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Abstract

We establish an upper bound on the cardinality of a minimal generating set for

the fundamental group of a large family of connected, balanced simplicial complexes

and, more generally, simplicial posets.

1 Introduction

One commonly studied combinatorial invariant of a finite (d − 1)-dimensional simplicial
complex ∆ is its f -vector f = (f0, . . . , fd−1) where fi denotes the number of i-dimensional
faces of ∆. This leads to the study of the h-numbers of ∆ defined by the relation∑d

i=0 hiλ
d−i =

∑d

i=0 fi−1(λ − 1)d−i. A great deal of work has been done to relate the
f -numbers and h-numbers of ∆ to the dimensions of the singular homology groups of
∆ with coefficients in a certain field; see, for example, the work of Björner and Kalai
in [2] and [3], and Chapters 2 and 3 of Stanley [13]. In comparison, very little seems
to be known about the relationship between the f -numbers of a simplicial complex and
various invariants of its homotopy groups. In this paper, we bound the minimal number
of generators of the fundamental group of a balanced simplicial complex in terms of h2.
More generally, we bound the minimal number of generators of the fundamental group of
a balanced simplicial poset in terms of h2.

It was conjectured by Kalai [7] and proved by Novik and Swartz in [8] that if ∆ is a
(d − 1)-dimensional manifold that is orientable over the field k, then

h2 − h1 ≥

(
d + 1

2

)
β1,

where β1 is the dimension of the singular homology group H1(∆;k). The Hurewicz The-
orem (see Spanier [10]) says that H1(X; Z) is isomorphic to the abelianization of π1(X, ∗)
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for a connected space X. We will see below that π1(∆, ∗) is finitely generated. Thus
the Hurewicz Theorem says that the minimal number of generators of the fundamental
group of a simplicial complex ∆ is greater than or equal to the number of generators of
H1(∆; Z). By the universal coefficient theorem, H1(∆;k) ≈ H1(∆; Z)⊗ k for any field k;
and, consequently, the minimal number of generators of π1(∆, ∗) is greater than or equal
to β1(∆) for any field k.

In this paper, we study simplicial complexes and simplicial posets ∆ that are pure and
balanced with the property that every face F ∈ ∆ of codimension at least 2 (including
the empty face) has connected link. This includes the class of balanced triangulations of
compact manifolds and, using the language of Goresky and MacPherson in [5], the more
general class of balanced normal pseudomanifolds. Under these weaker assumptions, we
show that

h2 ≥

(
d

2

)
m(∆),

where m(∆) denotes the minimal number of generators of π1(∆, ∗).
The paper is structured as follows. Section 2 contains all necessary definitions and

background material. In Section 3, we outline a sequence of theorems in algebraic topology
that are used to give a description of the fundamental group in terms of a finite set of
generators and relations. In Section 4, we use the theorems in Section 3 to prove Theorem
4.5. This theorem gives the desired bound on m(∆). In Section 5, after giving some
definitions related to simplicial posets, we extend the topological results in Section 3 and
the result of Theorem 4.5 to the class of simplicial posets.

2 Notation and Conventions

Throughout this paper, we assume that ∆ is a (d− 1)-dimensional simplicial complex on
vertex set V = {v1, . . . , vn}. We recall that the dimension of a face F ∈ ∆ is dim F =
|F | − 1, and the dimension of ∆ is dim ∆ = max{dim F : F ∈ ∆}. A simplicial complex
is pure if all of its facets (maximal faces) have the same dimension. The link of a face
F ∈ ∆ is the subcomplex

lk∆F = {G ∈ ∆ : F ∩ G = ∅, F ∪ G ∈ ∆}.

Similarly, the closed star of a face F ∈ ∆ is the subcomplex

st∆F = {G ∈ ∆ : F ∪ G ∈ ∆}.

The geometric realization of ∆, denoted by |∆|, is the union over all faces F ∈ ∆ of
the convex hull in R

n of {ei : vi ∈ F} where {e1, . . . , en} denotes the standard basis in R
n.

Given this geometric realization, we will make little distinction between the combinatorial
object ∆ and the topological space |∆|. For example, we will often abuse notation and
write Hi(∆;k) instead of the more cluttered Hi(|∆|;k).

