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Abstract

A k×n Latin rectangle L is a k×n array, with symbols from a set of cardinality n,
such that each row and each column contains only distinct symbols. If k = n then L

is a Latin square. Let Lk,n be the number of k×n Latin rectangles. We survey (a) the
many combinatorial objects equivalent to Latin squares, (b) the known bounds on
Lk,n and approximations for Ln, (c) congruences satisfied by Lk,n and (d) the many
published formulae for Lk,n and related numbers. We also describe in detail the
method of Sade in finding L7,7, an important milestone in the enumeration of Latin
squares, but which was privately published in French. Doyle’s formula for Lk,n is
given in a closed form and is used to compute previously unpublished values of L4,n,
L5,n and L6,n. We reproduce the three formulae for Lk,n by Fu that were published
in Chinese. We give a formula for Lk,n that contains, as special cases, formulae of
(a) Fu, (b) Shao and Wei and (c) McKay and Wanless. We also introduce a new
equation for Lk,n whose complexity lies in computing subgraphs of the rook’s graph.

1 Introduction

A k×n Latin rectangle is a k×n array L, with symbols from Zn, such that each row and
each column contains only distinct symbols. If k = n then L is a Latin square of order n.
Let Lk,n be the number of k × n Latin rectangles. As we will see, the exact value of Lk,n

can be computed only for small values of k or n.
The main aim of this paper is to provide a survey of the many formulae involving Lk,n.

The structure of this paper is as follows. In the remainder of this section we summarise the
enumeration of Ln,n for small n. In Section 2 we identify several combinatorial objects that
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are equivalent to Latin squares or Latin rectangles. We also introduce some important
equivalence relations amongst Latin squares and Latin rectangles. In Section 3 we survey
the bounds for Lk,n and compare the bounds for Ln,n in a table for 5 6 n 6 20. In
Section 4 we discuss congruences satisfied by Lk,n. In Section 5 we list several explicit
formulae for Lk,n and Ln,n. We also use a formula of Doyle to find values of Lk,n for
k ∈ {4, 5, 6}. In Section 6 we give a detailed discussion of the method used by Sade in
finding L7,7 and describe the modern algorithm by McKay and Wanless that was used
to find L11,11. In Section 7 we survey the asymptotic formulae for Lk,n. We give some
concluding remarks in Section 8.

In this paper, we assume k 6 n. We will index the rows of L by {0, 1, . . . , k−1} ⊆ Zn,
the columns of L by Zn and take the symbol set to be Zn. A Latin rectangle is called
normalised if the first row is (0, 1, . . . , n−1), and reduced if the first row is (0, 1, . . . , n−1)
and the first column is (0, 1, . . . , k−1)T . Let Kk,n denote the number of normalised k×n
Latin rectangles and let Rk,n denote the number of reduced k×n Latin rectangles. In the
case of Latin squares, the numbers Ln,n, Kn,n and Rn,n will be denoted Ln, Kn and Rn,
respectively. The three numbers Lk,n, Kk,n and Rk,n are related by

Lk,n = n!Kk,n =
n!(n − 1)!

(n − k)!
Rk,n. (1)

In particular
Ln = n!Kn = n!(n − 1)!Rn. (2)

Observe that (a) Kn is also the number of Latin squares L = (lij) of order n with
lii = 0 for all i ∈ Zn and (b) Rn also is the number of normalised Latin squares L = (lij)
of order n with lii = 0 for all i ∈ Zn [83, Thm 7.21].

The use of the term “reduced” goes back at least to MacMahon [87], and was adopted,
for example, by Fisher and Yates [47], Dénes and Keedwell [29, 32] and Laywine and
Mullen [83]. Euler [43] instead used the term quarrés réguliers or “regular square.” Some
authors use “normalised” [95, 176], “standardized” [41], “standard” or “in standard form”
[114] in place of what we call “reduced.” Similarly, our definition of “normalised” also
has some alternative names; for example “standardised” [34], “in the standard form” [8],
“semi-normalised” [176] and “reduced” [20, 26, 64, 121], which can be confusing. Some
authors avoid this problem by not assigning names to reduced or normalised Latin squares,
for example [21, 59, 124, 163].

The number of k× n normalised Latin rectangles L = (lij) satisfying l00 < l10 < · · · <
l(k−1)0 is the number of k × n Latin rectangles with the first row and column in order; it
is given by Lk,n/

(
n!(k − 1)!

)
. For k < n this is not, in general, the number of reduced

k × n Latin rectangles, as given by (1). In [162] this type of Latin rectangle was called
“reduced.” A notion of “very reduced” was considered by Moser [104], which was later
generalised to “i − j reduced” by Mullen [105] and Hamilton and Mullen [67].

Recently, McKay and Wanless [96] published a table of values for Rk,n when 2 6 k 6

n 6 11, which was obtained by lengthy computer enumerations (this table is reproduced
in Figure 3; we omit Rn−1,n = Rn and R1,n = 1). Figure 1 reproduces the values of
Rn for 1 6 n 6 11 and alongside is a list of relevant references. As can be seen in the
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table, much research has been put into the enumeration of Rn over many years and some
surveys of its history were provided by Dénes and Keedwell [29, Sec. 4.3], McKay and
Wanless [96] and McKay, Meynert and Myrvold [94]. It is possible that Clausen found
R6 in 1842 (see [80] for a discussion). The value of R12 is currently unknown, but the
estimate R12 ≈ 1.62 · 1044 was one of the estimates given by McKay and Rogoyski [95].
Zhang and Ma [178] and Kuznetsov [82] later gave estimates for Rn for n 6 20 which
agree with the estimates in [95]. We tabulate these estimates in Figure 2.

n Rn Year References

1 1
2 1
3 1
4 4
5 56 1782 [21, 43, 89]
6 9408 1890 [47, 48, 70, 132, 134, 158, 174]
7 16942080 1948 [48, 55, 114, 125, 127, 133, 173]
8 535281401856 1967 [4, 81, 107, 168]
9 377597570964258816 1975 [7, 107]

10 7580721483160132811489280 1995 [95]
11 5363937773277371298119673540771840 2005 [96]

Figure 1: Rn for 1 6 n 6 11.

McKay, Rogoyski Zhang, Ma Kuznetsov
n Rn ≈ Rn ≈ Rn ≈ confidence interval %err.

12 1.62·1044 1.622·1044 1.612·1044 (1.596·1044, 1.629·1044) 1
13 2.51·1056 2.514·1056 2.489·1056 (2.465·1056, 2.515·1056) 1
14 2.33·1070 2.332·1070 2.323·1070 (2.300·1070, 2.347·1070) 1
15 1.5·1086 1.516·1086 1.516·1086 (1.499·1086, 1.531·1086) 1
16 7.898·10103 8.081·10103 (7.920·10103, 8.242·10103) 2
17 3.768·10123 3.717·10123 (3.642·10123, 3.791·10123) 2
18 1.869·10145 1.828·10145 (1.773·10145, 1.883·10145) 3
19 1.073·10169 1.103·10169 (1.059·10169, 1.147·10169) 4
20 7.991·10194 7.647·10194 (7.264·10194, 8.028·10194) 5
50 3.06·102123

100 1.78·1011396

Figure 2: Estimates for Rn.
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n, k Rk,n

3, 2 1

4, 2 3
3 4

5, 2 11
3 46
4 56

6, 2 53
3 1064
4 6552
5 9408

7, 2 309
3 35792
4 1293216
5 11270400
6 16942080

8, 2 2119
3 1673792
4 420909504
5 27206658048
6 335390189568
7 535281401856

n, k Rk,n

9, 2 16687
3 103443808
4 207624560256
5 112681643083776
6 12952605404381184
7 224382967916691456
8 377597570964258816

10, 2 148329
3 8154999232
4 147174521059584
5 746988383076286464
6 870735405591003709440
7 177144296983054185922560
8 4292039421591854273003520
9 7580721483160132811489280

11, 2 1468457
3 798030483328
4 143968880078466048
5 7533492323047902093312
6 96299552373292505158778880
7 240123216475173515502173552640
8 86108204357787266780858343751680
9 2905990310033882693113989027594240

10 5363937773277371298119673540771840

Figure 3: Rk,n for 2 6 k < n 6 11.
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2 Equivalence

In this section we will identify some combinatorial objects equivalent (in some sense) to
Latin squares. Many of the objects listed in this section were identified by [6, 25, 29, 83].
Our primary focus will be in finding formulae for Ln, Kn or Rn. We are not able to
produce a complete list of the combinatorial objects equivalent to Latin squares, nor is it
likely to be possible to produce such a list.

2.1 Isotopism and parastrophy

We are motivated by Bailey and Cameron [6] to accompany our discussion of objects
equivalent to Latin squares with a discussion on the symmetry of the object.

Let Sn be the symmetric group acting on Zn. For any Latin square L = (lij) of
order n an ordered triplet of permutations θ = (α, β, γ) ∈ Sn × Sn × Sn will denote a
mapping of L such that the rows of L are permuted according to α, the columns of L are
permuted according to β and the symbols of L are permuted according to γ. In other
words, θ(L) = (l′ij) is the Latin square defined by

l′ij = γ
(
lα−1(i)β−1(j)

)
(3)

for all i, j ∈ Zn. The mapping θ is called an isotopism. The group of all isotopisms is
called the isotopism group. The identity permutation will be denoted ε. Any isotopism
other than (ε, ε, ε) is non-trivial.

Let L and L′ be Latin squares of order n. If there exists an isotopism θ such that
θ(L) = L′, then L and L′ are said to be isotopic. The set of all Latin squares isotopic
to L is called the isotopy class of L. If θ(L) = L, then θ is said to be an autotopism of
L. The group of all autotopisms of L is called the autotopism group of L, which we will
denote Atop(L). If θ = (α, β, γ) is an isotopism such that α = β = γ, then θ is said to
be an isomorphism. The group of all isomorphisms is called the isomorphism group. The
set of all Latin squares isomorphic to L is called the isomorphism class of L. If θ is an
isomorphism and an autotopism of L then θ is said to be an automorphism of L. The
group of all automorphisms of L is called the automorphism group of L, denoted Aut(L).
Clearly, Aut(L) is a subgroup of Atop(L). Classifying which isotopisms are autotopisms
of some Latin square is a largely open problem [44, 77, 78, 144, 153]. Given a Latin square
L = (lij) of order n we can construct a set of n2 ordered triplets

O =
{
(i, j, lij) : i, j ∈ Zn

}

called the orthogonal array of L. Conversely, any set O of n2 triplets (i, j, lij) ∈ Zn×Zn ×
Zn, such that distinct triplets differ in at least two coordinates, gives rise to a Latin square
L = (lij). Any element of the orthogonal array O of L is called an entry of L. There are
six, not necessarily distinct, Latin squares that can be constructed from L by uniformly
permuting the coordinates of each entry in O and each is called a parastrophe of L. We use
λ ∈ {ε, (rc), (rs), (cs), (rcs), (rsc)} to permute the coordinates of each entry in O, where

the electronic journal of combinatorics 17 (2010), #A1 5



r, c and s correspond to the first, second and third coordinates, respectively. We use
Lλ to denote the parastrophe of L induced by λ and call {ε, (rc), (rs), (cs), (rcs), (rsc)}
under composition the parastrophy group. For example, L(rc) is the matrix transpose of
L. For k×n Latin rectangles L with k < n, we can similarly construct a set of kn entries
O from L. However, it is only sensible to consider the (cs)-parastrophe of L.

