Mutually Disjoint Steiner Systems $S(5,8,24)$ and 5-(24, 12, 48) Designs

Makoto Araya
Department of Computer Science
Shizuoka University
Hamamatsu 432-8011, Japan
araya@inf.shizuoka.ac.jp

Masaaki Harada
Department of Mathematical Sciences
Yamagata University
Yamagata 990-8560, Japan and

PRESTO, Japan Science and Technology Agency
Kawaguchi, Saitama 332-0012, Japan
mharada@sci.kj.yamagata-u.ac.jp
Submitted: Aug 4, 2009; Accepted: Dec 9, 2009; Published: Jan 5, 2010
Mathematics Subject Classifications: 05B05

Abstract

We demonstrate that there are at least 50 mutually disjoint Steiner systems $S(5,8,24)$ and there are at least 35 mutually disjoint $5-(24,12,48)$ designs. The latter result provides the existence of a simple $5-(24,12,6 m)$ design for $m=24,32,40$, $48,56,64,72,80,112,120,128,136,144,152,160,168,200,208,216,224,232,240,248$ and 256 .

1 Introduction

A $t-(v, k, \lambda)$ design D is a pair of a set X of v points and a collection \mathcal{B} of k-subsets of X called blocks such that every t-subset of X is contained in exactly λ blocks. We often denote the design D by (X, \mathcal{B}). A design with no repeated block is called simple. All designs in this note are simple. A Steiner system $S(t, k, v)$ is a $t-(v, k, \lambda)$ design with $\lambda=1$. Two $t-(v, k, \lambda)$ designs with the same point set are said to be disjoint if they have no blocks in common. Two $t-(v, k, \lambda)$ designs are isomorphic if there is a bijection between their point sets that maps the blocks of the first design into the blocks of the second design. An automorphism of a $t-(v, k, \lambda)$ design D is any isomorphism of the design with itself and the set consisting of all automorphisms of D is called the automorphism group $\operatorname{Aut}(D)$ of D.

The well-known Steiner system $S(5,8,24)$ and a 5 - $(24,12,48)$ design are constructed by taking as blocks the supports of codewords of weights 8 and 12 in the extended Golay $[24,12,8]$ code, respectively. It is well known that there is a unique Steiner system $S(5,8,24)$ up to isomorphism [8], and there is a unique $5-(24,12,48)$ design having even
block intersection numbers [7]. By finding permutations on 24 points such that all images of a Steiner system $S(5,8,24)$ under these permutations are mutually disjoint, Kramer and Magliveras [6] found nine mutually disjoint Steiner systems $S(5,8,24)$. Then Araya [1] found 15 mutually disjoint Steiner systems $S(5,8,24)$. Recently Jimbo and Shiromoto [4] have found 22 mutually disjoint Steiner systems $S(5,8,24)$ and two disjoint 5 - $(24,12,48)$ designs.

Our computer search has found more mutually disjoint Steiner systems $S(5,8,24)$ and 5 -(24, 12, 48) designs.

Proposition 1. There are at least 50 mutually disjoint Steiner systems $S(5,8,24)$. There are at least 35 mutually disjoint 5-(24, 12, 48) designs.

Let $\left(X, \mathcal{B}_{1}\right),\left(X, \mathcal{B}_{2}\right), \ldots,\left(X, \mathcal{B}_{35}\right)$ be 35 mutually disjoint 5 - $(24,12,48)$ designs. Then for any non-empty subset $S \subset\{1,2, \ldots, 35\},\left(X, \cup_{i \in S} \mathcal{B}_{i}\right)$ is a simple $5-(24,12,48|S|)$ design. Hence this provides the existence of the following designs. We remark that if a $5-(24,12, \lambda)$ design exists then λ is divisible by 6 .

Corollary 2. There is a simple 5-(24, 12,6m) design for

$$
\begin{array}{r}
m=24,32,40,48,56,64,72,80,112,120,128,136 \\
144,152,160,168,200,208,216,224,232,240,248 \text { and } 256 .
\end{array}
$$

For the above $m, 5-(24,12,6 m)$ designs are constructed for the first time (see Table 4.46 in [5]). In addition, we have verified that there is a $5-(24,12,48 s)$ design with a trivial automorphism group for $s=2,3, \ldots, 35$.