The f -vector of ∆ is the vector f = (f−1, f0, f1, . . . , fd−1) where fi denotes the number
of i-dimensional faces of ∆. By convention, we set f−1 = 1, corresponding to the empty
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face. If it is important to distinguish the simplicial complex ∆, we write f(∆) for the
f -vector of ∆, and fi(∆) for its f -numbers (i.e. the entries of its f -vector). Another
important combinatorial invariant of ∆ is the h-vector h = (h0, . . . , hd) where

hi =

i∑

j=0

(−1)i−j

(
d − j

d − i

)
fj−1.

For us, it will be particularly important to study a certain class of complexes known
as balanced simplicial complexes, which were introduced by Stanley in [11].

Definition 2.1 A (d−1)-dimensional simplicial complex ∆ is balanced if its 1-skeleton,
considered as a graph, is d-colorable. That is to say there is a coloring κ : V → [d] such
that for all F ∈ ∆ and distinct v, w ∈ F , we have κ(v) 6= κ(w). We assume that a
balanced complex ∆ comes equipped with such a coloring κ.

The order complex of a rank-d graded poset is one example of a balanced simplicial
complex. If ∆ is a balanced complex and S ⊆ [d], it is often important to study the
S-rank selected subcomplex of ∆, which is defined as

∆S = {F ∈ ∆ : κ(F ) ⊆ S};

that is, for a fixed coloring κ, we define ∆S to be the subcomplex of faces whose vertices
are colored with colors from S. In [11] Stanley showed that

hi(∆) =
∑

|S|=i

hi(∆S). (1)

3 The Edge-Path Group

In order to obtain a concrete description of π1(∆, ∗) that relies only on the structure of ∆
as a simplicial complex, we introduce the edge-path group of ∆ (see, for example, Seifert
and Threlfall [9] or Spanier [10]). This will ultimately allow us to relate the combinatorial
data of f(∆) to the fundamental group of ∆.

An edge in ∆ is an ordered pair of vertices (v, v′) with {v, v′} ∈ ∆. An edge path γ in
∆ is a finite nonempty sequence (v0, v1)(v1, v2) · · · (vr−1, vr) of edges in ∆. We say that γ
is an edge path from v0 to vr, or that γ starts at v0 and ends at vr. A closed edge path
at v is an edge path γ such that v0 = v = vr.

We say that two edge paths γ and γ′ are simply equivalent if there exist vertices
v, v′, v′′ in ∆ with {v, v′, v′′} ∈ ∆ such that the unordered pair {γ, γ′} is equal to one of
the following unordered pairs:

• {(v, v′′), (v, v′)(v′, v′′)},

• {γ1(v, v′′), γ1(v, v′)(v′, v′′)} for some edge path γ1 ending at v,
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• {(v, v′′)γ2, (v, v′)(v′, v′′)γ2} for some edge path γ2 starting at v′′,

• {γ1(v, v′′)γ2, γ1(v, v′)(v′, v′′)γ2} for edge paths γ1, γ2 as above.

We note that the given vertices v, v′, v′′ ∈ ∆ need not be distinct. For example,
(v, v) is a valid edge (the edge that does not leave the vertex v), and we have the simple
equivalence (v, v′)(v′, v) ∼ (v, v). We say that two edge paths γ and γ′ are equivalent, and
write γ ∼ γ′, if there is a finite sequence of edge paths γ0, γ1, . . . , γs such that γ = γ0,
γ′ = γs and γi is simply equivalent to γi+1 for 0 ≤ i ≤ s − 1. It is easy to check that this
defines an equivalence relation on the collection of edge paths γ in ∆ starting at v and
ending at v′. Moreover, for two edge paths γ and γ′ with the terminal vertex of γ equal
to the initial vertex of γ′, we can form their product edge path γγ′ by concatenation.

Now we pick a base vertex v0 ∈ ∆. Let E(∆, v0) denote the set of equivalence classes
of closed edge paths in ∆ based at v0. We multiply equivalence classes by [γ]∗ [γ′] = [γγ′]
to give E(∆, v0) a group structure called the edge path group of ∆ based at v0.

The Cellular Approximation Theorem ([10] VII.6.17) tells us that any path in ∆ is
homotopic to a path in the 1-skeleton of ∆. We use this fact to motivate the proof of the
following theorem from Spanier.