Typically, “conjugate” [149, 150] is used in place of “parastrophe” [128, 139]. Here we
use “parastrophe” to match the author’s PhD thesis [153]. Group-theoretic conjugation
plays an important role in the study of autotopisms [77, 153] and there are other notions
of conjugacy in the study of quasigroups [74, 75] (quasigroups will be introduced in Sec-
tion 2.2). Norton [114], for example, used the term “adjugate,” but this terminology is
rarely adopted in modern times. The term “adjugate” also has a use in linear algebra.

The term “parastrophe” is due to J. B. Shaw [139], but the concept goes back
to E. Schröder [136] and even L. Euler [43]. Parastrophes have been considered
by E. Schröder [136, 137] and Schönhardt [134] under the name “Koordiniert”,
by R. H. Bruck [13, 14] as the “associated” algebras, by I. M. H. Etherington
[42] as “transposes”, by H. A. Thurston [159] as “equasigroups” and by D. A.
Norton and S. K. Stein [112, 113, 149, 150] as “conjugates”.

– Sade (translated) [128]

The one name that I very much regret we did not advocate strongly enough
in connection with enumeration is “parastrophe” (see Sade [128]) rather than
“conjugate” (invented by Stein [149, 150]).

– Keedwell (private communication 2010)

The main class (or species) of L is the set of all Latin squares that are isotopic to some
parastrophe of L. If L and L′ are within the same main class, then they are said to be
paratopic. A map that combines both isotopism and parastrophy is called a paratopism.
The group of all paratopisms is called the paratopism group. If τ is a paratopism such that
τ(L) = L then τ is said to be an autoparatopism of L. The group of all autoparatopisms
of L is called the autoparatopism group of L, which we will denote Apar(L).

The term “species” [7, 55, 114, 119, 127, 168] was popular until circa 1974 when Dénes
and Keedwell published their book [29], which instead used the now popular term “main
class” [25, 32, 69, 81, 94, 96]. It appears Dénes and Keedwell derived this term from
Schönhardt [134], who used the German “Grundklasse.” McKay, Meynert and Myrvold
[94] also noted the synonym “paratopy class,” but this is rarely used.

Several other subgroups of the paratopism group are of importance. For instance,
McKay, Meynert and Myrvold [94] considered the type of L, which is the set of all Latin
squares that are either isotopic to L or isotopic to L(rc). We will call the group combining
isotopism with (rc)-parastrophy the type group. Another example are isotopisms of the
form θ = (α, β, ε), which are called principal isotopisms. Principal isotopisms have been
studied, for example, by Ganfornina [50].

the electronic journal of combinatorics 17 (2010), #A1 6



We depict some of the subgroup structure of the paratopism group in Figure 4, with
arrows denoting subgroups. The first row of groups vary only with n, the second row of
groups varies with the Latin square L (which is of order n) and the third row of groups
are independent of both L and n.

paratopism
group

∼= S3
n ⋊ S3

type group
∼= S3

n ⋊ S2

isotopism
group ∼= S3

n

isomorphism
group ∼= Sn

autoparatopism
group Apar(L)

parastrophy
group ∼= S3

autotopism
group Atop(L)

automorphism
group Aut(L)

trivial group

Figure 4: Some important subgroups of the paratopism group, where L is a Latin square
of order n.

McKay, Meynert and Myrvold [94] gave a construction from L of three graphs with
automorphism groups that are isomorphic to Aut(L), Atop(L) and Apar(L). The LOOPS

[108, 109] package for GAP [51] implements a completely different algorithm for finding the
automorphism group of a Latin square. For orders 1 6 n 6 10, the number of (a) main
classes, (b) types, (c) isotopy classes, (d) isomorphism classes and (e) isomorphism classes
containing a reduced Latin square was also given by [94] along with enumeration formulae
and a survey of the “sorry history of the subject”. Hulpke, Kaski and Österg̊ard [69]
reported these numbers for order 11. These numbers are reproduced in Figures 5 and 7
along with a list of relevant references. None of these numbers alone provide sufficient
information to find Ln.

Various notation has been used instead of Atop(L) and Apar(L). We list some exam-
ples in Figure 6. Since there is no consensus on notation, the decision to use Atop(L) and
Apar(L) in this paper is based on the author’s personal preference.

2.2 Quasigroups

A quasigroup (Q,⊕) of order n is a set Q of cardinality n together with a binary operation
⊕, such that for all g, h ∈ Q, the equations x⊕g = h and g⊕y = h have unique solutions
with x, y ∈ Q. If (Q,⊕) possesses an identity element e, that is e satisfies e⊕g = g = g⊕e
for all g ∈ Q, then Q is called a loop.
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n Main classes Types Isotopy classes

1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 2
5 2 2 2
6 12 17 22
7 147 324 564
8 283657 842227 1676267
9 19270853541 57810418543 115618721533

10 34817397894749939 104452188344901572 208904371354363006
11 2036029552582883134196099 6108088657705958932053657 12216177315369229261482540

References: [4, 11, 12, 47, 69, 81, 94, 114, 119, 125, 132, 134, 168]

Figure 5: The number of main classes, types and isotopy classes of Latin squares of order
n.

Aut(L) Atop(L) Apar(L)

2007 Hämäläinen and Cavenagh [66] Aut(L)
2007 Csörgő, Drápal and Kinyon [27] Aut(L) Atp(L)

c. 2006 Falcón et al. [44, 45, 50] U(L)
c. 2005 McKay et al. [94, 96] Aut(L) Is(L) Par(L)

2004 Kinyon, Kunen and Phillips [79] Atop(L)
1990 Kolesova, Lam and Thiel [81] GL GL

c. 1967 Sade [129, 130, 131] A(L)

Figure 6: Table of synonyms for Aut(L), Atop(L) and Apar(L).

If (Q,⊕) is a quasigroup and ⊳ is a total order on Q, then we call (Q,⊕, ⊳) an ordered
quasigroup. The Cayley table of an ordered quasigroup (Q,⊕, ⊳) is the matrix L = (lij)
such that lij = i ⊕ j, where the rows and columns of L are indexed by Q in the order
defined by ⊳. Hence Ln is the number of ordered quasigroups on a set Q of cardinality n
with total order ⊳. If (Q,⊕, ⊳) is an ordered loop such that the identity e is the minimum
under ⊳, then its Cayley table is a reduced Latin square. Hence Rn is the number of
ordered loops on a set Q of cardinality n with identity e ∈ Q and total order ⊳ with
minimum e.

For any permutation α of Q, we may define a quasigroup (Q, ⋆) by α(i)⋆α(j) = α(i⊕j)
for all i, j ∈ Q. We say that (Q, ⋆) is isomorphic to (Q,⊕) and call the set of quasigroups
isomorphic to (Q,⊕) the isomorphism class of (Q,⊕). Let ⊳ be any total order on Q. Let
L and L′ be the unique Cayley tables of the ordered quasigroups (Q,⊕, ⊳) and (Q, ⋆, ⊳),
respectively. Then θ(L) = L′ where θ = (α, α, α) by (3), that is, L is isomorphic to L′. It
follows that an isomorphism class of Latin squares is precisely the set of Cayley tables of
an isomorphism class of quasigroups with a fixed total order ⊳. In fact, the definition of
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isomorphism amongst Latin squares stems from isomorphism amongst quasigroups.
The number of isomorphism classes of quasigroups is the number of isomorphism

classes of Latin squares of order n. Curiously, the number of isomorphism classes of
quasigroups is odd for all 1 6 n 6 17 except when n = 12 [151]. A result of [96] implies
that the number of isomorphism classes of quasigroups is asymptotic to Ln/n! = Kn. In
each isomorphism class of quasigroups there (a) might not be a loop, (b) might be one
loop or (c) might be more than one loop. The number of isomorphism classes of Latin
squares that contain a reduced Latin square is the number of isomorphism classes of loops
(since every quasigroup isomorphic to a loop is also a loop). These numbers are listed for
n 6 11 in Figure 7, sourced from [69, 94], along with a list of relevant references.

n Loops Quasigroups

1 1 1
2 1 1
3 1 5
4 2 35
5 6 1411
6 109 1130531
7 23746 12198455835
8 106228849 2697818331680661
9 9365022303540 15224734061438247321497

10 20890436195945769617 2750892211809150446995735533513
11 1478157455158044452849321016 19464657391668924966791023043937578299025

References: [1, 9, 17, 29, 69, 94, 131, 134], Bower, Guérin and “QSCGZ” [94]

Figure 7: The number of isomorphism classes of loops of order n and the number of
isomorphism classes of quasigroups of order n, for 1 6 n 6 11.

In Figure 8 we reproduce the list, given by Bailey and Cameron [6], of isomorphism
class representatives of Latin squares of order 3. These Latin squares are not isomorphic,
but they are isotopic. In fact, there is only one isotopy class of Latin squares of order 3.





0 2 1
2 1 0
1 0 2



,





0 1 2
1 2 0
2 0 1



,





0 1 2
2 0 1
1 2 0



,





0 2 1
1 0 2
2 1 0



,





1 0 2
0 2 1
2 1 0





Figure 8: A Latin square from each isomorphism class of order 3.

2.3 Graphs

In this section we identify some graph-theoretic objects that are equivalent to Latin
squares (see also [29, Sec. 9.1] and [83, Ch. 7]).

the electronic journal of combinatorics 17 (2010), #A1 9



2.3.1 Rook’s graphs.

Let G = Gk,n be the graph with vertex set {(i, j) : 0 6 i 6 k − 1 and 0 6 j 6 n− 1} and
edges between distinct (i, j) and (i′, j′) whenever i = i′ or j = j′. We will call G a rook’s
graph since edges represent legal moves by a rook on a k×n chess board. There are other
names for G, for example G is (a) the line graph of the complete bipartite graph (with
parts of cardinality k and n) and (b) the graph Cartesian product of the complete graphs
on k and n vertices. As usual we assume k 6 n.

A k × n Latin rectangle L = (lij) corresponds to a proper vertex-colouring of G
with colour set Zn, with vertex (i, j) receiving colour lij . This observation was made by
Athreya, Pranesachar and Singhi [5]. For example, Figure 9 is G3,4 with an example of
a proper vertex-colouring from the colour set Z4. Hence Lk,n is the number of proper
vertex-colourings of G with colour set Zn. Equivalently, Lk,n is the chromatic polynomial
P (G, x) evaluated at x = n, that is, Lk,n = P (Gk,n, n).