2 Preliminaries

To give description of mutually disjoint 5-designs, we first define the extended Golay $[24,12,8]$ code G_{24} as the code with generator matrix

$$
\left(\begin{array}{ccccc}
& & & & 1 \\
I_{12} & & & A & \\
& & & & \vdots \\
& 1 & \cdots & 1 & 0
\end{array}\right)
$$

where A is the circulant matrix with first row $(1,1,0,1,1,1,0,0,0,1,0)$ and I_{12} is the identity matrix of order 12 . The Steiner system $S(5,8,24)$ and the $5-(24,12,48)$ design are constructed by taking as blocks the supports of codewords of weights 8 and 12 in G_{24}, respectively. We denote these 5 -designs by $D_{8}=\left(X_{24}, \mathcal{B}_{1}\right)$ and $D_{12}=\left(X_{24}, \mathcal{B}_{2}\right)$, respectively, where $X_{24}=\{1,2, \ldots, 24\}$ (see [4]).

Let σ be a permutation on 24 points X_{24}. For $i=1$ and $2, \mathcal{B}_{i}^{\sigma}$ denotes $\left\{B^{\sigma} \mid B \in \mathcal{B}_{i}\right\}$ where B^{σ} denotes the image of a block B under σ. Similar to [1] and [6], in this note, we find permutations σ such that $\left(X_{24}, \mathcal{B}_{i}^{\sigma}\right)$ are mutually disjoint. It is well known that
both automorphism groups $\operatorname{Aut}\left(D_{8}\right)$ and $\operatorname{Aut}\left(D_{12}\right)$ are the Mathieu group M_{24}. If α and β are in the same right coset for M_{24} in the symmetric group S_{24} on X_{24} then $\mathcal{B}_{i}^{\alpha}=\mathcal{B}_{i}^{\beta}$. Hence we only consider right coset representatives of M_{24} in S_{24}. One can calculate right coset representatives by using the method in [3] as follows. For disjoint subsets Δ and Δ^{\prime} of X_{24}, we define a subset of S_{24} :

```
\(\operatorname{Select}\left(\Delta, \Delta^{\prime}\right)=\{i d\} \cup\)
    \(\left(\cup_{i=1}^{k}\left\{\left(\gamma_{1}, \delta_{1}\right)\left(\gamma_{2}, \delta_{2}\right) \cdots\left(\gamma_{i}, \delta_{i}\right) \mid \gamma_{1}<\cdots<\gamma_{i} \in \Delta, \delta_{1}<\cdots<\delta_{i} \in \Delta^{\prime}\right\}\right)\),
```

where $k=\min \left\{|\Delta|,\left|\Delta^{\prime}\right|\right\}$ and $i d$ is the identity permutation. Let $\operatorname{Sym}(\Omega)$ denote the symmetric group on a set Ω. Then it follows from [3, Section 4] that $H^{(7)} U_{7} U_{6} U_{5} \cdots U_{1}$ is the set of all right coset representatives of M_{24} in S_{24} where

$$
\begin{aligned}
U_{i}= & \{i d\}(i=1,2, \ldots, 5), \\
U_{6}= & \operatorname{Select}(\{6,7,8,9,11,12,13,14,15,16,17,18,20,21,23,24\},\{10,19,22\}), \\
U_{7}= & \operatorname{Select}(\{7,13,21\},\{8,9,11,12,14,15,16,17,18,20,23,24\}), \\
H^{(7)}= & \operatorname{Sym}(\{13,21\}) \times \operatorname{Sym}(\{8,9,11,12,14,15,16,17,18,20,23,24\}) \\
& \times \operatorname{Sym}(\{10,19,22\}) .
\end{aligned}
$$

We note that $\left|U_{6}\right|=969$ and $\left|U_{7}\right|=455$.

