
Another abstraction of the Erdős-Szekeres
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Abstract

The Happy End Theorem of Erdős and Szekeres asserts that for every integer n

greater than two there is an integer N such that every set of N points in general

position in the plane includes the n vertices of a convex n-gon. We generalize this

theorem in the framework of certain simple structures, which we call “happy end

spaces”.

In the winter of 1932/33, Esther Klein observed that

from any set of five points in the plane of which no three lie on the same line
it is always possible to select four points that are vertices of a convex polygon.

When she shared this news with a circle of her friends in Budapest, the following prospect
of generalizing it emerged:

Can we find for each integer n greater than two an integer N(n) such that
from any set of N(n) points in the plane of which no three lie on the same line
it is always possible to select n points that are vertices of a convex polygon?

Endre Makai proved that N(5) = 9 works here. A few weeks later, George Szekeres proved
the existence of N(n) for all n. His argument produced very large upper bounds for N(n):
for instance, it gave N(5) 6 210000. Soon afterwards, Paul Erdős came up with a different
proof, which led to much smaller values of N(n):
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(⋆) From any set of
(

2n−4
n−2

)

+1 points in the plane of which no three lie on the same line
it is always possible to select n points that are vertices of a convex polygon.

In December 1934, Erdős and Szekeres submitted for publication a manuscript containing
both proofs; the paper [6] appeared in 1935. Esther Klein and George Szekeres got mar-
ried on June 13, 1937 and Paul Erdős began referring to (⋆) as The Happy End Theorem.

Abstractions of this theorem have been studied by Korte and Lovász [7] and by Morris
and Soltan [8]. These deal with abstract convexity spaces satisfying the anti-exchange
property and the simplex partition property, and having a finite Caratheodory number
c > 3. See [8], [7] for the precise definitions and more details. A somewhat less abstract
version is considered in [10], based on the order type of a configuration of points in the
plane. This enables the authors to show, using an exhaustive computer search, that any
configuration of 17 points in general position in the plane contains a convex 6-gon. Here
we propose another abstraction: A happy-end space is a set S along with a function

f : S × S × S → {+,−}

such that
f(x, y, z) = f(y, x, z) for all x, y, z;

in this space, a subset C of S is called convex if, and only if, for every subset B of C such
that |B| > 2 and for every point x of B, there is another y in B such that f(x, y, z) is
constant on B − {x, y}. (In this definition, the only values of f(x, y, z) that matter are
those where x, y, z are all distinct.) Every set S of points in the plane such that no three
lie on the same line and no two have the same first coordinate defines a happy-end space
by

f(x, y, z) =

{

+1 if point z lies above the line xy,
−1 if point z lies below the line xy;

in this space, a set is convex if and only if it consists of vertices of a convex polygon.

In this abstract setting, the Happy End Theorem generalizes as follows:

Theorem 1. For every positive integer n there is a positive integer N such that every
happy-end space on N points contains a convex set of n points.

Proof. Following Erdős and Rado [4, 5], we let a → (b)k
r denote the statement that

whenever the k-point subsets of an a-point set are coloured by r colours, there
is a b-point set whose k-point subsets are all of the same colour.

Frank Ramsey [9] proved that

for every choice of positive integers b, k, r, there is an integer a such that
a → (b)k

r .
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We claim that if N satisfies N → (n)3
8 then it also satisfies the conclusion of Theorem 1.

To justify this claim, consider an arbitrary happy-end space on N points, impose a
linear order ≺ on its underlying set S and, for each set T of three points in S, write

g(T ) = (f(v, w, u), f(u, w, v), f(u, v, w)), where T = {u, v, w} and u ≺ v ≺ w.

Since N → (n)3
8, there are a set C of n points in S and a vector (s1, s2, s3) in {+1,−1}3

such that g(T ) = (s1, s2, s3) for every three-point subset T of C; this means that

f(x, y, z) =







s1 if z ≺ x ≺ y or z ≺ y ≺ x,
s2 if x ≺ z ≺ y or y ≺ z ≺ x,
s3 if x ≺ y ≺ z or y ≺ x ≺ z.

We are going to show that C is convex. For this purpose, consider an arbitrary subset
B of C such that |B| > 2 and enumerate its points as u1, u2, . . . , uk in such a way that
u1 ≺ u2 ≺ . . . ≺ uk. Given any ui in B, we will find another uj in B such that f(ui, uj, z)
is constant on B − {ui, uj}.

Case 1: s1 = s2. In this case, we may set j = k unless i = k, in which case
any j smaller than k will do. It is not difficult to check that with this choice of j,
f(ui, uj, ur) = s1 (= s2) for all ur ∈ B − {ui, uj}.

Case 2: s2 = s3. In this case, we may set j = 1 unless i = 1, in which case any j
greater than 1 will do. With this choice, f(ui, uj, ur) = s2 (= s3) for all ur ∈ B−{ui, uj}.

Case 3: s1 6= s2 and s2 6= s3. In this case, s1 = s3; we may set j = i + 1 unless i = k
and we may set j = i − 1 unless i = 1. This ensures that f(ui, uj, ur) = s1 (= s3) for all
ur ∈ B − {ui, uj}. �

We have found the proof of Theorem 1 during the 7th International Colloquium on
Graph Theory in Hyères in September 2005. Another proof of the theorem was found,
independently, by Pierre Duchet during the same conference [3]. His proof also uses
Ramsey’s theorem, but it gives a far larger upper bound for N .

Let N0(n) denote the smallest integer N such that from any set of N points in the
plane of which no three lie on the same line it is always possible to select n points that
are vertices of a convex polygon. As shown in [6], N0(n) > 2n−2 + 1 for every n > 3, and
the authors of [6] conjectured that this is tight for all n.