The number of k × n matrices with at most x distinct symbols in total and without
repeated symbols in each row and column is enumerated by P (G, x). The enumeration of
this type of generalised Latin rectangle was also considered by Light Jr. [86] and Nechvatal
[111]. In Figure 10 we list P (G, x) for some small values of k and n that were computed
by Kerri Morgan (private communication).

1 0 3 2

3 2 0 1

2 3 1 0

Figure 9: The graph G3,4 with a proper vertex-colouring from the colour set Z4.

2.3.2 Latin square graphs.

Let L = (lij) be a Latin square of order n. Let H = H(L) be the graph with vertex set
{(i, j) : i, j ∈ Zn} and an edge between distinct (i, j) and (i′, j′) whenever i = i′ or j = j′

or lij = li′j′. The graph H is called a Latin square graph of order n.
We say a graph G is (v, a, b, c)-strongly regular if (a) G has v vertices, (b) every

vertex has a neighbours, (c) every pair of adjacent vertices has b common neighbours and
(d) every pair of non-adjacent vertices has c common neighbours. A Latin square graph
is (n2, 3(n−1), n, 6)-strongly regular. The following theorem was attributed to Bruck [16]
(see also [15]) by Bailey and Cameron [6, Pro. 3].
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k n P (Gk,n, x)

2 2 x(x − 1)(x2 − 3x + 3)
2 3 x(x − 1)(x − 2)(x3 − 6x2 + 14x − 13)
2 4 x(x − 1)(x − 2)(x − 3)(x4 − 10x3 + 41x2 − 84x + 73)
2 5 x(x − 1)(x − 2)(x − 3)(x − 4)(x5 − 15x4 + 95x3 − 325x2 + 609x − 501)

3 3 x(x − 1)(x − 2)(x6 − 15x5 + 100x4 − 381x3 + 877x2 − 1152x + 688)
3 4 x(x − 1)(x − 2)(x − 3)(x8 − 24x7 + 264x6 − 1746x5 + 7620x4 − 22512x3

+43939x2 − 51630x + 27808)
3 5 x(x − 1)(x − 2)(x − 3)(x − 4)(x10 − 35x9 + 570x8 − 5710x7 + 39098x6 − 191728x5

+683055x4 − 1746375x3 + 3063456x2 − 3321652x + 1684912)

4 4 x(x − 1)(x − 2)(x − 3)(x12 − 42x11 + 833x10 − 10338x9 + 89589x8 − 572046x7 + 2762671x6

−10172046x5 + 28328427x4 − 58124022x3 + 83236871x2 − 74505978x + 31430160)

Figure 10: P (Gk,n, x) for some small values of k and n.

Theorem 2.1. If n > 24 then any (n2, 3(n − 1), n, 6)-strongly regular graph is a Latin
square graph. Furthermore, if (a) L is a Latin square of order n > 5, (b) H is the Latin
square graph of L and (c) H ′ is a graph isomorphic to H, then H ′ is the Latin square
graph of a Latin square L′ paratopic to L.

It follows that, for n > 24, the number of isomorphism classes of (n2, 3(n − 1), n, 6)-
strongly regular graphs is the number of main classes of Latin squares of order n. The
automorphisms of Latin square graphs were studied by Phelps [116, 117].

2.3.3 Proper edge-colourings of the complete bipartite graph.

Let G be the balanced complete bipartite graph with vertex bipartition {u0, u1, . . . , un−1}∪
{w0, w1, . . . , wn−1}. Let C be a proper edge-colouring of G with edge colour set Zn. The
edges of colour s define a permutation of Zn by i 7→ j whenever ui is adjacent to wj by
an edge of colour s. So we can construct a Latin square L = L(C) = (lij) from C with
lij = s whenever ui is adjacent to wj by an edge of colour s. Hence Ln is the number of
proper edge-colourings of G with edge colour set Zn.

The group Aut(G) × Sn acts on the set of proper edge-colourings of G; with (τ, γ) ∈
Aut(G) × Sn permuting the vertices of G according to τ and the edge colours according
to γ. In fact, Aut(G) × Sn is isomorphic to the type group (see Section 2.1). Let C be
an arbitrary proper edge-colouring of G. The orbit of C under Aut(G) × Sn corresponds
to the type of L(C). Therefore the number of non-isomorphic edge-colourings of G is the
number of types of Latin squares of order n.

A one-factor of a graph (in this case G) is a 1-regular spanning subgraph. A de-
composition of G is a set of subgraphs of G whose edge sets partition the edge set of G.
In particular, a one-factorisation of G is a decomposition of G into a set of one-factors.
Given a one-factorisation of G, we can construct n! proper edge-colourings by assigning
a distinct colour of Zn to each one-factor and then colouring each edge in G according to
the colour of one-factor to which it belongs. Consequently, Kn = Ln/n! is the number
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of one-factorisations of G. The number of non-isomorphic one-factorisations of G is the
number of types of Latin squares of order n.

Figure 11 depicts a one-factorisation of the balanced complete bipartite graph G
on 2n = 10 vertices. The first column of vertices is u0, u1, . . . , un−1 and the second is
w0, w1, . . . , wn−1, with both in descending order. To illustrate the correspondence with
Latin squares, the vertices ui are marked j whenever ui is adjacent to wj . Note that
Figure 11 identifies the Latin square defined by lis = j, that is, L(C)(cs).

Dénes and Keedwell [30, 31] and Laywine and Mullen [83] discussed one-factorisations
of the complete bipartite graph (see also [29] and [32]). Wanless et al. [18, 19, 91, 164,
166, 167] studied the Latin squares formed from certain one-factorisations of G.

0 1 2 3 4

2 0 3 4 1

1 4 0 2 3

4 3 1 0 2

3 2 4 1 0

Figure 11: A one-factorisation of a complete bipartite graph.

2.3.4 One-factorisations of the complete directed graph.

A set S of permutations of Zn is called sharply transitive if for all i, s ∈ Zn there is a
unique σ ∈ S such that σ(i) = s. It follows that |S| = n. We define σj ∈ S to be the
permutation that maps 0 to j. We can construct a normalised Latin square L = (lij) of
order n from S by assigning lij = σj(i). Moreover, if ε ∈ S then L is a reduced Latin
square. Hence Kn is the number of sharply transitive sets of Zn and Rn is the number of
sharply transitive sets S of Zn with ε ∈ S.

A one-factorisation of a directed graph G is a decomposition of G into subgraphs in
which every vertex has in-degree and out-degree 1.

Let G be the loop-free complete directed graph on the vertex set Zn. Assume that
ε ∈ S. Each non-trivial σ ∈ S is equivalent to the subgraph of G with an edge from
each i ∈ Zn to σ(i). Together, the non-trivial σ ∈ S yield a one-factorisation of G.
Conversely, given a one-factorisation of G we may reverse this process to construct a
sharply transitive set of permutations S = {σj}j∈Zn

with σ0 = ε. Hence Rn is the number
of one-factorisations of G. This equivalence was noticed in [83, pp. 112–113].

Let G′ be the complete directed graph on n vertices, with a single loop on each
vertex. A one-factorisation of G′ corresponds to a sharply transitive set S = {σj}j∈Zn

,
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but this time we do not necessarily have σ0 = ε. Consequently, Kn is the number of one-
factorisations of G′. This equivalence was also noticed in [83, pp. 111–112]. In Figure 12
we give an example of a one-factorisation of G′ on 3 vertices; if there is an edge from
vertex i to vertex j, then we mark vertex i with j to highlight the correspondence with
Latin squares.

0 2 1

1 0 2

2 1 0

Figure 12: A one-factorisation of G′ on 3 vertices.

2.3.5 Triangle decompositions of the complete tripartite graph.

Let G be the balanced complete tripartite graph with vertex partition R ∪ C ∪ S with
|R| = |C| = |S| = n. We will consider a triangle of G to be any triplet in R × C × S.
The orthogonal array of L therefore defines a decomposition of G into triangles. Hence
Ln is the number of decompositions of G into triangles. Figure 13 gives an example of a
triangulation of the balanced complete tripartite graph on 6 vertices; identically labelled
vertices are identified.

Colbourn [24] used the NP-completeness of the problem of decomposing a tripartite
graph into triangles to show that the problem of partial Latin square completion is also
NP-complete.

c0 c1

r0 0 1 r0

r1 1 0 r1

c0 c1

Figure 13: A triangulation of a complete tripartite graph on 6 vertices.
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2.4 Miscellany

2.4.1 3-nets and transversal designs.

A 3-net [6, 29, 68, 72] is an incidence structure with n2 points and 3n lines such that
(a) each line contains n points and each point lies on 3 lines, (b) each pair of points lie on
at most one line and (c) the lines can be partitioned into 3 families of n lines, each of which
is a partition of the set of points, with each pair of lines from distinct families intersecting
at a unique point. A Latin square L forms a 3-net with its orthogonal array as the set
of points and lines corresponding to the rows, columns and symbols of L. Condition (c)
implies that L can be recovered from the 3-net [6].

A transversal design is the dual of a 3-net. It has 3n points and n2 lines such that
(a) each line contains 3 points and each point lies on n lines, (b) each pair of points lie
on at most one line and (c) the points can be partitioned into 3 families of n points, with
each pair of points from different families lying on a unique line and each line containing
one point from each family.

Isomorphism amongst 3-nets and transversal designs corresponds to paratopism of
Latin squares. Therefore, the number of non-isomorphic 3-nets is the number of non-
isomorphic transversal designs, and is also the number of main classes of Latin squares.

2.4.2 Error-detecting codes.

We can write the orthogonal array of a Latin square L = (lij) as an n2×3 array with each
row equal to (i, j, lij) for some i, j ∈ Zn. It has the property that any pair of distinct rows
differs by at least two entries. Such an array is called a 1-error-detecting code [29, p. 354].
The rows are referred to as codewords, the symbol set is called the alphabet and the word
length is 3, the number of columns. It is straightforward to construct an orthogonal array
of a Latin square from a 1-error-detecting code with these parameters. Hence Ln is the
number of 1-error-detecting codes with n2 codewords of word length 3 and alphabet of
size n.

2.4.3 Permutation cubes.

Let L be a Latin square. Then L corresponds to the n × n × n (0, 1)-array M = (mijk)
with mijk = 1 whenever lij = k. Equivalently M indicates the position of n2 mutually
non-attacking rooks on an n× n× n chess board. Hence Ln is the number of such arrays
M and the number of arrangements of n2 mutually non-attacking rooks on an n × n × n
chess board.