3 Description of mutually disjoint 5-designs

3.1 Mutually disjoint Steiner systems $S(5,8,24)$

We define the following set of 22 permutations:

$$
G_{1}=\left\{\sigma^{i} \tau^{j} \mid i=0,1, \ldots, 10, j=0,1\right\}
$$

where

$$
\begin{aligned}
& \sigma=(13,14,15,16,17,18,19,20,21,22,23) \\
& \tau=(1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)
\end{aligned}
$$

Recently Jimbo and Shiromoto [4] showed that the set $\left\{\left(X_{24}, \mathcal{B}_{1}^{\sigma}\right) \mid \sigma \in G_{1}\right\}$ gives 22 mutually disjoint Steiner systems $S(5,8,24)$.

Let H_{1} be the set of all right coset representatives α of M_{24} in S_{24} satisfying the condition that $\left\{\left(X_{24}, \mathcal{B}_{1}^{\sigma}\right) \mid \sigma \in G_{1} \cup\{\alpha\}\right\}$ gives 23 mutually disjoint Steiner systems $S(5,8,24)$. Then we define the simple undirected graph Γ_{1}, whose set of vertices is the set $G_{1} \cup H_{1}$ and two vertices α and β are adjacent if \mathcal{B}_{1}^{α} and \mathcal{B}_{1}^{β} are disjoint. Clearly a t-clique in Γ_{1} gives t mutually disjoint Steiner systems $S(5,8,24)$. It seems infeasible to construct the graph Γ_{1} by computer. However, we found a subgraph Γ_{1}^{\prime} of Γ_{1} such that Γ_{1}^{\prime} contains a 50 -clique by considering subsets of the set $H^{(7)} U_{7} U_{6} U_{5} \cdots U_{1}$ of all right coset

Table 1: Permutations P_{1}

Permutations
$\alpha_{1}=(6,19,10,22)(7,14,15)(8,17,24,11,23,13,12)(9,16,2$
0, 9, 20, 8, 16, 14, 21, 22, 19, 11)
$(7,19,24,11,16,12,15,23,8,14,10,22,9)(13,21,17)$
($7,22,11,15,23,8,13,16,12,14,9,10,19)$
$\alpha_{5}=(6,19,11,7,22,23,10)(8,16,21,14,18,13,17,9,12$
(7,8, 22, 23, 19, $15,21,17,14)(9,10,24,11$,
$\alpha_{7}=(7,17,15,8,9,20,14)(10,23,22,11,24,16,21,12)(18,19)$
$\alpha_{8}=(8,20,14,23,13)(9,12,11,17)(10,24,22,16,15,19)$
$\alpha_{9}=(7,17,24,9)(8,15,20,22,23,19,12,18,11,21,14,13,1$
$\alpha_{10}=(7,15,17,19,14,21,13,23,12,10,9,16,24,8)(18,22)$
$\alpha_{11}=(6,19,7,20,24,21,16,17,15,9,12,14,23,13,11,8,22,18$,
$\alpha_{12}=(7,18,24,9,15,8,11,10,14,22,16,12)(13,19,17,21,23)$
$\alpha_{13}=(7,11,15,12,13,21,14,10,19,18,22,8,20,9)(16,24)$
$\alpha_{14}=(8,9,12,24,11,16,14,22,23,19,15,10,20,21)(13,17)$
$\alpha_{15}=(7,10,23,8)(9,15,18,21,13)(11,14,12,19)(16,24,22)$
$\alpha_{16}=(8,13,17,22,9,18)(11,24,21,16,12,19)(14,15,20)$
$\alpha_{17}=(7,14,11)(8,20,21,24,22,16,10,9)(12,23)(13,18,19)(15,17)$
$\alpha_{18}=(7,19,20,22,14,13,11,24,8,16,9,15,23,10)$
$\alpha_{19}=(7,16,19,9,18,8,20,24,14,12,22,21,17,13,11,15)$
$\alpha_{20}=(7,15,17,10,18,9,19,24,16)(8,14,20,21,11)$
$\alpha_{21}=(7,14,18,13,12,22,17,9,8,10,11)(15,19,23,21,24,16,20)$
$\alpha_{22}=(6,19,7,22,17,10)(8,9,24,14,11,16,12,15,13)(20,21)$
$\alpha_{23}=(8,14,21,10,15,22,19,17,12,18,11)(9,20)(16,24)$
$\alpha_{24}=(7,23,15,21,24,13,9)(8,10,16,22)(11,18,14)(12,17)$
$\alpha_{25}=(7,17,22,23,13,24,16,11,9,15,20,14,19,12,21,10,8)$
$\alpha_{26}=(7,23,9,17,12,10,15,16,14,8,19,22,21,18,13,11)$
$\alpha_{27}=(7,18,12,9,17,21,11,23,13,10,24,16,15)(8,19)(20,22)$

