inequality, use the fact that d−i+1 − d+
i cannot be equal to 1, as this would

imply that y−i+1 and y+
i were neighbors.

Now, suppose that xi = (1, j), xi+k = (2, j + 2k) for 1 ≤ k ≤ t − 1, and xi+t =
(1, j + 2t + 1), where 2t + 1 ≥ 5. This means that pτ (bi+t) = bi = bi+t − (2t + 1). Note
that

ν(xi+1) − ν(xi) = 1;

ν(xi+k) − ν(xi+k−1) = 2 for 2 ≤ k ≤ t− 1;

ν(xi+t) − ν(xi+t−1) = 4.

By Lemma 5.1, we may conclude that

d−i+1 − d+
i ≥ ν(xi+1) − ν(xi) + 3;

d−i+k − d+
i+k−1 ≥ ν(xi+k) − ν(xi+k−1) for 2 ≤ k ≤ t.

Summing and using the trivial inequality d+
i+k ≥ d−i+k, we obtain the following lemma; see

Figure 6 for an illustration.

Lemma 5.2 With notation as above, we have that

d−i+t − d+
i ≥ ν(xi+t) − ν(xi) + 3 = 2t+ 4.

Consider an arbitrary index i. We have four possibilities for xi and xi+1.

• ai = 1, ai+1 = 2 and bi+1 − bi = 2, meaning that ν(xi+1) − ν(xi) = 1.

• ai = ai+1 = 2 and bi+1 − bi = 2, meaning that ν(xi+1) − ν(xi) = 2.

• ai = 2, ai+1 = 1 and bi+1 − bi = 3, meaning that ν(xi+1) − ν(xi) = 4.

• ai = ai+1 = 1 and bi+1 − bi = 3, meaning that ν(xi+1) − ν(xi) = 3.

The last case is the only situation where ν(xi) and ν(xi+1) belong to the same congruence
class modulo three. Write xi ∼ xi+1 if this is the case and extend ∼ to an equivalence
relation. If xi−1 6∼ xi ∼ xi+t 6∼ xi+t+1, then we refer to {xi, . . . , xi+t} as a block. xi and
xi+t are the boundary points of the block, whereas xi+1, . . . , xi+t−1 are the interior points.
In a singleton block {xi}, both boundary points coincide with the one element xi in the
block.

To better understand the structure of D(τ ∗), we prove a result about its connected
components.

Lemma 5.3 Suppose that i < j and xi 6∼ xj. Then, xi and xj belong to different con-

nected components in D(τ ∗). If, in addition, ν(xi) ≡ ν(xj) (mod 3), then there is a third

connected component, containing some xk such that i < k < j, that separates the two

components containing xi and xj.
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Proof. The statement is obvious in the case that ν(xi) 6≡ ν(xj) (mod 3), because
ν(y) mod 3 is the same for all elements y in a given component. Moreover, if indeed
ν(xi) ≡ ν(xj) (mod 3), then there must be an index k such that i < k < j and such
that ν(xi) 6≡ ν(xk), because otherwise xi ∼ xj . It is clear that any path from xk to y±k
separates the components containing xi and xj ; hence we are done. �

Now, let ψ0(τ) be the subset of ψ(τ) obtained by removing all elements in the second
row and all interior points of blocks in the first row. The latter means that we remove all
elements xi such that xi−1 = w

3(xi) and xi+1 = e
3(xi). List the elements of ψ0(τ) as

ψ0(τ) = {xir = (1, bir) : −∞ < r <∞}

in increasing column order. For each r, we have exactly one of the following two situations:

• bir − bir−1
is equal to 2(ir − ir−1) + 1 ≥ 5 and xir−1+1, . . . , xir−1 all lie in the second

row with one vertex in every other column between bir−1
+2 and bir −3. Let ψ≥5

0 (τ)
be the set of such xir .