3 Bounds

In this section we discuss the known bounds for Rn. We will see that the best known
bounds for Rn are still quite poor. We can easily find a super-exponential lower bound on
Rn. In fact, for any k > 2, Rk,n increases super-exponentially as n → ∞. To show this,
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observe that Rk,n > Rk′,n whenever k′ 6 k 6 n. A derangement is a permutation without
fixed points. When n > k we have Rk,n > R2,n = Dn/(n− 1), where Dn is the number of
derangements on a set of cardinality n. It is well-known that Dn ∼ exp(−1) · n!. Hence
Rk,n increases super-exponentially with n and Rn > Rk,n when n > k.

To study the bounds on Rk,n, we will need to introduce the permanent function for
square matrices. The permanent of a square matrix, M = (mij)n×n is defined as

per(M) =
∑

σ∈Sn

∏

i∈Zn

miσ(i)

where Sn is the symmetric group on Zn. The primary source of information for permanents
is Minc [100, 101, 102], which was updated in [23]; see also his biography by Marcus [92].

Given a k × n Latin rectangle L we can construct an n × n (0, 1)-matrix T = (tij)
such that tij = 1 if and only if symbol j does not occur in column i in L. The matrix
T is called the template of L. We will index the rows and columns of T by Zn. For any
σ ∈ Sn, if tiσ(i) = 1 for all i ∈ Zn then L can be extended to a (k + 1)× n Latin rectangle
with the new row containing symbol σ(i) in column i for each i ∈ Zn. Therefore, the
number of ways L can be extended to a (k + 1) × n Latin rectangle is per(T ).

Let Λs
n denote the set of (0, 1)-matrices with exactly s non-zero entries in each row

and column. It follows that

k−1∏

s=0

min
M∈Λn−s

n

per(M) 6 Lk,n 6

k−1∏

s=0

max
M∈Λn−s

n

per(M). (4)

Let M = (mij) be a (0, 1)-matrix and define the row sum ri =
∑

j∈Zn
mij for all rows i.

Hall Jr. [65] showed that if per(M) > 0 then per(M) > mini∈Zn
ri!. Jurkat and Ryser

[73, (12.33)] showed that per(M) >
∏n

i=1 max(0, ri − i + 1). Minc [99] showed that a
result of Sinkhorn [140] implies that if M ∈ Λs

n then per(M) > n(s− 3)/3 and improved
this lower bound to per(M) > n(s − 2) + 2.

Minc [97] showed that per(M) 6
∏

i∈Zn
(ri +1)/2 with equality if and only if M ∈ Λ1

n

which was subsequently improved [98] to per(M) 6
∏

i∈Zn
(ri +

√
2)/(1 +

√
2). Brègman

[10] (see also [135]) proved a conjecture of Minc [97] that per(M) 6
∏

i∈Zn
ri!

1/ri . Liang

and Bai [84] gave per(M) 6
∏n−1

i=0

√

ai(ri − ai + 1) where ai = min(⌈(ri + 1)/2⌉ , ⌈i/2⌉).
A lower bound for the maximum permanent in Λs

n was given by Wanless [165].
We can combine (4) with the above bounds on the permanent of matrices in Λs

n to find
bounds for Lk,n and consequently Rk,n by (1). We will now discuss some other bounds on
Rn. Hall Jr. [65] gave the lower bound Rk,n >

∏n−2
i=n−k+1 i!, which was also proved by Ryser

[124, pp. 52–53]. Alter [3] gave the “crude upper bound” Rn 6 (n − 1)!
∏n−2

i=1 in−i−1 · i!.
An upper bound was also given by Duan [38], but it is no better than that of Alter for
n > 13, although it appears Duan did not have access to Alter’s paper. Smetaniuk [143]
showed that Ln+1 > (n + 1)!Ln and therefore Rn+1 > (n − 1)!Rn by (1). Van Lint and
Wilson [163, Thm 17.2] showed that the van der Waerden Conjecture [161] (proved by
[39, 46]) implies that Ln > n!2nn−n2

. Skau [141] showed that

n!(1 − k/n)nLk,n 6 Lk+1,n 6 (n − k)!n/(n−r)Lk,n.
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A comparison of the discussed bounds for Rn is given in Figure 14. We also include
the known values of Rn and the approximations by [82, 95, 178] (see also Figure 2). The
data in Section 5 is used to find Skau’s bounds. It is clear there remains a large difference
between the best upper and lower bounds on Rn. Judging from Figure 14, it appears
that the best known upper and lower bounds on Rn both have at least an exponential
difference from Rn.

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lower bound by:
Hall Jr. 2 3 5 8 12 16 22 28 36 45 54 65 77 91 105 121
Smetaniuk 42 51 61 72 84 97 112 127 145
Van Lint and Wilson 1 2 4 8 13 20 28 37 48 61 76 93 112 132 155 180
Skau 38 49 62 76 93 112 133 155 180

Rn 2 4 8 12 18 25 34
Approximation 2 4 8 12 18 25 34 45 57 71 87 104 124 146 170 195

Upper bound by:
Skau 49 62 76 94 112 133 156 181 208

Brègman, Minc 3 5 9 14 21 29 38 49 63 77 94 113 134 156 181 208
Liang and Bai 2 5 9 14 20 29 38 50 63 79 96 116 137 161 187 215
Alter 4 7 12 19 27 37 50 64 80 99 119 142 168 196 226 259
Duan 2 5 10 16 25 35 48 63 81 101 123 149 177 208 242 278

Figure 14: The number of decimal digits of some bounds on Rn, approximations of Rn

and the value of Rn itself.

4 Congruences

The author’s PhD thesis [153] was primarily concerned with congruences satisfied by Rk,n.
The study of the number-theoretic properties of Rk,n is partly motivated by Alter [3]. He
asked the following three interesting questions concerning the divisibility of Rn: (a) Do
increasing powers of 2 divide Rn? (b) What is the highest power of 2 that will divide Rn?
(c) Does 3 divide Rn for all n > 6? The first and third of Alter’s questions were answered
by McKay and Wanless [96] with the following result.

Theorem 4.1. Let m = ⌊n/2⌋. For all n ∈ N, Rn is divisible by m!. If n is odd and
m + 1 is composite then (m + 1)! divides Rn.

Theorem 4.1 shows that for any d, the largest a such that da divides Rn increases at
least linearly as n → ∞. Subsequently, [157] gave the following theorem.

Theorem 4.2. Suppose p is a prime and n > 1. If d > k > p then p⌊n/p⌋ divides Rk,n+d

and Kk,n.
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Theorem 4.2 shows that for any fixed k and prime p < k, the largest a such that pa

divides Rk,n increases at least linearly as n → ∞. Theorem 4.1 is improved in some cases
by the following theorem in [156].

Theorem 4.3. Suppose n > 1, p is a prime and c > 1 such that n/2 > (c − 1)p. Then
gcd

(
(n − cp − 1)!2Rn−cp, p

c
)

divides Rn.

In [157] it was also shown that

Rk,n ≡
(
(−1)k−1(k − 1)!

)n−1
(mod n).

In particular this implies that Rn ≡ 1 (mod n) if n is prime and Rn ≡ 0 (mod n) if n is
composite. In [154] and [155] it was shown that Rn+1 ≡ −2 (mod n) if n is an odd prime
and Rn+1 ≡ 0 (mod n) if n is composite.

Riordan [121] gave the congruence R3,n+p ≡ 2R3,n (mod p) for all odd primes p, which
was generalised by Carlitz [20] to R3,n+t ≡ 2tR3,n (mod t) for all t > 1. These recurrence
congruences were generalised in [157] by the following theorem.

Theorem 4.4. If k 6 n then Rk,n+t ≡
(
(−1)k−1(k − 1)!

)t
Rk,n (mod t) for all t > 1.

Theorem 4.4, in some cases, shows that Rk,n is indivisible by some t for all n > k,
when k is fixed and t > k [157]. For example, the primes p < 100 that do not divide R3,n

for any n > 3 are p ∈ {3, 5, 11, 29, 37, 41, 43, 53, 67, 79, 83, 97} (see [153]).
A partial orthomorphism of Zn is an injection σ : S → Zn such that S ⊆ Zn and

σ(i)− i 6≡ σ(j)− j (mod n) for distinct i, j ∈ S. We say σ has deficit d if |S| = n−d. Let
χ(n, d) be the number of partial orthomorphisms σ of Zn of deficit d such that σ(i) /∈ {0, i}
for all i ∈ S. In [155] it is shown that, for prime p,

Rk,n ≡ χ(p, n − p)
(n − p)!(n − p − 1)!2

(n − k)!
Rk−p,n−p (mod p).

In particular, for Latin squares Rp+d ≡ d!(d − 1)!2χ(p, d)Rd (mod p) for prime p and all
d > 1. The enumeration of partial orthomorphisms of Zn was also described in [155], the
results of which, when combined with Theorems 4.1 and 4.3 (using the Chinese Remainder
Theorem), allow us to obtain the following congruences, for example.

R12 ≡ 50400 (mod 55440),

R13 ≡ 342720 (mod 720720),

R14 ≡ 428400 (mod 720720),

R15 ≡ 8830080 (mod 17297280),

R16 ≡ 7136640 (mod 17297280),

R17 ≡ 95437440 (mod 882161280).

It was also found that 5 divides R7. Norton [114] gave an incomplete enumeration
of the Latin squares of order 7, having found 16927968 reduced Latin squares of order 7
(the total number is 16942080 [127, 126] which we will discuss in detail in Section 6.1.3).
Since 5 does not divide 16927968, we can deduce that R7 6= 16927968 without finding the
Latin squares that Norton missed.
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It is the purpose of this paper to present an extensive – possibly an exhaustive
– study of 7 × 7 Latin and higher squares.

– Norton [114]

Here, higher squares refers not to Latin squares of order greater than 7, but to Graeco-
Latin squares [29, Ch. 5], so Norton indeed acknowledged the possibility that his enumer-
ation was incomplete.

Additionally, in [155] it was shown that, if p is a prime, then

R2p−1 ≡ −Rp−1 (mod p) if p > 2,

R2p−2 ≡ Rp−2 (mod p) if p > 3,

R2p−3 ≡ −5Rp−3/13 (mod p) if p > 5,

R2p−4 ≡ 29Rp−4/288 (mod p) if p > 5,

R2p−5 ≡ −47Rp−5/2880 (mod p) if p > 7,

R2p−6 ≡ 37Rp−6/19200 (mod p) if p > 7.

In [153] it was shown that, for all primes p, pa divides Rn where a = n/(q − 1) −
O(log2 n). Formulae involving the number of so-called even and odd Latin squares were
discussed in [36, 37, 56, 156].

5 General formulae

In this section we will survey the general formulae for Lk,n and Ln. For small n the
values of K2,n, K3,n and R4,n are given by Sloane’s [142] A000166, A000186 and A000573,
respectively. Exact formulae for Lk,n for k 6 4 have been discussed in [157]. For example

Dn = n!
n∑

i=0

(−1)i

i!
= K2,n = (n − 1)R2,n. (5)

where Dn is the number of derangements of Zn (see [21] for example) and

R3,n =
∑

i+j+k=n

n(n − 3)!(−1)j 2ki!

k!