representatives. This computation for finding cliques was performed using Magma [2]. The set $\left\{\left(X_{24}, \mathcal{B}_{1}^{\sigma}\right) \mid \sigma \in G_{1} \cup P_{1}\right\}$ gives corresponding 50 mutually disjoint Steiner systems $S(5,8,24)$ where P_{1} is listed in Table 1. Moreover we have verified by Magma [2] that the simple 5- $(24,8, s+22)$ design $\left(X_{24}, \cup_{\sigma \in Y} \mathcal{B}_{1}^{\sigma}\right)$ has a trivial automorphism group where $Y=G_{1} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ for $s=1,2, \ldots, 28$.

3.2 Mutually disjoint $5-(24,12,48)$ designs

For the $5-(24,12,48)$ design D_{12}, by a back-tracking algorithm, we found the set $G_{2}=$ $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{20}\right\}$ of 20 permutations on 24 points satisfying the condition that $\left\{\left(X_{24}, \mathcal{B}_{2}^{\sigma}\right) \mid\right.$ $\left.\sigma \in G_{2}\right\}$ gives 20 mutually disjoint $5-(24,12,48)$ designs where β_{1} is the identity permutation $i d$. This was done by considering some subsets of the set $H^{(7)} U_{7} U_{6} U_{5} \cdots U_{1}$ of all right coset representatives of M_{24} in S_{24}.

Let H_{2} be the set of all right coset representatives β of M_{24} in S_{24} satisfying the
condition that $\left\{\left(X_{24}, \mathcal{B}_{2}^{\sigma}\right) \mid \sigma \in G_{2} \cup\{\beta\}\right\}$ gives 21 mutually disjoint 5 -(24, 12, 48) designs. Similar to Γ_{1}, we define the simple undirected graph Γ_{2} where $G_{2} \cup H_{2}$ is the set of vertices. In this case, we found a subgraph Γ_{2}^{\prime} of Γ_{2} such that Γ_{2}^{\prime} contains a 35 -clique by considering subsets of the set $H^{(7)} U_{7} U_{6} U_{5} \cdots U_{1}$. We list in Table 2 the set P_{2} of 35 permutations corresponding to the 35 -clique in Γ_{2}^{\prime}, where the set $\left\{\left(X_{24}, \mathcal{B}_{2}^{\sigma}\right) \mid \sigma \in P_{2}\right\}$ gives 35 mutually disjoint 5-(24, 12, 48) designs. As described in Section 1, a simple 5-(24, 12, 48s) design can be constructed from the 35 mutually disjoint $5-(24,12,48)$ designs for $s=2,3, \ldots, 35$. Moreover we have verified by Magma [2] that the $5-(24,12,48 s) \operatorname{design}\left(X_{24}, \cup_{i=1}^{s} \mathcal{B}_{2}^{\beta_{i}}\right)$ has a trivial automorphism group for $s=2,3, \ldots, 35$.