• bir − bir−1
is equal to 3(ir − ir−1) and xir−1+1, . . . , xir−1 all lie in the first row with

one vertex in every third column between bir−1
+ 3 and bir − 3. Let ψ3

0(τ) be the set
of such xir .

By Lemma 5.2,
d−ir − d+

ir−1
≥ ν(xir) − ν(xir−1

) + 3

whenever xir ∈ ψ≥5
0 (τ). We want to define a matching on Λ such that all remaining

unmatched sets satisfy

d+
ir − d−ir−1

≥ ν(xir) − ν(xir−1
) − 3ǫr (3)

whenever xir ∈ ψ3
0(τ), where ǫr = 1 if ir − ir−1 is odd and ǫr = 0 if ir − ir−1 is even. By

the following lemma, this will imply the conjecture. We remark that Figure 6 provides
an example of a set τ satisfying (3).

Lemma 5.4 A set τ ∈ Λ satisfying (3) must have the property that exactly every other xir

belongs to ψ≥5
0 (τ). Moreover, for every xir in ψ3

0(τ), we have that bir − bir−1
= 3(ir − ir−1)

is odd. In particular, n is even.

Proof. Let P be such that xir+P
= e

n(xir) for all r; by periodicity of τ ∗, such a P exists.
Form a sum S over r with r ranging from 1 to P such that term number r is d−ir − d+

ir−1

if xir ∈ ψ≥5
0 (τ) and d+

ir − d−ir−1
if xir ∈ ψ3

0(τ). Let sr and tr−1 be signs such that term

number r is dsr

ir − d
tr−1

ir−1
.

We cannot have two consecutive elements xir and xir+1
both appearing in ψ3

0(τ),
because then xir−1 = w

3(xir) and xir+1 = e
3(xir), which would mean that xir /∈ ψ0(τ). By

periodicity, the same is true for xiP and x1.
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As a consequence, S ≤ n. Namely, S is of the form

P
∑

r=1

(dsr

ir − d
tr−1

ir−1
) = dsP

iP
− dt0

i0
+

P−1
∑

r=1

(dsr

ir − dtr
ir),

where (sr, tr) 6= (+,−) for 1 ≤ r ≤ P−1 and (sP , t0) 6= (+,−); the latter is by periodicity.
Moreover, it also follows that the number α of elements in the set {xir : 1 ≤ r ≤ P}

that belong to ψ≥5
0 (τ) is at least ⌈P/2⌉. Let β be the number of elements xir in the same

set that belong to ψ3
0(τ) and have the property that bir − bir−1

is odd. Using Lemma 5.2
and (3), we deduce that

S ≥
P

∑

r=1

(bir − bir−1
) + 3α− 3β = biP − bi0 + 3(α− β)

= n+ 3(α− β) ≥ S + 3(α− β).

Since α ≥ P/2 ≥ β, we must have that α = β = P/2. This implies that P is even and
bir − bir−1

is odd for 1 ≤ r ≤ P . Since n =
∑P

r=1(bir − bir−1
), we conclude that n is even.

�

6 Defining a matching on Λ

Extend ∼ further by defining y ∼ z if there are directed paths from xi to y and from xj

to z for some xi and xj such that xi ∼ xj . Our matching on Λ is defined in two steps.

6.1 Step 1

Let Λ0 be the subfamily of Λ consisting of all τ such that there are two vertices u and
w := (se)2(u) in τ ∗ such that u ∼ w and such that s2

w(u), sw2(w) /∈ τ ∗. Write Γ = Λ\Λ0.

∗
∗

u

w
v

u

w

Figure 7: The situation in Step 1. The squares marked with stars in the left-hand figure
are not present by assumption.

Lemma 6.1 We have that Z(Λ0) = 0. As a consequence, Z(Λ) = Z(Γ).
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Proof. Among all pairs (u, w) with properties as described above, choose the pair such
that the row a of u =: (a, b) is minimal and, among the remaining pairs, such that the
column b is nonnegative and minimal.