Theorem 3.1 ([10] III.6.17) If ∆ is a simplicial complex and v0 ∈ ∆, then there is a
natural isomorphism

E(∆, v0) ≈ π1(∆, v0).

For a connected simplicial complex ∆ we will also consider the group G, defined as
follows. Let T be a spanning tree in the 1-skeleton of ∆. Since ∆ is connected, such a
spanning tree exists. We define G to be the free group generated by edges (v, v′) ∈ ∆
modulo the relations

[R1]. (v, v′) = 1 if (v, v′) ∈ T , and

[R2]. (v, v′)(v′, v′′) = (v, v′′) if {v, v′, v′′} ∈ ∆.

The following theorem will be crucial in our study of the fundamental group.

Theorem 3.2 ([10] III.7.3) With the above notation,

E(∆, v0) ≈ G.

We note for later use that this isomorphism is given by the map

Φ : E(∆, v0) → G

that sends [(v0, v1)(v1, v2) · · · (vr−1, vr)]E 7→ [(v0, v1)(v1, v2) · · · (vr−1, vr)]G. Here, [−]E and
[−]G denote the equivalence classes of an edge path in E(∆, v0) and G, respectively. The
inverse to this map is defined on the generators of G as follows. For (v, v′) ∈ ∆, there is
an edge path γ from v0 to v along T and an edge path γ′ from v′ to v0 along T . Using
these paths, we map Φ−1[(v, v′)]G = [γ(v, v′)γ′]E .
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4 The Fundamental Group and h-numbers

Our goal now is to use Theorem 3.2 to bound the minimal number of generators of
π1(∆, ∗). For ease of notation, let m(∆, ∗) denote the minimal number of generators of
π1(∆, ∗). When the basepoint is understood or irrelevant (e.g. when ∆ is connected)
we will write m(∆) in place of m(∆, ∗). For the remainder of this section, we will be
concerned with simplicial complexes ∆ of dimension (d−1) with the following properties:

(I). ∆ is pure,

(II). ∆ is balanced,

(III). lk∆F is connected for all faces F ∈ ∆ with 0 ≤ |F | < d − 1.

In particular, property (III) implies that ∆ is connected by taking F to be the empty
face.

Since results on balanced simplicial complexes are well-suited to proofs by induction,
we begin with the following observation.

Proposition 4.1 Let ∆ be a simplicial complex with d ≥ 2 that satisfies properties (I)–
(III). If F ∈ ∆ is a face with |F | < d − 1, then lk∆F satisfies properties (I)–(III) as
well.

Proof: When d = 2, the result holds trivially since the only such face F is the empty
face. When d > 3 and F is nonempty, it is sufficient to show that the result holds for a
single vertex v ∈ F . Indeed, if we set G = F \ {v}, then lk∆F = lklk∆v

G at which point

we may appeal to induction on |F |.
We immediately see that lk∆v inherits properties (I) and (II) from ∆. Finally, if

σ ∈ lk∆v is a face with |σ| < d − 2, then lklk∆v
σ = lk∆(σ ∪ v) is connected by property

(III). �

Lemma 4.2 Let ∆ be a (d − 1)-dimensional simplicial complex with d ≥ 2 that satisfies
properties (I) and (III). If F and F ′ are facets in ∆, then there is a chain of facets

F = F0, F1, . . . , Fm = F ′ (∗)

such that |Fi ∩ Fi+1| = d − 1 for all i.

Remark 4.3 We say that a pure simplicial complex satisfying property (*) is strongly

connected.

Proof: We proceed by induction on d. When d = 2, ∆ is a connected graph, and such
a chain of facets is a path from some vertex v ∈ F to a vertex v′ ∈ F ′. We now assume
that d ≥ 3.

First, we note that the closed star of each face in ∆ is strongly connected. Indeed, by
induction the link (and hence the closed star st∆σ) of each face σ ∈ ∆ with |σ| < d − 1
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is strongly connected. On the other hand, if σ ∈ ∆ is a face with |σ| = d − 1, then every
facet in st∆σ contains σ and so st∆σ is strongly connected as well. Finally, if σ is a facet,
then st∆σ is strongly connected as it only contains a single facet.