(
3i + j + 2

j

)

which was attributed to Yamamoto [121].
We now begin our survey of explicit formulae for Lk,n for general k. First, we identify

Lk,n as a coefficient in a polynomial in kn variables. Let X = (xij) be a k × n matrix
whose symbols are the kn variables xij . We index the rows of X by [k] := {1, 2, . . . , k}
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and the columns of X by [n] := {1, 2, . . . , n}, so [k] ⊆ [n]. Let Sk,n be the set of injections
σ : [k] → [n]. We define the permanent of the rectangular matrix X to be

per(X) =
∑

σ∈Sk,n

k∏

i=1

xiσ(i).

When k = n this matches our definition of permanent for square matrices introduced in
Section 3, except with different indices on X.

Theorem 5.1. Lk,n is the coefficient of
∏k

i=1

∏n
j=1 xij in per(X)n.

This theorem was noticed over a century ago by MacMahon [87] in the theory of
symmetric functions encoded with xij = (αi)

2j−1

. He gives a different, but related formula
in [89, Vol. 2, pp. 323–326] (also see his collected works [90]). We can obtain the value of
Lk,n from per(X)n by differentiation, for example

Lk,n =
∂

∂x11

∣
∣
∣
∣
x11=0

· · · ∂

∂xkn

∣
∣
∣
∣
xkn=0

per(X)n (6)

which, when k = n, was one of Fu’s [49] equations. MacMahon also used differentiation
to “obliterate” the unwanted terms from per(X)n but in a different, more complicated,
way to (6). The merit of MacMahon’s formula has inspired much discussion.

The calculation will, no doubt, be laborious but that is here not to the point,
as an enumeration problem may be considered to be solved when definite
algebraical processes are set forth which lead to the solution.

– MacMahon [87]

I brought forward a new instrument of research in Combinatorial Analysis,
and applied it to the complete solution of the great problem of the “Latin
Square,” which had proved a stumbling block to mathematicians since the
time of Euler.

– MacMahon [88]

The problem of enumerating n by k Latin rectangles was solved formally by
MacMahon using his operational methods.

– Erdős and Kaplansky [40]

A complete algebraic solution has been given by MacMahon in two forms, both
of which involve the action of differential operators on an extended operand.
If MacMahon’s algebraic apparatus be actually put into operation, it will be
found that different terms are written down, corresponding to all the different
ways in which each row of the square could conceivably be filled up, that
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those arrangements which conflict with the conditions of the Latin square are
ultimately obliterated, and those which conform to these conditions survive
the final operation and each contribute unity to the result. The manipulation
of the algebraic expressions, therefore, is considerably more laborious than
the direct enumeration of the possible squares by a systematic and exhaustive
series of trials.

– Fisher and Yates [47]

The use of MacMahon’s result by mere mortals seems doomed.

– Riordan [122]

One should not wish to actually perform, even in a computer algebra package
like Maple, MacMahon’s counting method.

– Van Leijenhorst [162]

MacMahon’s formula was nonetheless employed in a simplified form by Saxena [132,
133] to find L6 and L7, although these numbers were found earlier; see Figure 1. Another
proof of MacMahon’s formula for Ln was given by van Leijenhorst [162], who described
it as both “beautiful” and “handsome.” MacMahon had a particularly unorthodox life,
even for a mathematician, which can be discovered in his biography [52].

Another way of extracting the value of Lk,n from per(X)n was given by Fu [49], Shao
and Wei [138] and McKay and Wanless [96]. We will write their formulae in a more
general form in (8).

Let Bk,n be the set of k × n (0, 1)-matrices. As identified by Fu [49] and Shao and
Wei [138], we can use Inclusion-Exclusion to obtain

Lk,n =
∑

A∈Bk,n

(−1)σ0(A) per(A)n, (7)

where σ0(A) is the number of zeroes in A. Fu essentially gave (7), but the summation is
split in a different way. It seems that [49] and [138] obtained (7) independently as neither
paper has mention of the other.

Let c and d be real numbers such that c 6= 0 and let X = cX + dJ where J is the all-1
matrix. It follows that Lk,n is the coefficient of ckn

∏k
i=1

∏n
j=1 xij in per(X)n. We claim

that
Lk,n = c−kn

∑

A∈Bk,n

(−1)σ0(A)
(

per(A)n + f
(
per(A)

))

(8)

where A = cA + dJ and f is any polynomial of degree at most n − 1. If we let g =
g(A) be any summand of f

(
per(A)

)
when fully expanded, then g has integral degree

in each aij and total degree at most k(n − 1). Therefore g cannot vary with every aij

(otherwise it would have degree at least kn). Hence
∑

A∈Bk,n
(−1)σ0(A)g(A) = 0 and so

∑

A∈Bk,n
(−1)σ0(A)f

(
per(A)

)
= 0.
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Equation (8) yields the formula of McKay and Wanless [96] when c = 2, d = −1
and k = n. There were various other formulae for Ln and Lk,n given by Shao and Wei
[138], which are all special cases of (8). There are 2kn matrices A ∈ Bk,n which makes (8)
impractical for enumeration.

Fu [49] also gave the equation

Lk,n =
∑

A∈Bn,n

(−1)σ0(A)

(
n2 − kn + σ0(A)

σ0(A)

)

per(A)k

which has been rearranged and a problem corrected – the last equation in [49] should
have fn(n−r)+k instead of fn(n−r).

Jucys [71] constructed an algebra An over C, with the “magic squares” as a basis,
which were actually n × n non-negative integer matrices with row and column sums
equal to n. Multiplication in An was defined using a “structure constant,” which, in one
case, was Ln. An isomorphism was identified between An and a subalgebra of the group
algebra of the symmetric group Sn2 over C. Representation theory was then used to give
an expression for Ln in terms of eigenvalues of a particular element of An.

It seems to us that for obtaining the general formulas for the eigenvalues...
some further developments of Young’s substitutional analysis are needed.

– Jucys [71]

Light Jr. [86] (see also [85]) gave an equation for the number of “truncated Latin
rectangles” which, for Latin rectangles, simplifies to

Lk,n =
n∑

i=0

(−1)i

(
n

i

)

(n − i)!kak,i,n

where ak,i,n is the number of k × i matrices with symbols from a set of cardinality n such
that each row does not have a repeated symbol and each column has at least one repeated
symbol.

Let Mn be the set of partitions of n into parts of size at least 2. For µ ∈ Mn, let Xµ

be the number of 2×n Latin rectangles L = (lij) with derangement l0i 7→ l1i having cycle
structure µ. In fact

Xµ =
n!2

∏

i

(
si(µ)! · isi(µ)

) ,

where si(µ) is the number of copies of i in the partition µ. Theorem 6.2 will show that
each L counted by Xµ admits the same number of completions Cµ to a Latin square.
Dénes and Mullen [33] gave a formula for Ln which is essentially

Ln =
∑

µ∈Mn

XµCµ. (9)
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Dénes and Mullen [33] also gave a more general formula, which can be interpreted as
partitioning Latin squares into λs × n Latin rectangles where n = λ1 + λ2 + · · ·+ λm and
counting the number of non-clashing replacements that can be made for each λs×n Latin
rectangle. Equation (9) arises from the case when the partition of n is 2 + (n − 2).

We will now reproduce Doyle’s [35] formula for Kk,n, which he gives for 2 6 k 6 4. We
will consolidate it into a concise general form. Let R be the set of non-negative integer
vectors ~s = (si)16i62k−1 such that

∑

i si = n. For 1 6 i 6 2k−1, let ∆i = (δij)16j62k−1,
where δij is the Kronecker δ-function. For any non-negative integer i let bj(i) be the j-th
binary digit of i, for example

(
bj(13)

)

j>1
= (1, 0, 1, 1, 0, 0, . . .). Let ||~s|| =

∑

i,j sibj(i).

Then

Kk,n =
∑

~s∈R

(−1)||~s||
(

n

s1, s2, . . . , s2k−1

) 2k−1

∏

i=1

g
(
~s − ∆i

)si (10)

where subtraction of vectors is component-wise and for ~a = (a1, a2, . . . , a2k−1)

g(~a) =
∑

P∈Pk−1

∏

p∈P

(−1)|p|−1(|p| − 1)!fp(~a) (11)

where Pk−1 is the set of partitions of {1, 2, . . . , k − 1} and

fp(~a) =
∑

i:bj(i)=0∀j∈p

ai

for all p ⊆ {1, 2, . . . , k − 1}.
The coefficients in (11) were not given by Doyle in full generality, although he did

state how to obtain them, that is by Möbius Inversion on the lattice of partitions of
{1, 2, . . . , k − 1} (see [123, p. 360], for example).

The expressions get uglier and uglier at an exponential rate as k increases.

– Doyle [35]

Now assume k is fixed. The function g(~a) is a 2k−1-variate polynomial. Therefore the
computational complexity of (10) is bounded above by |R|h(n) 6 n2k−1

h(n) = nO(1) for
some polynomial h. According to Wilf [171], the problem of enumerating k × n Latin
rectangles for a fixed k is therefore p-solved – there exists an algorithm that returns Rk,n

in polynomial-time in n. Alternatively, we may describe the problem of enumerating k×n
Latin rectangles as fixed parameter tractable.

Wilf arrived at this definition after he refereed a paper proposing a “formula”
for the answer to [what is Ln?], and realizing that its “computational com-
plexity” exceeds that of the caveman’s formula of direct counting.

– Zeilberger [177]
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Gessel [54] also recognised that Lk,n, for fixed k, is P -recursive [145], that is, for fixed
k, there exists a set of polynomials ci(n) for 0 6 i 6 M for some finite M , such that

M∑

i=0

ci(n)Lk,n+i = 0.

The author has used (10) to find the values of R4,n for n 6 80 (Sloane’s [142] A000573),
R5,n for n 6 28, as listed in Figure 16 and R6,n for n 6 13. In particular,

R6,12 = 16790769154925929673725062021120

and
R6,13 = 4453330421956050777867897829494620160.

We also list R4,n for 4 6 n 6 28 in Figure 15. Computing R6,n for 1 6 n 6 13 took just
under two months using a Pentium 4, 3.20 GHz processor. The C code is available from
[152]; it uses the GMP library [60]. The curious prime power divisors 2a and 3b of R4,n

and R5,n are partly explained in [157].

Exact enumeration is difficult for k > 3.

– Skau [141]

There are some other published formulae for the number of Latin rectangles that will
not be given explicitly in this paper because they are similar to (10), in that they found
by a combination of Inclusion-Exclusion and Möbius Inversion. These are by Nechvatal
[110, 111], Gessel [54] (see also [53]), Athreya, Pranesachar and Singhi [5] and Pranesachar
[118]. In a 2007 article, de Gennaro [28] claimed to have found a formula for Rk,n and
made the following remark.