See the picture on the left in Figure 7 for an illustration of the situation. By the
assumption about every y ∈ τ ∗ having the property that sw(y) is blocked, we conclude
that e

2(u) and v := se(u) do not belong to τ ∗, which means that we have the situation
in the picture on the right in the same figure.

v

s

t

v5

v4

v3

v2

v1

u

w
v

s

t

v5

v4

v3

v2

v1

ŝ

t̂

u

w

Figure 8: k = 4 is minimal such that vk+1 = sw
k+1(v) is blocked; either s or t belongs to

τ ∗. By minimality of k, the elements ŝ and t̂ are outside τ ∗.

Let k ≥ 1 be minimal such that (sw)k+1(v) is blocked by some element in τ ∗ or in row
m+1 outside the board. See the picture on the left in Figure 8 for the former case. Note
that vj := (sw)j(v) does not belong to τ ∗ for 0 ≤ j ≤ k − 1, because vj+1 = sw(vj) is not
blocked. However, 〈vk〉 may be added to or deleted from τ without the resulting set ending
up outside Λ0. Namely, vk+1 = sw(vk) is blocked, which means that there is no harm in
adding the element. Moreover, the elements ŝ and t̂ satisfying s

2
w(ŝ) = sw

2(t̂) = vk do
not belong to τ ∗, which means that there is no harm in deleting the element. See the
picture on the right in Figure 8, where we also indicated that sw2(u) and s

2
w(w) belong

to τ ∗.
We also note that the choices of u and k remain unchanged if vk is added to or deleted

from τ . Namely, since k ≥ 1, the index of vk is too large for vk to be a candidate for a
new u when added. Moreover, vk is a candidate for a new w only if k = 1. However, in
this case (nw)2(v1) is blocked by sw

2(u), which makes it impossible for that element to be
a candidate for a new u. Similarly, u is easily seen to remain unchanged if vk is removed.

In particular, writing v(τ) = vk, we obtain a perfect matching on Λ0 by pairing
τ \ {〈v(τ)〉} and τ ∪ {〈v(τ)〉} for each τ ∈ Λ0. �

6.2 Step 2

We proceed with the remaining family Γ = Λ \ Λ0. Note that Γ consists of all sets τ in
Λ such that if u and w := (se)2(u) belong to τ ∗ and u ∼ w, then either s

2
w(u) ∈ τ ∗ or

sw
2(w) ∈ τ ∗.
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s

t

u

w
z

ŝ

t̂

s

t

u
v

w
z

Figure 9: The situation in Step 2. Either s or t belongs to τ ∗. The element z may or may
not belong to τ ∗, but it is not the case that z ∼ w.

Let Γ0 be the subfamily of Γ consisting of all sets τ such that there are two vertices u
and w := (se)2(u) in τ ∗ such that u ∼ w and such that w 6∼ z := se(w), if z is at all in
τ ∗. See the picture on the left in Figure 9 for an illustration. If z ∈ τ ∗, then there is no
path from xj to z for any xj . Namely, assume that there is such a path. Since there is a
path from some xi to w, and since xi 6∼ xj , Lemma 5.3 yields that there is a path starting
in some xk (i < k < j) that separates the components containing w and z. Since there is
not room for such a path between w and z, we obtain a contradiction.

Write Π = Γ \ Γ0.

Lemma 6.2 We have that Z(Γ0) = 0. As a consequence, Z(Λ) = Z(Γ) = Z(Π).

Proof. Among all pairs (u, w) with properties as above, choose the pair such that the
row a of u =: (a, b) is maximal and, among the remaining pairs, such that the column b
is nonnegative and minimal.