It is also clear that if ∆′ and ∆′′ are strongly connected subcomplexes of ∆ such that
∆′ ∩ ∆′′ contains a facet, then ∆′ ∪ ∆′′ is strongly connected as well. Finally, suppose
∆0 ⊆ ∆ is a maximal strongly connected subcomplex of ∆. If F ∈ ∆0 is any face, then
st∆F intersects ∆0 in a facet. Since st∆F ∪∆0 is strongly connected and ∆0 is maximal,
we must have st∆F ⊆ ∆0. Thus ∆0 is a connected component of ∆. Since ∆ is connected,
∆ = ∆0. �

Lemma 4.4 Let ∆ be a (d − 1)-dimensional simplicial complex with d ≥ 2 that satisfies
properties (I)–(III). For any S ⊆ [d] with |S| = 2, the rank selected subcomplex ∆S is
connected.

Proof: Say S = {c1, c2}. Pick vertices v, v′ ∈ ∆S and facets F ∋ v, F ′ ∋ v′. By
Lemma 4.2, there is a chain of facets F = F1, . . . , Fm = F ′ for which Fi intersects Fi+1 in
a codimension 1 face. We claim that a path from v to v′ in ∆S can be found in ∪m

i=1Fi.
When m = 1, {v, v′} is an edge in F = F1 = F ′. For m > 1, we examine the facet F1.

Without loss of generality, say κ(v) = c1, and let w ∈ F1 be the vertex with κ(w) = c2. If
{v, w} ∈ F1 ∩ F2, then the facet F1 in our chain is extraneous, and we could have taken
F = F2 instead. Inductively, we can find a path from v to v′ in ∆S that is contained in
∪m

i=2Fi. On the other hand, if v /∈ F2, then we can find a path from w to v′ in ∆S that is
contained in ∪m

i=2Fi by induction. Since (v, w) ∈ ∆S, this path extends to a path from v
to v′ in ∆S. �

Theorem 4.5 Let ∆ be a (d−1)-dimensional simplicial complex with d ≥ 2 that satisfies
properties (I)–(III), and S ⊆ [d] with |S| = 2. If v, v′ are vertices in ∆S, then any edge
path γ from v to v′ in ∆ is equivalent to an edge path from v to v′ in ∆S.

Proof: When d = 2, ∆S = ∆, and the result holds trivially, so we can assume d ≥ 3.
We may write our edge path γ as a sequence

γ = (v0, v1)(v1, v2) · · · (vr−1, vr)

where v0 = v, vr = v′, and {vi, vi+1} ∈ ∆ for all i. We establish the claim by induction
on r. When r = 1, the edge (v, v′) is already an edge in ∆S. Now we assume r > 1. If
v1 ∈ ∆S, the sequence (v1, v2) · · · (vr−1, vr) is equivalent to an edge path γ̃ from v1 to v′

in ∆S by our induction hypothesis on r. Hence γ is equivalent to (v0, v1)γ̃.
On the other hand, suppose that v1 /∈ ∆S. Since κ(v1) /∈ S and ∆ is pure and

balanced, there is a vertex ṽ ∈ ∆S such that {v1, v2, ṽ} ∈ ∆. By Proposition 4.1, lk∆v1

is a simplicial complex of dimension at least 1 satisfying properties (I)–(III). Thus by
Lemma 4.4, there is an edge path γ′ = (u0, u1) · · · (uk−1, uk) such that u0 = v0, uk = ṽ,
and each edge {ui, ui+1} ∈ (lk∆v1)S. Since each edge {ui, ui+1} ∈ lk∆v1, it follows that
{ui, ui+1, v1} ∈ ∆ for all i.
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We now use the fact that (u, u′)(u′, u′′) ∼ (u, u′′) for all {u, u′, u′′} ∈ ∆ to see the
following simple equivalences of edge paths.

(v0, v1)(v1, ṽ) = (u0, v1)(v1, ṽ)

∼ (u0, u1)(u1, v1)(v1, ṽ)

∼ (u0, u1)(u1, u2)(u2, v1)(v1, ṽ)

. . .

∼ (u0, u1)(u1, u2) · · · (uk−2, uk−1)(uk−1, v1)(v1, ṽ)

∼ (u0, u1)(u1, u2) · · · (uk−2, uk−1)(uk−1, ṽ).

