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Abstract

We give a short proof of Gao and Richter’s theorem that every circuit graph

contains a closed walk visiting each vertex once or twice.

1 Introduction

We only consider finite graphs without loops or multiple edges. For a graph G, we use
V (G) and E(G) to denote the vertex set and edge set of G, respectively. A k-walk in G
is a walk passing through every vertex of G at least once and at most k times. A circuit

graph (G, C) is a 2-connected plane graph G with outer cycle C such that for each 2-cut
S in G, every component of G − S contains a vertex of C. It is immediate that every
3-connected planar graph G is a circuit graph (we may choose C to be any facial cycle of
G).

In 1994, Gao and Richter [3] proved that every circuit graph contains a closed 2-
walk. The existence of such a walk in every 3-connected planar graph was conjectured by
Jackson and Wormald [5]. Gao, Richter, and Yu [4] extended this result by showing that
every 3-connected planar graph has a closed 2-walk such that any vertex visited twice is
in a vertex cut of size 3. (It is easy to see that this also implies Tutte’s theorem [7] that
every 4-connected planar graph is Hamiltonian.) The main objective of this note is to
present a short proof of Gao and Richter’s result.

Theorem 1 Let (G, C) be a circuit graph and let u, v ∈ V (C). Then there is a closed

2-walk W in G visiting u and v exactly once and traversing every edge of C exactly once.

We conclude this section with some notation and terminology. A plane chain of

blocks is a graph, embedded in the plane, with blocks B1, B2, . . . , Bk such that, for each
i = 1, . . . , k − 1, Bi and Bi+1 have a vertex in common, no two of which are the same,

the electronic journal of combinatorics 17 (2010), #N10 1



and, for each j = 1, 2, . . . , k,
⋃

i6=j Bi is in the outer face of Bj . We say that B1 and Bk

are end blocks of the plane chain of blocks B1, B2, . . . , Bk.
Let G be a graph. For any S ⊆ V (G)∪E(G), define G−S to be the subgraph of G with

vertex set V (G)−(S∩V (G)) and edge set {e ∈ E(G) : e 6∈ S or e is not incident with any
vertex in S}. Let H be a subgraph of G. We define H + S as the graph with vertex set
V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ {e ∈ E(G) : e ∈ S and e is incident with two
vertices in V (H)∪ (S ∩V (G))}. When S = {s}, we simply write G−s and H + s instead
of G − {s} and H + {s}.

We write A := B to rename B as A. For any graph G and any S ⊆ V (G), we use
G[S] to denote the subgraph of G induced by S.

2 Proof of Theorem 1

The set of circuit graphs has some nice inductive properties. The following ones were
proved in [3] and will be used in our later proof.

Lemma 2 Let (G, C) be a circuit graph.

(i) Let C ′ be any cycle of G and let G′ be the subgraph of G contained in the closed disc

bounded by C ′. Then (G′, C ′) is a circuit graph.

(ii) Let v ∈ V (C), then G − v is a plane chain of blocks B1, B2, . . . , Bk. Moreover, one

of the neighbors of v in C is in B1 and the other is in Bk, and none of them is a

cut vertex of G − v.

We can now prove our main result.

Proof of Theorem 1. If V (G) = V (C), then let W := C and the assertion of the
theorem holds. So we may assume that V (G) − V (C) 6= ∅. Let w be a neighbor of v in
C such that w 6= u.

We may also assume that G is 3-connected. For otherwise, suppose that S := {x, y}
is a 2-cut in G. Since (G, C) is a circuit graph, we conclude that S ⊆ V (C) and G − S
has exactly two components, say G1 and G2. For i = 1, 2, let G∗

i := G[V (Gi) ∪ S] + xy
and let C∗

i := (G∗
i ∩ C) + xy. Then it is easy to check that both (G∗

1, C
∗
1) and (G∗

2, C
∗
2)

are circuit graphs. We may assume that x and y are chosen so that u 6= y and v 6= x. Let
ui := u if u ∈ V (G∗

i ) and ui := x if u /∈ V (G∗
i ), and let vi := v if v ∈ V (G∗

i ) and vi := y
if v /∈ V (G∗

i ), for i = 1, 2. Since |V (G∗
1)| < |V (G)| and |V (G∗

2)| < |V (G)|, we apply the
theorem inductively to each (G∗

i , C
∗
i ) with ui, vi playing the roles of u, v, respectively, and

obtain a closed 2-walk Wi in G∗
i visiting ui and vi exactly once and traversing every edge

of C∗
i exactly once. Then W := (W1 − xy)∪ (W2 − xy) gives the desired closed 2-walk in