Observe that e2(u) = n
2(w) does not belong to τ ∗. Namely, v := se(u) = sw(e2(u)) is

free in τ ∗. Moreover, since τ belongs to Γ, either s := s
2
w(u) ∈ τ ∗ or t := sw

2(w) ∈ τ ∗.
In particular, sw(v), (sw)2(v) /∈ τ ∗. This means that 〈v〉 may be added to or deleted from
τ without the resulting set ending up outside Γ0. Namely, sw(v) is blocked, which means
that there is no harm in adding the element. Moreover, the elements ŝ and t̂ satisfying
s

2
w(ŝ) = sw

2(t̂) = v already have directed edges starting in them and ending in u and v,
respectively, which means that there is no harm in deleting the element. See the picture
on the right in Figure 9 for an illustration. (With some effort, one can prove that either
ŝ or t̂ belongs to τ ∗, but we do not need this fact for the proof.)

We also note that the choice of u remains unchanged if v is added to or deleted from τ .
In particular, writing v(τ) = v, we obtain a perfect matching on Γ0 by pairing τ \{〈v(τ)〉}
and τ ∪ {〈v(τ)〉} for each τ ∈ Γ0. �

7 Analyzing the family Π and settling the proof of

Theorem 3.5

It remains to analyze the family Π. Our ultimate goal is to prove that (3) is true for all
members of Π. By Lemma 5.4, this will imply that Π is empty whenever n is odd and
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hence that Z(Q2) = Z(Π) = 0.

S9 S8 S7 S6 S5 S4

S3

S2

S1

S0

w0

w1

w2

w3

w4w5w6w7w8w9

u1u2u3u4u5

u6

u7

u8

Figure 10: A piece of a set τ ∗ and its digraph D(τ ∗), where τ ∈ Π. For each r, the set
Sr consists of all disks intersected by the dashed line labeled Sr. The northwesternmost
and southeasternmost elements in Sr are ur and wr, respectively. The figure illustrates
the situation in Section 7.1 for p = 5 and q = 4.

Let τ ∈ Π and consider an equivalence class under ∼ in τ ∗. Let xj be the rightmost
element belonging to this class and write γ := ν(xj). For each r ≥ 0, consider the set
Sr of elements w ∈ τ ∗ such that w ∼ xj and ν(w) = γ − 3r. Note that Sr \ {w

3r(xj)} is
the set of elements w such that there is a directed edge from some element in Sr−1 to w.
Let the elements ur and wr and the integer tr be such that wr is the southeasternmost
element in Sr and

ur := (nw)tr(wr)

is the northwesternmost element in Sr. See Figure 10 for an illustration.
Define

ci :=

{

3i/2 if i is even;
(3i− 1)/2 if i is odd;

hence (c0, c1, c2, c3, . . .) = (0, 1, 3, 4, . . .).

Lemma 7.1 For each r such that Sr is nonempty, let wr be the southeasternmost element

in Sr. Then,

Sr = {(nw)ci(wr) : 0 ≤ i ≤ |Sr| − 1}. (4)

Proof. For r = 0, this is evidently true, because S0 = {xj}. We use induction to prove
the statement for all r.

Thus suppose that Sr has the shape (4), where r ≥ 0. If Sr is empty, then so is Sr+1.
If Sr consists of one single element in row m, then Sr+1 is empty, because there are no
directed edges starting in such an element. Assume that there is at least one element
in Sr that does not appear in row m. Since this element has an outgoing edge, Sr+1 is
nonempty. We need to prove that (nw)i(wr+1) ∈ Sr+1 if and only if i mod 3 6= 2 and
0 ≤ i ≤ tr+1. Assume to the contrary that this is not true for some i; choose i minimal
with this property. Note that 1 ≤ i ≤ tr+1. We have three cases.
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• i mod 3 = 0 and p := (nw)i(wr+1) /∈ Sr+1. We must have that i < tr+1, because
(nw)tr+1(wr+1) ∈ Sr+1. By minimality of i, q := (nw)i−1(wr+1) /∈ Sr+1, which implies
that v := n

2
e(q) = ne

2(p) /∈ Sr. If the northwesternmost element ur of Sr is to
the northwest of v, then u := nw(v) ∈ Sr and w := se(v) ∈ Sr by induction on i,
because wr is certainly to the southeast of v and we cannot have two consecutive
elements outside Sr between ur and wr in Sr. This means that we have the situation
in Figure 7 and hence that τ ∈ Λ0, a contradiction. Hence ur is to the southeast
of v, meaning that the only possibility for (nw)tr+1(wr+1) is to appear in the very
first row and be equal to xh for some h < j. However, this means that e3(xh) ∈ Sr,
which is another contradiction, because this element is certainly to the northwest
of v.