For convenience, we write γ1 = (u0, u1)(u1, u2) · · · (uk−2, uk−1)(uk−1, ṽ). Now we ob-
serve that (v0, v1)(v1, v2) ∼ (v0, v1)(v1, ṽ)(ṽ, v2) so that

γ = (v0, v1)(v1, v2)(v2, v3) · · · (vr−1, vr)

∼ (v0, v1)(v1, ṽ)(ṽ, v2)(v2, v3) · · · (vr−1, vr)

∼ γ1(ṽ, v2)(v2, v3) · · · (vr−1, vr).

By induction on r, there is an edge path γ2 in ∆S from ṽ to vr that is equivalent to
(ṽ, v2)(v2, v3) · · · (vr−1, vr) so that γ ∼ γ1γ2. Thus, indeed, γ is equivalent to an edge path
in ∆S. �

Setting v = v′ = v0, we have the following corollary.

Corollary 4.6 If v0 ∈ ∆S, every class in E(∆, v0) can be represented by a closed edge
path in ∆S.

Now we have an explicit description of a smaller generating set of π1(∆, v0).

Lemma 4.7 Let ∆ be a (d − 1)-dimensional simplicial complex with d ≥ 2 that satisfies
properties (I)–(III). For a fixed S ⊆ [d] with |S| = 2, the group G of Theorem 3.2 is
generated by the edges (v, v′) with {v, v′} ∈ ∆S.

Proof: In order to use Theorem 3.2, we must choose some spanning tree T in the 1-
skeleton of ∆. We will do this in a specific way. Since ∆S is a connected graph, we can
find a spanning tree T̃ in ∆S. Since ∆ is connected, we can extend T̃ to a spanning tree
T in ∆ so that T̃ ⊆ T .

By Corollary 4.6, each class in E(∆, v0) is represented by a closed edge path in ∆S,
and hence the isomorphism Φ of Theorem 3.2 maps E(∆, v0) into the subgroup of H ⊆ G
generated by edges (v, v′) ∈ ∆S. Since Φ is surjective, we must have H = G. �

Corollary 4.8 With ∆ and S as in Lemma 4.7, we have

m(∆) ≤ h2(∆S).
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Proof: Lemma 4.7 tells us that the f1(∆S) edges in ∆S generate the group G. Since
our spanning tree T contains a spanning tree in ∆S, f0(∆S) − 1 of these generators will
be identified with the identity. Thus

m(∆) ≤ f1(∆S) − f0(∆S) + 1 = h2(∆S).

�

While the proof of the above corollary requires specific information about the set S and
a specific spanning tree T ⊂ ∆, its result is purely combinatorial. Since ∆ is connected,
π1(∆, ∗) is independent of the basepoint, and so we can sum over all such sets S ⊂ [d]
with |S| = 2 to get

(
d

2

)
m(∆) ≤

∑

|S|=2

h2(∆S)

= h2(∆) by Equation (1).

This gives the following theorem.

Theorem 4.9 Let ∆ be a pure, balanced simplicial complex of dimension (d−1) with the
property that lk∆F is connected for all faces F ∈ ∆ with |F | < d − 1. Then

(
d

2

)
m(∆) ≤ h2(∆).

5 Extensions and Further Questions

5.1 Simplicial Posets

We now generalize the results in Section 4 to the class of simplicial posets. A simplicial
poset is a poset P with a least element 0̂ such that for any x ∈ P \ {0̂}, the interval [0̂, x]
is a Boolean algebra (see Björner [1] or Stanley [12]). That is to say that the interval
[0̂, x] is isomorphic to the face poset of a simplex. Thus P is graded by rk(σ) = k + 1
if [0̂, σ] is isomorphic to the face poset of a k-simplex. The face poset of a simplicial
complex is a simplicial poset. Following [1], we see that every simplicial poset P has a
geometric interpretation as the face poset of a regular CW-complex |P | in which each
cell is a simplex and each pair of simplices is joined along a possibly empty subcomplex
of their boundaries. We call |P | the realization of P . With this geometric picture in
mind, we refer to elements of P as faces and work interchangeably between P and |P |. In
particular, we refer to rank-1 elements of P as vertices and maximal rank elements of P as
facets. As in the case of simplicial complexes, we say that the dimension of a face σ ∈ P
is rk(σ)− 1, and the dimension of P is d− 1 where d = rk(P ) = max{rk(σ) : σ ∈ P}. We
say that P is pure if each of its facets has the same rank. In addition, we can form the
order complex ∆(P ) of the poset P = P \ {0̂}, which gives a barycentric subdivision of
|P |.
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As with simplicial complexes, we define the link of a face τ ∈ P as

lkP τ = {σ ∈ P : σ ≥ τ}.