Until now... no explicit formula is known which permits the calculation of
Kk,n whatever the value of k.

– De Gennaro [28]

This misbelief highlights the need for this survey. Somehow a similar false claim was
made by Mullen and Mummert in a 2007 book, despite Mullen (with Dénes) having
already published a formula for Ln in [33].

As of the writing of this book, no formula for Rn has been found and it seems
possible that none exists.

– Mullen and Mummert [106, p. 44]
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n R4,n

4 4
5 56
6 6552
7 1293216
8 420909504
9 207624560256

10 147174521059584
11 143968880078466048
12 188237563987982390784
13 320510030393570671051776
14 695457005987768649183581184
15 1888143905499961681708381310976
16 6314083806394358817244705266941952
17 25655084790196439186603345691314159616
18 125151207879107507418595651580525408108544
19 725286528193978151376645991587386316447154176
20 4946695754673063706940982976280298177634970763264
21 39372620049112842147403644555875630051344172847464448
22 362953223623178176928985853358776023561076140898585411584
23 3848556868310251682051540453289191302911656946425858318401536
24 46646364890123254950981334346141630039665836277086889810449137664
25 642577452766632866336746626812914310810476309618605956127608795037696
26 10007844722789723474949164515246755752126297615867851579087218636333514752
27 175373037219837331563272997448082923441580267971837196568365005992563746799616
28 3442323233447644574634006660322435995886430762756321172680356416748961150464425984

4 22

5 23 · 7
6 23 · 32 · 7 · 13
7 25 · 3 · 19 · 709
8 26 · 3 · 149 · 14713
9 27 · 34 · 20025517

10 28 · 33 · 71 · 271 · 1106627
11 210 · 32 · 1823 · 8569184461
12 29 · 33 · 7 · 1945245990285863
13 210 · 34 · 7 · 587 · 50821 · 18504497761
14 210 · 34 · 8384657190246053351461
15 212 · 35 · 30525787 · 62144400106703441
16 214 · 35 · 2693 · 42787 · 1699482467 · 8098773443
17 216 · 35 · 131 · 271 · 17104781 · 166337753 · 15949178369
18 214 · 37 · 23 · 61 · 3938593 · 632073448679498674606517
19 217 · 36 · 7 · 13 · 61 · 197007401 · 158435451761 · 43809270413057
20 217 · 36 · 72 · 1056529591513682816198269594516734004747
21 218 · 37 · 19 · 31253 · 103657 · 1115736555797150985616406088863209
22 218 · 38 · 158419 · 366314603941483807 · 3636463205495660670300697
23 220 · 38 · 58309 · 1588208779694954759917 · 6040665277134180218
24 221 · 39 · 43 · 283 · 1373 · 8191 · 297652680582511 · 27741149414473864785280935767
25 222 · 311 · 1938799914572671 · 446065653297963631389971651136461400611927
26 223 · 39 · 7 · 19 · 31 · 5147 · 694758890407 · 4111097244170498224110627242779017943828829
27 225 · 312 · 7 · 13127 · 107027245883591876663734983579930090734219751042699442932337
28 224 · 310 · 2971 · 289193 · 119778654930498126781085485573 · 33763646513110549304820504221579

Figure 15: The value of R4,n and its prime factorisation for 4 6 n 6 28.
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n R5,n

5 56
6 9408
7 11270400
8 27206658048
9 112681643083776

10 746988383076286464
11 7533492323047902093312
12 111048869433803210653040640
13 2315236533572491933131807916032
14 66415035616070432053233927044726784
15 2560483881619577552584872021599994249216
16 130003705747573381528820187969499352864391168
17 8540614065591861115863858023929942463204158341120
18 714772705022049580010386905464376609190681339062386688
19 75163163562802272546579759450749095599610461567358920032256
20 9809720003910626776223482379751753587443069548693920857303547904
21 1571535264701285629600025091867663915099001357016958197822862919729152
22 305967368069117220345719015650882351240204884316352710461216388953743032320
23 71742822040206698482547032648440680248173149276783605396347465027480511202721792
24 20093299726164942410036767774030176748339141446536947374523570181642887594307280175104
25 6671363422740192076170128383025874322430996291082893578356639976639833297028025599106482176
26 2607692996972092696824065181857133325599861640770239539217211513790688430496101840933225630793728
27 1192341043681765508107725478415585115424290311661367053795101824269858341198689704358509964052964311040
28 633985642868552678440810273027244480070214946032409979061521248934113017591003027196021410395800315287830528

5 23 · 7
6 26 · 3 · 72

7 28 · 3 · 52 · 587
8 211 · 3 · 23 · 192529
9 211 · 34 · 13 · 52251029

10 216 · 36 · 19 · 97 · 8483617
11 213 · 32 · 29 · 168293 · 20936295857
12 217 · 36 · 5 · 7 · 47 · 59 · 313 · 38257310467
13 219 · 33 · 7 · 23364884851571662672051
14 227 · 34 · 101 · 449 · 1039 · 3019 · 22811 · 1882698637
15 222 · 37 · 19 · 423843896863 · 34662016427839511
16 228 · 36 · 3604099 · 40721862001 · 4526515223205743
17 225 · 35 · 5 · 15001087 · 13964976140347893908947110110827
18 228 · 39 · 1019173084339 · 237316919875331 · 559319730817259
19 228 · 36 · 7 · 47 · 149 · 532451 · 347100904121707 · 42395531645181804688477
20 232 · 39 · 7 · 67 · 163 · 360046981713037753 · 4215856658533108520354659333
21 233 · 38 · 83 · 281 · 204292081063933 · 5852323051960913177671486927343120669
22 236 · 37 · 5 · 13 · 241559 · 129661160424791080992764645120871929236425763066453631
23 239 · 310 · 5407 · 120427 · 901145309 · 3766352936022215583264814011876189449770138391
24 241 · 311 · 107 · 739951 · 2418119033203 · 318514544213636008246871 · 845851172573304061243151
25 241 · 39 · 94513 · 54260027 · 25093654805621 · 1059078880359738933703 · 1130914320793991851927211947
26 244 · 310 · 7 · 67933 · 202543723 · 2685265441 · 156723690161879 · 61930503417943235494756743955217132168381
27 243 · 312 · 5 · 7 · 53 · 127320275760341262867826543621 · 1079976086344925505300140139910770802570476432018971
28 248 · 310 · 17491 · 28001 · 25474005544131103985444236555403 · 3057325394358699521269723086655534357452208299019

Figure 16: The value of R5,n and its prime factorisation for 5 6 n 6 28.
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We will now introduce a new formula for Lk,n whose complexity lies in computing
subgraphs of a given graph. Actually, we arrive at this formula using standard techniques
in graph theory [170]. Let G = Gk,n be the rook’s graph introduced in Section 2.3.1. We
identified that Lk,n is the number of proper vertex-colourings of G with colour set Zn.
Let E(G) be the edge set of G. For each non-empty E ⊆ E(G) let SE denote the set of
improper vertex-colourings of G such that if uv ∈ E then u and v receive the same colour.
Let S∅ be the set of all nkn vertex-colourings of G. Then

Lk,n = |S∅| −
∣
∣
∣
∣

⋃

E⊆E(G):E 6=∅

SE

∣
∣
∣
∣
.

By Inclusion-Exclusion

Lk,n =
∑

E⊆E(G)

(−1)|E||SE |.

For any E ⊆ E(G) let HE be the graph on the same vertex set as G, but with edge
set E . Then |SE | = nc(HE ), where c(HE) is the number of connected components of HE .
Hence

Lk,n =
∑

E⊆E(G)

(−1)|E|nc(HE ). (12)

There are |E(G)| = n
(

k
2

)
+ k

(
n
2

)
edges in G and 2|E(G)| subsets of E(G). While each

individual summand of (12) is simple to compute, there are too many terms in the sum
for practical use.

For any graph H , let ξk,n(H) be the number of subgraphs of Gk,n that are isomorphic
to H . Let Γ be a set of isomorphism class representatives of graphs without isolated ver-
tices; here we include the empty graph in Γ which has no vertices, edges and components.
Then

Lk,n =
∑

H∈Γ

(−1)|E(H)|nc(H)+kn−|V (H)|ξk,n(H)

where V (H) is the vertex set of H and E(H) is the edge set of H . It appears that ξk,n

is a difficult function to compute, thus making this formula for Lk,n impractical also. A
result of Alon [2] implies that ξn,n(H) = O(n2|V (H)|) for any fixed H ∈ Γ as n → ∞.

6 Enumeration

6.1 Sade’s approach

Modern enumeration algorithms for Latin rectangles, for example those of McKay and
Rogoyski [95] and McKay and Wanless [96] (which will be discussed in Section 6.2), stem
from a result of Sade [125], which was used to find R7. We are motivated to discuss the
computation in [125] in detail for the following reasons.

• Sade’s approach is still relevant in modern algorithms.
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• Sade’s paper [125] is difficult to find and is written in French.

• There is some discrepancy in the literature as to what equivalence relation Sade
actually used in [125]; see [173] and [7] vs. [168].

We may say without reserve that Professor Sade was undoubtedly an out-
standing mathematician, passionately devoted to mathematical research, and
that his work deserves to be thoroughly studied.

– Mitrinović, Janić and Kečkić [103]

6.1.1 Sade’s equivalence.

Sade’s computation was made feasible by the following theorem in [125].

Theorem 6.1. Suppose L is a reduced k × n Latin rectangle. Suppose we apply all, or
some, of the following operations to L, to obtain another reduced k×n Latin rectangle L′.

1. Permute the columns of L;

2. Permute the symbols of L;

3. Permute the elements of the columns of L so equal elements do not appear in the
same row.

Then L and L′ can be extended to the same number of reduced Latin squares of order n.

The operations described in Theorem 6.1 form an equivalence relation amongst reduced
k × n Latin rectangles such that equivalent Latin rectangles admit the same number of
completions to a reduced Latin square of order n. Let Γ be a set of reduced k × n Latin
rectangles consisting of a representative from each equivalence class. For any L ∈ Γ define
||L|| to be the size of the equivalence class containing L and c(L) to be the number of
completions of L to a reduced Latin square of order n. It follows that

Rn =
∑

L∈Γ

||L|| · c(L).

For instance, when k = 2 and n = 7, Sade took Γ to contain the following four
reduced 2 × 7 Latin rectangles (Sade actually used the symbols 1, 2, . . . , 7, but that is
unimportant).