Table 2: Permutations P_{2}

\quad Permutations
$\beta_{1}=i d$ (the identity permutation)
$\beta_{2}=(7,19,21,12,22,16,10,8)(11,13)$
$\beta_{3}=(7,8,22,11,21,10)(9,13)(17,19)$
$\beta_{4}=(6,22,20,10)(7,8)(9,13)(11,19)(16,21)$
$\beta_{5}=(7,8)(10,11,13,22,17,21)(18,19)$
$\beta_{6}=(7,8,22,13,14,10)(9,19)(15,21)$
$\beta_{7}=(7,9,22,23,10)(11,13)(16,21)(19,20)$
$\beta_{8}=(7,19,18,22,24,10)(9,13)(14,21)$
$\beta_{9}=(10,12,19,20,13,22,15)(21,24)$
$\beta_{10}=(6,22,16,19,15,10)(13,14)(21,24)$
$\beta_{11}=(9,22,24,19,12,10)(13,16)(20,21)$
$\beta_{12}=(10,17,13,15,21,19,23,22)$
$\beta_{13}=(7,11,19,14,22,24,13,15,21,10)$
$\beta_{14}=(6,10)(11,22,21,23,13,12,19)$
$\beta_{15}=(7,9,24,8)(10,16,21,17,19,13,22,23)$
$\beta_{16}=(7,15,19)(8,22,21,23,13,20,10,9,24)$
$\beta_{17}=(6,22,8,7,9,24,19,16,10)(13,14,21)$
$\beta_{18}=(8,11,22,20,19,21,10,24)(13,17)$
$\beta_{19}=(6,22,20,10)(7,15)(8,18,13,16,21,24)(9,19)$
$\beta_{20}=(7,19,9,22,13,17,21,8,23,24,10)$
$\beta_{21}=(7,22,20,19,17,10)(8,12,24,13)(9,11,21)$
$\beta_{22}=(7,22,9,14)(8,18,24,19,20,10)(13,17,21)$
$\beta_{23}=(7,17,24,22,10,9,21,12,13,20,8)$
$\beta_{24}=(7,8,20,22,19,24,14,12,13,11,9)(10,15)(18,21)$
$\beta_{25}=(7,23,10,12)(8,14,13,22,11,9,15,17,24)(19,20,21)$
$\beta_{26}=(7,20,19,8,15,9)(10,12,17,13,22)(11,23,14,16,21)$
$\beta_{27}=(7,15,12)(8,10,17,9,24,16,14,11,22)$
$\beta_{28}=(7,12,18,24,13,16,21,9,20,8,19)(10,11)(14,15,23,22)$
$\beta_{29}=(7,17,8,12)(9,11,16,19,15,14)(21,22,23)$
$\beta_{30}=(6,10)(7,16,14,13,21,18,19,9,8)(11,12,20,22)(15,24)$
$\beta_{31}=(7,10,22,17,19,8)(11,16,12,13,20)(21,24)$
$\beta_{32}=(7,11,22,21,8)(9,18,10,19,14,16,12,24)(13,15)$
$\beta_{33}=(8,13,21)(9,12,20,11,22,18,19,24,14,10,16)$
$\beta_{34}=(7,12,14,10,22,24,15,16,21,9,8,23,19)$
$\beta_{35}=(8,14,24,10,9,16,19,11,17,12)(13,22)(15,21)$

Acknowledgments. The authors would like to thank Masakazu Jimbo and Keisuke Shiromoto for providing a preprint of [4] and useful discussions. The authors would also like to thank the anonymous referee for helpful comments.

References

[1] M. Araya, More mutually disjoint Steiner systems $S(5,8,24)$, J. Combin. Theory Ser. A 102 (2003), 201-203.
[2] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu. au/magma/.
[3] J.D. Dixon and A. Majeed, Coset representatives for permutation groups, Portugal. Math. 45 (1988), 61-68.
[4] M. Jimbo and K. Shiromoto, A construction of mutually disjoint Steiner systems from isomorphic Golay codes, J. Combin. Theory Ser. A 116 (2009), 1245-1251.
[5] G.B. Khosrovshahi and R. Laue, " t-Designs with $t \geqslant 3$," Handbook of Combinatorial Designs (Second edition), C.J. Colbourn and J.H. Dinitz (Editors), Chapman \& Hall/CRC, Boca Raton, FL, 2007, pp. 79-101.
[6] E.S. Kramer and S.S. Magliveras, Some mutually disjoint Steiner systems, J. Combin. Theory Ser. A 17 (1974), 39-43.
[7] V.D. Tonchev, A characterization of designs related to dodecads in the Witt system $S(5,8,24)$, J. Combin. Theory Ser. A 43 (1986), 219-227.
[8] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1938), 265-275.