G.
Suppose that C is a triangle. Hence V (C) = {u, v, w}. Since G is 3-connected, we have

G − u is 2-connected and so its outer face is bounded by a cycle, say C ′. Then it follows
from Lemma 2(i) that (G − u, C ′) is a circuit graph. Let v′ 6= w be the other neighbor
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of v in C ′. Hence by Lemma 2(ii), G − {u, v} is a plane chain of blocks B1, B2, . . . , Bk

with w ∈ V (B1), v′ ∈ V (Bk), and neither w nor v′ is a cut vertex of G − {u, v}. Let
vi := V (Bi) ∩ V (Bi+1) for i = 1, . . . , k − 1, and let v0 := w and vk := v′. Clearly,
{v0, vk} ∩ {vi|1 6 i 6 k − 1} = ∅. For each 1 6 i 6 k, if V (Bi) = {vi−1, vi}, then let
Wi := (vi−1, vi−1vi, vi, vivi−1, vi−1); otherwise let Ci be the outer cycle of Bi, and hence by
Lemma 2(i), (Bi, Ci) is a circuit graph, then by the induction hypothesis, there exists a
closed 2-walk Wi in Bi such that Wi visits vi−1 and vi exactly once and traverses every
edge of Ci exactly once. Now let W := (

⋃k

i=1 Wi) + {u, v, uv, vw, wu}. It is easy to see
that W is the required closed 2-walk in G.

So we may further assume that C is not a triangle. Let v′ (respectively, w′) be the
other neighbor of v (respectively, w) in C such that v′ 6= w (respectively, w′ 6= v).
We now consider G∗ := G/{vw}. Let v∗ denote the vertex of G∗ resulting from the
contraction of vw and let C∗ := (C − {v, w}) + {v∗, v′v∗, v∗w′}. Suppose that (G∗, C∗)
is a circuit graph. Then since |V (G∗)| < |V (G)|, inductively, there is a closed 2-walk
W ∗ in G∗ visiting u, v∗ exactly once and traversing each edge of C∗ exactly once. Now
W := (W ∗ − v∗) + {v, w, v′v, vw, ww′} gives the desired closed 2-walk in G.

Therefore, we may assume that (G∗, C∗) is not a circuit graph. Then {v, w} is con-
tained in a vertex cut of size 3 in G. Note that it is possible that {v, w} is contained in
many 3-cuts of G. Without loss of generality, suppose that {v, w, z} is a 3-cut in G. Let
C ′ := {v, w, z, vw, wz, zv} and let G′ be the graph contained in the closed disc bounded by
C ′ such that G′ − {wz, zv} ⊆ G. Then it is easy to check that (G′, C ′) is a circuit graph.
We may assume that z is chosen so that |V (G′)| is maximum. Then by planarity, for any
vertex z′ ∈ V (G) such that {v, w, z′} forms a 3-cut in G, we always have z′ ∈ V (G′). Let
X be the set of vertices in G′ not in C ′ and let G′′ := (G∗ − X) + v∗z. In other words,
G′′ = (G − X)/{vw} + v∗z. Then by the choice of z, we have (G′′, C∗) is also a circuit
graph. By the induction hypothesis, there exists a closed 2-walk W ∗ in G′′ visiting u, v∗

exactly once and traversing each edge of C∗ exactly once; and there is a closed 2-walk
W ′ in G′ visiting v, z exactly once and traversing each edge of C ′ exactly once. Now
W := ((W ∗ − v∗) ∪ (W ′ − z)) + {v′v, ww′} gives the desired closed 2-walk in G. This
completes the proof of Theorem 1.

3 Concluding remarks

A k-tree is a spanning tree of maximum degree at most k. Barnette [1] showed that every
3-connected planar graph has a 3-tree. It is easy to see that if a graph G has a closed
k-walk, then G has a (k + 1)-tree. Moreover, a vertex visited twice in a closed 2-walk W
corresponds to a vertex of degree 3 in the 3-tree corresponding to W . Gao and Richter [3]
strengthened the result of Barnette by using Theorem 1. It was also proved in [3] that
every 3-connected projective planar graph contains a closed 2-walk, and hence a 3-tree.
Brunet et al. [2] showed that every 3-connected graph that embeds in the torus or the
Klein bottle has a closed 2-walk, and hence a 3-tree. Recently, Nakamoto, Oda, and
Ota [6] proved the following result which bounds the number of vertices of degree 3 of
3-trees in circuit graphs. (They also proved similar results for 3-connected graphs that
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embed in the projective plane, the torus, and the Klein bottle.)

Theorem 3 Let (G, C) be a circuit graph. Then G contains a 3-tree with at most

max
{ |V (G)|−7

3
, 0

}

vertices of degree 3. Moreover, the estimation for the number of vertices

of degree 3 is best possible.

However, our proof as well as the proofs in [3,4] does not bound the number of vertices
visited twice in closed 2-walks. In [6], the authors asked for a result for the number of
vertices visited twice of closed 2-walks in circuit graphs or in 3-connected planar graphs,
similarly to Theorem 3 for 3-trees.
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