• i mod 3 = 1 and v := (nw)i(wr+1) /∈ Sr+1. Again, i < tr+1. By minimality of i,
w := (nw)i−1(wr+1) ∈ Sr+1 and z := (nw)i−2(wr+1) /∈ Sr+1. In particular, u :=
(nw)i+1(wr+1) /∈ Sr+1, because otherwise we would have the situation in Figure 7 or
Figure 9 and hence τ ∈ Λ0 or τ ∈ Γ0. Defining p := u and q := v, we end up with
the same situation as in the previous case and obtain a contradiction in exactly the
same way.

• i mod 3 = 2 and u := (nw)i(wr+1) ∈ Sr+1. By minimality of i, we have that v :=
(nw)i−1(wr+1) ∈ Sr+1, w := (nw)i−2(wr+1) ∈ Sr+1, and z := (nw)i−3(wr+1) /∈ Sr+1.
However, this means that we have the situation in Figure 9 and hence that τ ∗

belongs to Γ0, a contradiction.

�

To simplify notation, define L(x) := w
2
s(x) and R(x) = ws

2(x).

Lemma 7.2 For each r ≥ 1, we have that |Sr| ≥ |Sr−1| − 1, and equality is possible only

if either |Sr−1| is even or wr−1 appears in the last row m.

Proof. The statement is trivial when Sr−1 = ∅; hence assume that Sr−1 is nonempty.
First, assume that wr−1 does not appear in row m. Then the only way for Sr to be

smaller than Sr−1 is that ur = R(ur−1) and wr = L(wr), meaning that tr = tr−1 − 1. By
Lemma 7.1, this implies that we must have that |Sr| = |Sr−1| − 1 and that |Sr−1| is even.
Namely, if |Sr−1| is odd, then ur−1 = (nw)3k/2(wr−1) for some integer k, which implies that
ur = (nw)3k/2−1(wr), a contradiction to Lemma 7.1.

Next, assume that wr−1 does appear in row m. The lemma is trivial when |Sr−1| = 1;
hence assume that |Sr−1| ≥ 2. By Lemma 7.1, this means that v := nw(wr−1) belongs to
Sr−1. Since sw(v) is blocked and appears in row m, we must have that L(v) belongs to
Sr; note that this is also an element in row m. If L(ur−1) belongs to Sr, then tr = tr−1 −1
and hence |Sr| = |Sr−1| − 1. Otherwise, R(ur−1) belongs to Sr and tr = tr−1 − 2, which
implies by Lemma 7.1 that tr−1 must be a multiple of 3. Namely, otherwise either tr−1

or tr would be congruent to 2 modulo 3. Another application of Lemma 7.1 yields that
|Sr| = |Sr−1| − 1. �
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Let p be maximal such that xj−p ∼ xj and let q be minimal such that wq lies in row
m. Our goal is to prove (3); hence we restrict to the situation that p ≥ 1. We divide into
two cases depending on whether p ≥ q or q ≥ p.

7.1 The case p ≥ q

Throughout this section, we assume that p ≥ q.

Lemma 7.3 The sequence (w0, w1, . . . , wq) forms a zigzag pattern;

wr =

{

L(wr−1) if r is odd;

R(wr−1) if r is even;

1 ≤ r ≤ q. Equivalently, wr appears in row cr + 1 for 0 ≤ r ≤ q.