A =

(
0 1 2 3 4 5 6
1 0 3 2 5 6 4

)

, B =

(
0 1 2 3 4 5 6
1 0 3 4 5 6 2

)

,

C =

(
0 1 2 3 4 5 6
1 2 3 4 0 6 5

)

, D =

(
0 1 2 3 4 5 6
1 2 3 4 5 6 0

)

.
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He calculated that ||A|| = 35, ||B|| = 84, ||C|| = 70 and ||D|| = 120. Hence

R7 =
(
35 84 70 120

)







c(A)
c(B)
c(C)
c(D)







(13)

Sade found that A and B both admit 116 extensions to a reduced 3×7 Latin rectangle
and C and D admit 115 extensions to a reduced 3×7 Latin rectangle. He gave a detailed
table that partitioned these 462 reduced 3 × 7 Latin rectangles into fifteen equivalence
classes (using the equivalence relation in Theorem 6.1). The representatives from these
equivalence classes of reduced 3 × 7 Latin rectangles were called J, K, M, N, P, Q, . . . , Z
and are listed below.

J =





0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 0 1 5 6 4 3





K =





0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 0 6 5 3 1 4





M =





0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 4 1 0 6 3 5





N =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 3 5 6 0 1 4





P =





0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 0 4 1 6 3 5





Q =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 3 5 0 6 4 1





R =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 3 4 6 0 1 5





S =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 3 4 1 6 0 5





T =





0 1 2 3 4 5 6
1 0 3 2 5 6 4
2 4 0 5 6 1 3





U =





0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1





V =





0 1 2 3 4 5 6
1 0 3 2 5 6 4
2 4 5 6 0 1 3





W =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 3 0 5 6 1 4





X =





0 1 2 3 4 5 6
1 0 3 2 5 6 4
2 3 0 1 6 4 5





Y =





0 1 2 3 4 5 6
1 0 3 2 5 6 4
2 3 0 4 6 1 5





Z =





0 1 2 3 4 5 6
1 0 3 2 5 6 4
2 3 4 5 6 0 1





6.1.2 Sade’s invariant.

Sade distinguished between inequivalent Latin rectangles using an invariant which we will
now describe. For each column C he defined a partition sC of k(k − 1) where the parts
are the number of symbols that appear in both C and C ′, over all columns C ′ 6= C of
L (the zero parts are discarded). The multiset S = S(L) = {sC : C is a column of L}
is invariant under the operations described in Theorem 6.1. We will call S(L) the Sade
invariant. In the case of k = 3 and n = 7, Sade labelled the partitions of 6 in the following
way.
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a : 3 + 3,

b : 3 + 2 + 1,

c : 3 + 1 + 1 + 1,

d : 2 + 2 + 2,

g : 2 + 2 + 1 + 1,

h : 2 + 1 + 1 + 1 + 1,

i : 1 + 1 + 1 + 1 + 1 + 1.

Then the Sade invariants of the representative reduced 3 × 7 Latin rectangles are

J : 4b2gi,

K : 4c3i,

M : 6gi,

N : 4h3i,

P : 2c3g2h,

Q : 2c2g2hi,

R : 6hi,

S : 5g2h,

T : 3g4h,

U : 7g,

V : 2g4hi,

W : d3g3h,

X : 3a4d,

Y : 2bd3gh,

Z : g6h.

A number before a part indicates its frequency. For example, the Sade invariant of
J is {b, b, b, b, g, g, i}, which is abbreviated to 4b2gi. Curiously, the Sade invariants for P
and Y were listed incorrectly in [125].

6.1.3 Sade’s computation.

Consequently, it was found that







c(A)
c(B)
c(C)
c(D)







=







· · · · · · · · 24 24 24 12 2 18 12
· · · 4 · 12 8 12 28 4 16 16 · 8 8
9 · · 6 · 12 6 12 24 6 24 · 1 9 6
3 2 2 2 7 14 10 14 16 2 16 8 · 11 8






















c(J)
c(K)
c(M)
c(N)
c(P )
c(Q)

...
c(Z)
















.

Combined with (13), this yields

R7 = 990c(J) + 240c(K) + 240c(M) + 996c(N)

+ 840c(P ) + 3528c(Q) + 2292c(R) + 3528c(S)

+ 6792c(T ) + 1836c(U) + 5784c(V ) + 2724c(W )

+ 140c(X) + 3252c(Y ) + 2472c(Z). (14)

Sade then computed the number of completions of these fifteen representative reduced
3 × 7 Latin rectangles to a reduced Latin square of order 7. He found
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c(J) = c(W ) = c(Y ) = 512,

c(K) = c(M) = c(P ) = 480,

c(N) = 496,

c(Q) = c(S) = c(Z) = 464,

c(R) = c(V ) = 472,

c(T ) = c(U) = 456,

c(X) = 576.

Upon substitution into (14), Sade found R7 = 16942080. Sade then attempted to verify
his computation as we will now discuss. Sade computed that the number of extensions to
a reduced 4 × 7 Latin rectangle is

36 for J , K, M , N , P , R, V and X,

35 for T , U and Z,

34 for Q and S,

33 for W ,

32 for Y .

Up to this point, the author has successfully duplicated Sade’s enumeration (with the
luxury of using GAP [51]). However, in Sade’s work some errors arise.

Sade gave another detailed table (containing some errors) that partitioned these 526
reduced 4× 7 Latin rectangles into fifteen equivalence classes (using the equivalence rela-
tion in Theorem 6.1). The representatives from these equivalence classes of reduced 4× 7
Latin rectangles were called j, k, m, n, p, q, . . . , z. To correct Sade’s “Table d’equivalence
des 4me lignes”:

• Column K should instead have s whereever z occurs (as noticed by [173]).

• Column R row 17 should be t instead of v.

• Column T row 32 should be v instead of t.

The corrected table is given in Figure 17. Consequently, it follows that
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



























c(J)
c(K)
c(M)
c(N)
c(P )
c(Q)
c(R)
c(S)
c(T )
c(U)
c(V )
c(W )
c(X)
c(Y )
c(Z)





























=





























· · · · · · · · 8 · 8 8 · 4 8
· · · · · · · 12 12 · 12 · · · ·
· · · · · 12 · · 12 · 12 · · · ·
· · · 4 · 4 2 4 8 2 4 2 · 4 2
· · · · · 4 8 4 8 4 4 · · · 4
· · 2 · · 4 · 10 6 2 4 4 · 2 ·
· · · · 2 6 3 2 8 1 4 1 · 4 5
· 2 · · · 10 · 4 6 2 4 4 · 2 ·
1 · 1 1 2 3 3 6 7 · 2 3 · 5 1
· · · 1 5 4 2 4 · 1 5 4 · 6 3
1 · 1 1 1 2 5 5 7 1 7 3 · 1 1
4 · · · · 4 · 4 6 2 4 · 1 6 2
· · · · · · · · · · · 36 · · ·
4 · · · · · · · 8 4 4 4 · 8 ·
4 · · · 4 6 2 6 6 2 2 2 · 1 ·





























︸ ︷︷ ︸

X





























c(j)
c(k)
c(m)
c(n)
c(p)
c(q)
c(r)
c(s)
c(t)
c(u)
c(v)
c(w)
c(x)
c(y)
c(z)





























.

The fifth row of X was also incorrect in [125], even after correcting for Sade’s erroneous
version of Figure 17 (although this seems to be merely a typographical error).
Combined with (14), this yields

R7 = 46368c(j) + 7056c(k) + 19632c(m) + 18396c(n)

+ 43020c(p) + 138384c(q) + 73500c(r) + 166944c(s)

+ 234264c(t) + 52776c(u) + 150516c(v) + 108492c(w)

+ 2724c(x) + 126816c(y) + 48264c(z). (15)

Sade then computed the number of completions of these fifteen representative reduced
4 × 7 Latin rectangles to a reduced Latin square of order 7 and found the following.

c(k) = c(m) = c(p) = 8,

c(r) = 10,

c(n) = c(q) = c(s) = c(z) = 12,

c(t) = c(v) = 14,

c(j) = c(w) = c(y) = 16,

c(u) = 22,

c(x) = 48.

Upon substitution into (15), we again find R7 = 16942080. To obtain Sade’s erroneous
version of (15), we repair only the fifth row of his version of X . Substitution of c(j),
c(k), etc. into Sade’s erroneous version of (15) also gives the value for R7.

the electronic journal of combinatorics 17 (2010), #A1 31



J K M N P Q R S T U V W X Y Z

1 y v t y r q y q y y w x w j j
2 y v v y r q y k s q t y w j j
3 w s t y r q y q t y w y w j p
4 w t v y r q q q q p t j w j j
5 w s t q r s q k y q t j w v j
6 w t v q r s q q w p t y w t p
7 z t t q r u p v t s r y w v p
8 z v v q r u q q p p u j w t s
9 v s q t v y p t q y s z w v s
10 v t q z s y s v r u q v w t r
11 v v q u z s q q s v s v w v t
12 v s q t t s v t t q r s w t s
13 y s v t q t z t r w s t w y q
14 y t v w u t z q y y p q w y t
15 w s t v t m r v w v t t w t v
16 w t t s z m v s s w n y w u v
17 w v q v t s t s t z s z w t q
18 w v v n v s t w n w v t w u t
19 z v t s s v u y s y y t w y s
20 z t q s q v t w v n t s w y p
21 v s v r u w t u r v v u w w s
22 v v t n t w r q y r j v w w t
23 v t q t v v t t q v q q w y r
24 v s q n s v z t p q v j w y s
25 z s q r z s y q w s t y w t w
26 z s q t t s q v t v r s w u q
27 t s v u q t v s z s s v w t u
28 t s v t u t t s j w w q w u w
29 t v t t t w t w y y v u w y t
30 t v t t z w z y m r r s w y t
31 z t q z t t v w s s v t w w q
32 z t v v v t z u v z r t w w u
33 t v t w s s w q s z z q w · q
34 t t q s q s t t t p m · w · q
35 t v v n u · s · t p v · w · y
36 t t t v t · r · · · v · w · ·

Figure 17: The corrected version of Sade’s table, which partitions the extensions of
J, K, M, N, P, Q, . . . , Z into the equivalence classes j, k, m, n, p, q, . . . , z.
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6.1.4 Discrepancy.

As mentioned earlier, there is some discrepancy in the literature as to which equivalence
relation Sade used in [125], which we will now discuss.

Recall the definition of the template of a Latin rectangle from Section 3. We call two
k × n Latin rectangles L and L′ template equivalent if the template of L′ can be formed
from the template T of L, or the transpose of T , by some row and column permutations.

Theorem 6.2. Suppose L and L′ are template equivalent k × n Latin rectangles. Then
for any k∗ in the range k 6 k∗ 6 n, it follows that L and L′ can be extended to the same
number of k∗ ×n Latin rectangles. Moreover, if L and L′ are both reduced, then L and L′

can be completed to the same number of reduced Latin squares.