It is worth noting that lkP τ is a simplicial poset whose minimal element is τ , but lkP τ is
not necessarily a subcomplex of |P |. All hope is not lost, however, since for any saturated
chain F = {τ0 < τ1 < . . . < τr = τ} in (0̂, τ ] we have lk∆(P )(F ) ∼= ∆(lkP (τ)). Here we say
F is saturated if each relation τi < τi+1 is a covering relation in P .

We are also concerned with balanced simplicial posets and strongly connected simpli-
cial posets. Suppose P is a pure simplicial poset of dimension (d − 1), and let V denote
the vertex set of P . We say that P is balanced if there is a coloring κ : V → [d] such that
for each facet σ ∈ P and distinct vertices v, w < σ, we have κ(v) 6= κ(w). If S ⊆ [d], we
can form the S-rank selected poset of P , defined as

PS = {σ ∈ P : κ(σ) ⊆ S} where κ(σ) = {κ(v) : v < σ, rk(v) = 1}.

We say that P is strongly connected if for all facets σ, σ′ ∈ P there is a chain of facets

σ = σ0, σ1, . . . , σm = σ′,

and faces τi of rank d− 1 such that τi is covered by σi and σi+1 for all 0 ≤ i ≤ m− 1. For
simplicial complexes, the face τi is naturally σi ∩ σi+1; however, for simplicial posets, the
face τi is not necessarily unique.

As in Section 4, we are concerned with simplicial posets P of rank d satisfying the
following three properties:

(i). P is pure,

(ii). P is balanced,

(iii). lkP σ is connected for all faces σ ∈ P with 0 ≤ rk(σ) < d − 1.

Our first task is to understand the fundamental group of a simplicial poset by con-
structing an analogue of the edge-path group of a simplicial complex. We have to be
careful because there can be several edges connecting a given pair of vertices. An edge in
P is an oriented rank-2 element e ∈ P with an initial vertex, denoted init(e), and a termi-
nal vertex, denoted term(e). If e is an edge, we let e−1 denote its inverse edge, that is, we
interchange the initial and terminal vertices of e, reversing the orientation of e. We note
that the initial and terminal vertices of e are distinct since [0̂, e] is a Boolean algebra. We
also allow for the degenerate edge e = (v, v) for any vertex v ∈ P . An edge path γ in P is
a finite nonempty sequence e0e1 · · · er of edges in P such that term(ei) = init(ei+1) for all
0 ≤ i ≤ r−1. A closed edge path at v is an edge path γ such that init(e0) = v = term(er).
Given edge paths γ from v to v′ and γ′ from v′ to v′′, we can form their product edge
path γγ′ from v to v′′ by concatenation.

Suppose σ ∈ P is a rank-3 face with (distinct) vertices v, v′ and v′′ and edges e, e′ and
e′′ with init(e) = v = init(e′′), init(e′) = v′ = term(v) and term(e′′) = v′′ = term(e′).
Analogously to Section 3, we say that two edge paths γ and γ′ are simply equivalent if
the unordered pair {γ, γ′} is equal to one of the following unordered pairs:
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• {e′′, ee′} or {(v, v), ee−1};

• {γ1e
′′, γ1ee

′} or {γ1, γ1ee
−1} for some edge path γ1 ending at v;

• {e′′γ2, ee
′γ2} or {γ2, (e

′)−1e′γ2} for some edge path γ2 starting at v′′;

• {γ1e
′′γ2, γ1ee

′γ2} for edge paths γ1, γ2 as above.

We say that two edge paths γ and γ′ are equivalent and write γ ∼ γ′ if there is a
finite sequence of edge paths γ = γ0, . . . , γs = γ′ such that γi is simply equivalent to γi+1

for all i. As in the case of simplicial complexes, this forms an equivalence relation on the
collection of edge paths in P with initial vertex v and terminal vertex v′. We pick a base
vertex v0 and let Ẽ(P, v0) denote the collection of equivalence classes of closed edge paths

in P at v0. We give Ẽ(P, v0) a group structure by loop multiplication, and the resulting
group is called the edge path group of P based at v0.