Proof. Assume that 1 ≤ r ≤ q and let ℓr be the row in which wr appears. Since xj−r

belongs to Sr, we have that tr = ℓr − 1. In particular, tr = tr−1 + 1 if wr = L(wr−1), and
tr = tr−1 + 2 if wr = R(wr−1). By Lemma 7.1, tr 6≡ 2 (mod 3); hence

tr =

{

tr−1 + 1 if tr−1 ≡ 0 (mod 3);
tr−1 + 2 if tr−1 ≡ 1 (mod 3).

A straightforward induction argument yields the lemma. �

Note that Lemma 7.3 implies that m = cq + 1.

Lemma 7.4 For q < r ≤ p, we have that Sr = w
3(Sr−1) and hence that Sr = w

3(r−q)(Sq).

Proof. The element wr must appear in row m. Namely, wr−1 is in row m by induc-
tion on r and Lemma 7.3, and nw(wr−1) belongs to Sr−1 by Lemma 7.1; remember that
xj−(r−1) = (nw)m−1(wr−1) belongs to Sr−1. Moreover, by assumption, xj−r belongs to Sr.
By Lemma 7.1, the shape of Sr is hence identical to that of Sr−1. �

Lemma 7.5 For p ≤ r ≤ p+ q, we have that |Sr| ≥ p+ q+ 1− r and that wr appears in

row m. In particular, Sp+q is nonempty and contains an element in row m.

Proof. By Lemma 7.2 and induction on r, it suffices to prove that wr appears in row m;
by Lemma 7.4 we have that |Sp| = |Sq| = q + 1.

Assume that p < r ≤ p + q. By induction, wr−1 appears in row m and |Sr−1| ≥
p + q + 2 − r. Since the latter is at least two, v := nw(wr−1) belongs to Sr−1; apply
Lemma 7.1. In particular, L(v) belongs to Sr, because R(v) lies in row m+ 1. Since L(v)
lies in row m it must be equal to wr, which concludes the proof. �

Corollary 7.6 For the situation considered in this section, we have that d+
j − d−j−p ≥ 3p.

In particular, (3) is true for the particular choice of r satisfying ir = j.

Proof. Lemma 7.5 yields that Sp+q is nonempty and that wp+q belongs to row m. There-
fore, wp+q = w

3p(wq), which implies the corollary. �

the electronic journal of combinatorics 16(2) (2009), #R5 17



7.2 The case q ≥ p

S7 S6 S5
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S1

S0
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w4

w5w6w7

u1u2u3

u4

u5
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Figure 11: A piece of a set τ ∗ such that τ ∈ Π (notation as in Figure 10). The figure
illustrates the situation in Section 7.2 for p = 3 and q = 5.

Throughout this section, we assume that q ≥ p. See Figure 11 for an example.

Lemma 7.7 The sequence (w0, w1, . . . , wp) forms a zigzag pattern;

wr =

{

L(wr−1) if r is odd;

R(wr−1) if r is even;

1 ≤ r ≤ q.

Proof. The proof is identical to that of Lemma 7.3. �

Lemma 7.8 For p < r ≤ q, we have that

{

|Sr| ≥ |Sr−1| if |Sr−1| is odd;
|Sr| ≥ |Sr−1| − 1 if |Sr−1| is even.

In particular,
{

|Sq| ≥ p+ 1 if p is even;
|Sq| ≥ p if p is odd.

Proof. This is an immediate consequence of Lemma 7.2 and the fact that wr−1 is above
row m if r ≤ q. �

Lemma 7.9 For q ≤ r ≤ p + q, we have that |Sr| ≥ |Sq| + q − r, and wr appears in row

m. In particular, Sp+q−ǫ is nonempty and contains an element in row m, where ǫ = 0 if

p is even and ǫ = 1 if p is odd.
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Proof. The proof is identical to that of Lemma 7.5; for the final statement, apply
Lemma 7.8. �

Corollary 7.10 For the situation considered in this section, we have that d+
j − d−j−p ≥

3(p− ǫ), where ǫ = 1 if p is odd and ǫ = 0 if p is even. In particular, (3) is true for the

particular choice of r satisfying ir = j.