The conjecture is open for all n > 6. Regarding upper bounds, the Happy End
Theorem asserts that

N0(n) 6

(

2n − 4

n − 2

)

+ 1;

in 1998, Chung and Graham [2] improved this upper bound to

N0(n) 6

(

2n − 4

n − 2

)

;

subsequently, Tóth and Valtr [11] reduced it to roughly its half,

N0(n) 6

(

2n − 5

n − 2

)

+ 1.
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Chung and Graham [1] have offered $100 for the first proof that N0(n) = O(cn) for some
constant c smaller than 4.

Our second theorem shows that even the original Erdős-Szekeres upper bound on N0(n)
grows much too slowly with n to be applicable in the more general setting of happy-end
spaces.

Theorem 2. For every positive integer n there is a happy-end space on 2Ω(n2) points that
contains no convex set of n points.

It is worth noting that the upper bound that follows from the proof of Theorem 1 and the
known bounds for hypergraph Ramsey numbers is doubly exponential in n, hence there
is still a substantial gap between the upper and lower bounds proved here.

Proof. Given a positive integer n, set

N =

⌊( √
e

2
√

n
· 2n/6

)n⌋

.

We will prove that in a happy-end space taken uniformly at random from all possible
happy-end spaces on N points, the expected number of convex sets of size n is less than
1. For this purpose, we will bound from above the probability pn that a prescribed set of
size n in this happy-end space is convex.

If a set C of size n is convex, then, for each of its points x1,

(i) the n−1 points of C −{x1} can be enumerated as x2, x3, . . . , xn in such a way that,
for each j = 2, 3, . . . , n−2, the n−j values of f(x1, xj , xk) with k = j+1, j+2, . . . n
are identical,

(ii) C − {x1} is convex.

The probability of (i) is at most (n − 1)!
∏n−2

j=2 (1
2
)n−j−1; since events (i) and (ii) are

independent, we conclude that

pn 6

(

(n − 1)!

n−2
∏

j=2

(

1

2

)n−j−1
)

pn−1 =

(

(n − 1)!

(

1

2

)(n−2)(n−3)/2
)

pn−1.

Since p3 = 1 and m! < (m/e)m and (n − 1)(n − 2)(n − 3) > n3 − 6n2, it follows that

pn 6

(

n−1
∏

m=3

m!

)

(

1

2

)(n−1)(n−2)(n−3)/6

<

(

2
√

n√
e

(

1

2

)n/6
)n2

6
1

Nn
.

Finally, we note that the expected number of convex sets of size n equals
(

N
n

)

pn and that
(

N
n

)

= o(Nn). �
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Let N1(n) denote the smallest integer N that works in Theorem 1: in this notation,
Theorem 2 states that N1(n) = 2Ω(n2). By definition, N0(n) 6 N1(n) for all n; trivially,
N0(3) = N1(3) = 3; Esther Klein’s observation was that N0(4) = 5. In closing, we note
that

8 6 N1(4) 6 11.

To see that N1(4) 6 11, consider an arbitrary happy-end space (S, f) such that |S| =
11. Choose two distinct points u, v of S. By the pigeon-hole principle, there is a 5-point
subset R of S − {u, v} such that f(u, v, t) is constant as t ranges through R. Choose a
point w in S − ({u, v} ∪ R). By the pigeon-hole principle again, there are first a 3-point
subset Q of R such that f(u, w, t) is constant as t ranges through Q, then distinct points
x, y in Q such that f(v, w, x) = f(v, w, y), and finally distinct points z, z′ in {u, v, w} such
that f(x, y, z) = f(x, y, z′). It is now not too difficult to check that the set {x, y, z, z′} is
convex. Indeed, by the construction above f(u, v, x) = f(u, v, y), f(u, w, x) = f(u, w, y)
and f(v, w, x) = f(v, w, y). By symmetry, we may assume without loss of generality that
z, z′ above are u, v, and thus f(x, y, u) = f(x, y, v). To show that the set S = {x, y, u, v}
is convex we have to check that for every element a ∈ S there is another element b ∈ S,
so that f(a, b, c) is constant on the two elements c ∈ S − {a, b}. Indeed, for a = x take
b = y and vice versa, and for a = u, take b = v and vice versa, as needed.

To see that N1(4) > 8, consider the happy-end space ({0, 1, . . . , 6}, f) with the values
of f(0, y, z) given by the table

z = 1 z = 2 z = 3 z = 4 z = 5 z = 6
f(0, 1, z) = + − − + +
f(0, 2, z) = − + + + −
f(0, 3, z) = − + + − +
f(0, 4, z) = + − + − +
f(0, 5, z) = + + + − −
f(0, 6, z) = + − − + +

and the remaining values of f(x, y, z) determined by the circular symmetry f(x, y, z) =
f(x+1, y+1, z+1) with the increment modulo 7. ( In particular, f(4, 0, z) = f(0, 3, z+3),
f(5, 0, z) = f(0, 2, z + 2), f(6, 0, z) = f(0, 1, z + 1), and so the last three rows of the table
are redundant. We include them for the ease of checking the argument that follows.) A
four-point set R is not convex if and only if it has an element x such that, for each way of
enumerating the remaing three elements of R as y, z, z′, we have f(x, y, z) 6= f(x, y, z′).
Let us call such an x an interior point of R. In our happy-end space, point 0 is the interior
point of the five sets

{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 4, 5}, {0, 2, 4, 6}, {0, 3, 5, 6};

the circular symmetry guarantees that each of 1, 2, . . . , 6 is the interior point of an addi-
tional five four-points sets, and so each of the 35 four-point subsets of {0, 1, . . . , 6} has an
interior point.
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