Now we ask if the groups π1(P, v0) and Ẽ(P, v0) are isomorphic. As topological spaces,
|P | and ∆(P ) are homeomorphic and so their fundamental groups are isomorphic. The
latter space is a simplicial complex, and so we know that E(∆(P ), v0) ≈ π1(P, v0). The

following theorem will show that indeed π1(P, v0) ≈ Ẽ(P, v0).

Theorem 5.1 Let P be a simplicial poset of rank d satisfying properties (i) and (iii). If
v0 is a vertex in P , then

Ẽ(P, v0) ≈ E(∆(P ), v0).

Proof: Given an edge e ∈ P with initial vertex v and terminal vertex v′, we define an
edge path in ∆(P ) from v to v′ by barycentric subdivision as Sd(e) = (v, e)(e, v′). We

define Φ : Ẽ(P, v0) → E(∆(P ), v0) by

Φ([e0e1 · · · er] eE
) = [Sd(e0)Sd(e1) · · ·Sd(er)]E.

It is easy to check that Φ is well-defined, as it respects simple equivalences.
We now claim that ∆(P ) in fact satisfies properties (I)–(III) of Section 4. Since ∆(P )

is the order complex of a pure poset, it is pure and balanced. Indeed, the vertices in
∆(P ) are elements σ ∈ P , colored by their rank in P . Finally, for a saturated chain
F = {τ1 < τ2 < . . . < τr = τ} in P for which r < d − 1, we see that lk∆(P )F

∼= ∆(lkP (τ))
is connected since lkP τ is connected. By Proposition 3.3 in [4], we need only consider
saturated chains here. By Theorem 4.7, it follows that any class in E(∆(P ), v0) can be
represented by a closed edge path in (∆(P )){1,2}. In particular, we can represent any class
in E(∆(P ), v0) by an edge path γ = Sd(e0)Sd(e1) · · ·Sd(er) for some edge path e0e1 · · · er

in P . This gives a well-defined inverse to Φ. �

With Theorem 5.1 and the above definitions, the proofs of Proposition 4.1, Lemmas 4.2
and 4.4, and Theorem 4.5 carry over almost verbatim to the context of simplicial posets
and can be used to prove the following Lemma.

Lemma 5.2 Let P be a simplicial poset of rank d ≥ 2 that satisfies properties (i)–(iii).
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a. If σ ∈ P is a face and rk(σ) < d− 1, then lkP σ satisfies properties (i)–(iii) as well.

b. P is strongly connected.

c. For any S ⊆ [d] with |S| = 2, the rank selected subcomplex PS is connected.

d. If v and v′ are vertices in PS, then any edge path γ from v to v′ in P is equivalent
to an edge path from v to v′ in PS.

As in Section 4, part (d) of this Lemma implies the following generalization of Theo-
rem 4.9.

Theorem 5.3 Let P be a pure, balanced simplicial poset of rank d with the property that
lkPσ is connected for each face σ ∈ P with rk(σ) < d − 1. Then

(
d

2

)
m(P ) ≤ h2(P ).

5.2 How Tight are the Bounds?

We now turn our attention to a number of examples to determine if the bounds given
by Theorems 4.9 and 5.3 are tight. We begin by studying a family of simplicial posets
constructed by Novik and Swartz in [8]. Lemma 7.6 in [8] constructs a simplicial poset
X(1, d) of dimension (d − 1) satisfying properties (i)–(iii) whose geometric realization is
a (d − 2)-disk bundle over S

1 and h2(X(1, d)) =
(

d

2

)
. As X is a bundle over S

1 with
contractible fiber, we have π1(X(1, d), ∗) ≈ Z so that m(X(1, d)) = 1. This construction
shows that the bound in Theorem 5.3 is tight. Moreover, taking connected sums of r
copies of X(1, d) (when d ≥ 4) gives a simplicial poset P whose fundamental group is
isomorphic to Z

r and h2(P ) = r
(

d

2

)
. We do not know, however, if the bound in Theorem

5.3 is tight when π1(P, ∗) is either non-free or non-Abelian. We would also like to know
if Theorem 5.3 holds if we drop the condition that P is balanced.
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