Proof. Lemma 7.9 yields that Sp+q−ǫ is nonempty and that wp+q−ǫ belongs to row m.
Therefore, wp+q−ǫ = w

3(p−ǫ)(wq), which implies the corollary. �

7.3 Conclusion

Combining Corollaries 7.6 and 7.10, we obtain that Z(Π) = 0 and hence that Z(Q2) = 0.
In particular, Theorem 3.5 is proved.

Appendix: Proof of Proposition 3.3

Proof. (a) To prove that Z(P1) = 0, we show that Z(Xσ) = 0 whenever σ ∈ P1. By
Lemma 3.1, π̂e(ρ) = π̂e(σ) for every ρ ∈ Xσ. Let x be any element in π̂e(σ). Another
application of Lemma 3.1 yields that ρ \ {x} belongs to Xσ if and only if ρ∪ {x} belongs
to Xσ. In particular, we obtain a perfect matching on Xσ by pairing ρ \ {x} and ρ ∪ {x}
for every ρ ∈ Xσ. It follows that Z(Xσ) = 0.

(b) Our second goal is to compute Z(P2). If n is odd, then πo(σ) is empty if and only
if the entire first row is empty. As a consequence, Z(P2) = Z(Σm−1,n). Suppose n is even.
Let P e

2 be the family of sets σ such that all elements in the first row appear in columns
with even index. Analogously, let P o

2 consist of those σ such that all elements in the first
row appear in columns with odd index. Note that

Z(P2) = Z(P e
2 ) + Z(P o

2 ) − Z(Σm−1,n) = 2Z(P e
2 ) − Z(Σm−1,n).

Here we use the fact that P e
2 ∩ P o

2 consists of those sets in which the first row is empty
and also the fact that Z(P e

2 ) = Z(P o
2 ). We conclude that it suffices to prove that Z(P e

2 )
equals (−1)mn/4 if m is even and 0 otherwise.

For σ ∈ P e
2 , let j = jσ ≥ 0 be minimal such that j is even and 〈1, j〉 is free in σ. If

no such j exists, we define jσ = ∞. Write xσ = 〈1, jσ〉. It is clear that xσ\{xσ} = xσ∪{xσ}

whenever jσ < ∞. In particular, we may define a matching on P e
2 by pairing σ \ {xσ}

and σ ∪ {xσ} whenever jσ <∞.
A set σ in P e

2 is unmatched if and only if 〈2, j〉 belongs to σ for every even j. This
implies that there are no elements in columns with odd index in the second row and no
elements in columns with even index in the third row. For other positions in the third
row and below, there are no restrictions imposed by the presence of the vertices 〈2, j〉.

the electronic journal of combinatorics 16(2) (2009), #R5 19



Writing P e
2 (m) = P e

2 and P o
2 (m) = P o

2 to indicate the height of the underlying cylinder,
we conclude that

Z(P e
2 (m)) = (−1)n/2Z(P o

2 (m− 2)) = (−1)n/2Z(P e
2 (m− 2)).

Clearly, Z(P e
2 (0)) = 1, and it is an easy task to show that Z(P e

2 (1)) = 0. As a consequence,
a simple induction argument yields the desired result.

(c) It remains to compute Z(Q1). By construction, Q1 is empty unless n is a multiple
of 3; hence assume that n is indeed a multiple of 3. An independent set σ belongs to Q1

if and only if σ has an element in every third position in the first row. For i = 0, 1, 2, let
Qi

1 be the subfamily of Q1 consisting of those σ that contain 〈1, i+ 3k〉 for all integers k.
It is clear that Z(Q0

1) = Z(Q1
1) = Z(Q2

1) and hence that Z(Q1) = 3Z(Q0
1). From now on,

we focus on Q0
1.
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Figure 12: The set A in the proof of (c) consists of all vertices marked with a star,
including the present vertices in the first row. Note that the induced subgraph on A is a
disjoint union of copies of K2 and K1.