Proof. Let T = (tij) be the template of L. From T we can construct a bipartite graph
G = G(L) with bipartition {u0, u1, . . . , un−1} ∪ {w0, w1, . . . , wn−1} and an edge from ui

to wj whenever tij = 1. Since L and L′ are template equivalent, G(L) is isomorphic to
G(L′). See Section 2.3.3 for more details about the equivalence between Latin squares
and one-factorisations of balanced complete bipartite graphs.

The number of extensions of L (or L′) to a k∗ × n Latin rectangle is the number of
ordered (k∗−k)-tuples of disjoint one-factors in G(L) ∼= G(L′), thus proving the first claim
in the theorem. The number of completions of L (or L′) to a Latin square is therefore
equal to the number of one-factorisations of G(L). The number of completions of L (or
L′) to a Latin square is (n− k)! times the number of completions of L to a reduced Latin
square.

The first statement in Theorem 6.2 is not true if we restrict to reduced Latin rectangles.
For example, the template equivalent reduced 2 × 5 Latin rectangles

(
0 1 2 3 4
1 2 3 4 0

)

and

(
0 1 2 3 4
1 3 4 2 0

)

admit 4 and 5 extensions to a reduced 3 × 5 Latin rectangle, respectively. Hence, if we
use Sade’s approach to compute Rn, then the numbers that arise during the intermediate
steps in the computation (such as (13), etc. or as in [169, Fig. 7.6]) will vary depending
on which equivalence class representatives are chosen.

To illustrate the difference between Theorems 6.1 and 6.2, if we let

L =





0 1 2 3 4 5 6
1 0 3 4 5 6 2
2 6 0 5 3 1 4





then

L(cs) =





0 1 2 3 4 5 6
1 0 6 2 3 4 5
2 5 0 4 6 3 1





is the Latin rectangle obtained by replacing each row of L, when considered as a permu-
tation of Z7, by its inverse. So the template T (L) is the transpose of T (L(cs)). However,
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the Sade invariant of L is 2c2g2hi whereas the Sade invariant of L(cs) is 5g2h. Therefore,
L and L(cs) are not equivalent in the sense of Theorem 6.1, while they are equivalent in
the sense of Theorem 6.2.

As per our discussion at the start of this section, we note that Yamamoto [173] and
Bammel and Rothstein [7] describe Sade’s algorithm accurately, while the description
given by Wells [168] (and consequently [29, pp. 142–143]) was inaccurate. Specifically,
Sade used template equivalence, but without transposition, whereas [168] suggested that
Sade used isotopism equivalence. However, Wells later gave an accurate description of
Sade’s algorithm in his book [169, pp. 204–205] illustrated with the case n = 5.

In 1948, Sade [125] enumerated reduced 7 × 7 squares by a method which
by-passes the construction of species representatives. (His total of 16,942,080,
however, did lead to the discovery of the 147th species [127] which had been
overlooked by Norton [114].) Sade’s method is to successively calculate for
k = 1, 2, . . . , K, K 6 n, a (complete) set of reduced k × n Latin rectan-
gles... inequivalent under row, column or label permutation, keeping track of
the number of ways each rectangle could have been formed. The (k + 1)-row
rectangles are formed by adding a row to each k-row rectangle in all possible
ways, eliminating equivalent rectangles (actually the difficult part of the cal-
culation) as they appear. When k = K (Sade used K = 4), one may sum the
product of the number of ways in which a rectangle could have been formed
(already known) and the number of ways the rectangle can be completed to
a square (easily computed) over the inequivalent K-row rectangles, producing
the number of n × n squares.

– Wells [168]

Sade’s method is based on the fact that equivalent Latin rectangles can be
filled out to complete n × n Latin squares in the same number of ways (have
the same count) where equivalent Latin rectangles are intertransformable by
column and label permutations such that corresponding columns have the
same set of (unordered) symbols.

– Bammel and Rothstein [7]

6.2 McKay and Wanless’ approach

Sade’s idea was first adapted to the computer by Wells [168] (see also [169]), who gave
the correct value for R8, which he computed on the MANIAC II computer at the Los
Alamos Scientific Laboratory. Bammel and Rothstein [7] verified the values for R7 and
R8 and discovered R9, with the use of the PDP-10 (Programmed Data Processor model
10) computer. The algorithms of McKay and Rogoyski [95] and McKay and Wanless [96]
which were used to find R10 and R11, respectively, were graph theoretic adaptations of
Theorem 6.2 that made use of nauty [93].

the electronic journal of combinatorics 17 (2010), #A1 34



We will now describe the formulae that McKay and Wanless [96] used to find Rk,11.
Given a k×n Latin rectangle L, we can construct a bipartite graph B = B(L) with vertex
bipartition C ∪ S where C is the set of columns of L, and S is the set of symbols of L.
Vertices c ∈ C and s ∈ S are adjacent if and only if symbol s occurs in column c in L.
So B is regular of degree k.

Let T be the group of paratopisms that combines isotopisms of the form (ε, β, γ) and
(cs)-conjugation, where ε is the identity permutation. Then T acts on the set of k-regular
bipartite graphs B, by permuting the vertices of C and S individually and possibly by
swapping the sets C and S. Let B(k, n) be a set containing one representative from each
orbit of k-regular bipartite graphs with vertex bipartition C ∪ S under the action of T .
For any B ∈ B(k, n) let AutT (B) denote the group of all τ ∈ T such that τ(B) = B.

Let B′ be the bipartite complement of B, that is, B′ is a bipartite graph with vertex
bipartition C ∪ S such that c ∈ C is adjacent to s ∈ S if and only if symbol s does not
occur in column c in L. In fact, the biadjacency matrix of B′ is the template of L (see
Section 3). Recall that, for any graph, a one-factor is a 1-regular spanning subgraph and
a one-factorisation is a decomposition into one-factors. Let m(H) denote the number of
one-factorisations of a graph H . Whenever 0 6 k 6 n and n > 1,

Rn = 2nk!(n − k)!
∑

B∈B(k,n)

m(B)m(B′)

|AutT (B)|

and

Rk,n = 2nk!(n − k)!
∑

B∈B(k,n)

m(B)

|AutT (B)| .

It is possible to compute m(B) with the recurrence relation

m(B) =
∑

F∈Fe

m(B − F )

for any edge e of B, where Fe is the set of all one-factors F of B that contain e. We
use B − F to denote the graph formed by deleting the edges from B that are also in
F . Describing their computation of Rk,11, McKay and Wanless [96] made the following
comment.

The main practical difficulty was the efficient management of the fairly large
amount of data.

– McKay and Wanless [96]

7 The asymptotic number of Latin rectangles

In this section we will survey the asymptotic number of Latin rectangles. We know
L1,n = n! and L2,n ∼ n!2 exp(−1) by (5). Kerawala [76] proved that L3,n ∼ n!3c for some
constant c ≈ exp(−3). Riordan [120] subsequently showed that L3,n ∼ n!3 exp(−3) and
made the following remark.
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...a result which Kerawala surmised but failed to prove, though his numerical
evidence was practically conclusive (agreeing with exp(−3) to seven decimal
places).

– Riordan [120]

Erdős and Kaplansky [40] found that

Lk,n ∼ n!k exp
(
− k(k − 1)/2

)
(16)

for k = O
(
(log n)3/2−ǫ

)
and conjectured that (16) is valid for o(n1/3) which was later

proved by Yamamoto [172]. Eighteen years later, Yamamoto [175] proved that

Lk,n ∼ n!k exp
(
− k(k − 1)/2 − k3/6n

)
(17)

for k = O(n5/12−ǫ). Stein [146] (see also [147, 148]) showed that (17) is valid for o(n1/2).
Godsil and McKay [58] (see also [57]) proved

Lk,n ∼ n!k
(
n(n − 1) · · · (n − k + 1)/nk

)n
(1 − k/n)−n/2 exp(−k/2)

as n → ∞ with k = o(n6/7). Nechvatal [111] and Green [61, 62, 63] studied the asymptotic
number of a generalisation of Latin rectangles.

Comtet [26, p. 183] said that even estimating Ln when n → ∞ “seems to be an
extremely difficult combinatorial problem.” However, van Lint and Wilson [163, p. 162]
showed that

1

n
L1/n2

n → exp(−2), (18)

which was conjectured earlier in [115]. This is not a particularly satisfying result since,
for example, (2) and Stirling’s Approximation imply

lim
n→∞

1

n
R1/n2

n = lim
n→∞

1

n
L1/n2

n = exp(−2),

despite Ln and Rn differing by a factor of n!(n − 1)!. Skau [141] extended (18) to

L1/n1+ǫ

n ∼ nn1−ǫ

exp(−2n1−ǫ)

for all ǫ > 0.

...there is still a long way to go to achieve a ‘clean’ asymptotic solution for the
number of Latin squares.

– Skau [141]

Timashov [160] made the following conjecture.

Conjecture 7.1.

Rn ∼ 1

2
(2π)3n/2 exp

(
−2n2 + 3n/2 − 1

)
nn2−n/2−1. (19)
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Conjecture 7.1 corresponds well with the estimates in Figure 2, most of which were
published after Timashov made Conjecture 7.1. For example, Figure 2 lists the estimates
R50 ≈ 3.06× 102123 and R100 ≈ 1.78× 1011396 by Zhang and Ma [178], whereas the right-
hand side of (19) is approximately 3.02 × 102123 and 1.76 × 1011396 when n = 50 and
n = 100, respectively.

8 Concluding remarks

In this paper we have identified numerous formulae involving the number of Latin rect-
angles Lk,n. Interest in Latin rectangles and their generalisations is largely due to their
connection with Latin squares.

The general formulae in Section 5 appear unable to help us find unknown values of
Ln. McKay et al. [94, 95, 96] gave practical formulae for the enumeration of Latin squares
that can be used for computer enumeration, all of which are particularly suited for the
use of nauty [93]. However, these formulae are unable to find R12 in a reasonable amount
of time with current hardware. Since R12 ≈ 1.62 · 1044 > 3 · 1010 · R11, the evaluation of
R12 is likely to remain infeasible for some years yet.

It appears likely that formulae for the number of Latin squares will continue to be
discovered. Although these formulae may not help find unknown values of Rn they might
be able to shed some light on related problems. For example, they could potentially aid
the search for the asymptotic value of Rn or help the discovery of divisors of Rn.
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Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 412-460 (1973), pp. 243–246.

[104] W. O. J. Moser, The number of very reduced 4 × n Latin rectangles, Canad. J.
Math., 19 (1967), pp. 1011–1017.

[105] G. L. Mullen, How many i − j reduced Latin squares are there?, Amer. Math.
Monthly, 82 (1978), pp. 751–752.

[106] G. L. Mullen and C. Mummert, Finite Fields and Applications, American
Mathematical Society, 2007.

[107] G. L. Mullen and D. Purdy, Some data concerning the number of Latin rect-
angles, J. Combin. Math. Combin. Comput., 13 (1993), pp. 161–165.
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