Divide the vertex set of the underlying graph Cm,n into two sets A and B. A consists
of all vertices 〈i, j〉 such that either of the following is true.

• i mod 3 ∈ {0, 1} and j mod 3 = 0.

• i mod 3 = 2 and j mod 3 = {1, 2}.

See Figure 12 for an illustration. For any subset ρ of B, let Q1(ρ) be the subfamily of Q1

consisting of all σ such that σ ∩B = ρ.
First, note that Q1(∅) is the family of independent sets σ in the induced graph Cm,n(A)

such that all elements from A in the first row belong to σ. We identify three cases,
depending on the value of m mod 3.

• m mod 3 = 0. Then Cm,n(A) contains isolated vertices in the very last row, which
implies that Z(Q1(∅)) = 0. This is the situation illustrated in Figure 12.

• m mod 3 = 1. Then Cm,n(A) is the disjoint union of n/3 copies of K1, all appearing
in the first row, and (2m − 2)/3 · n/3 copies of K2. It follows that Z(Q1(∅)) =
(−1)n/3+(2m−2)n/9 = (−1)n/3.
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• m mod 3 = 2. Then Cm,n(A) is the disjoint union of n/3 copies of K1, all appearing
in the first row, and (2m − 1)/3 · n/3 copies of K2. It follows that Z(Q1(∅)) =
(−1)n/3+(2m−1)n/9 = 1.

It remains to prove that Q1(ρ) = 0 for every nonempty ρ. To obtain this, it suffices to
find an element y from A strictly below the first row such that no neighbor of y belongs
to any set in Q1(ρ). Namely, we may then form a perfect matching on Q1(ρ) by pairing
σ \ {y} and σ ∪ {y}.

∗ ∗
∗ y ∗

∗ ∗
∗ ∗
∗ ∗ ∗

i

j

i ≡ 0, j ≡ 1

∗ ∗
∗∗∗

∗ y
∗ ∗

∗∗∗
i

j

i ≡ 1, j ≡ 2

∗ ∗
∗ ∗ ∗

y∗
∗∗

∗ ∗ ∗i

j

i ≡ 2, j ≡ 0

Figure 13: The situation around the vertex 〈i, j〉 in the proof of (c); stars denote members
of A. For each case, we indicate the congruence classes modulo 3 of i and j. The element
y is free in every set in Q1(ρ).

Let i be minimal such that ρ contains some element in row i. Pick any element j such
that x := 〈i, j〉 ∈ ρ. We identify three cases, depending on the value of i mod 3.

• i mod 3 = 0. In this case, j is of the form 3k + 1 or 3k + 2 for some integer k. If
j = 3k + 1, then no neighbor of the vertex y := ne(x) = 〈i − 1, j + 1〉 belongs to
any σ in Q1(ρ). Namely, n(y) and e(y) both belong to B and are not part of ρ by
minimality of i. See the picture on the left in Figure 13 for an illustration. The case
j = 3k + 2 is analogous.

• i mod 3 = 1. Again, j is of the form 3k + 1 or 3k + 2 for some integer k. If
j = 3k + 2, then all neighbors of the vertex y := ne(x) = 〈i − 1, j + 1〉 are outside
every σ in Q1(ρ) by minimality of i. See the picture in the middle in Figure 13 for
an illustration. The case j = 3k + 1 is analogous.

• i mod 3 = 2. This time, j is of the form 3k for some integer k. Since all elements
〈2, 3k〉 are blocked, we have that i ≥ 5. Arguing as before, we deduce that all
neighbors of the element y := n

2(x) are outside every σ in Q1(ρ). See the picture
on the right in Figure 13 for an illustration.

�
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