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Abstract
Using the Algorithm Z developed by Zeilberger, we give a combinatorial proof
of the following g-binomial coefficient identity
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which was obtained by Hou and Zeng [European J. Combin. 28 (2007), 214-227].

1 Introduction

Binomial coefficient identities continue to attract the interests of combinatorists and com-
puter scientists. As shown in [7, p. 218], differentiating the simple identity
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n times with respect to y, and then replacing k& by m —n — k, we immediately get the
curious binomial coefficient identity:
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Identity (1) has been rediscovered by several authors in the last years. Indeed, Simons
[13] reproved the following special case of (1):
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Several different proofs of (2) were soon given by Hirschhorn [8], Chapman [4], Prodinger
[11], and Wang and Sun [15]. As a key lemma in [14, Lemma 3.1], Sun proved the following

identity:
S (e n (1) e
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Finally, by using the method of Prodinger [11], Munarini [10] generalized (2) to
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The identities (1), (3) and (4) are obviously equivalent. Recently, an elegant combinatorial
proof of (4) was given by Shattuck [12], and a little complicated combinatorial proof of
(2) was provided by Chen and Pang [5].

On the other hand, as a g-analogue of Sun’s identity (3), Hou and Zeng [9, (20)] proved
the following ¢-identity:
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where the q-shifted factorial is defined by (a;q), = (1 —a)(1 —aq)--- (1 —ag™') and the
q-binomial coefficient [(Iﬂ is defined as
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0, if £ <0.
Note that, rewriting (5) as
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we obtain a g-analogue of (4).

In this paper, motivated by the two aforementioned combinatorial proofs for ¢ = 1, we
propose a combinatorial proof of (5) within the framework of partition theory by applying
an algorithm due to Zeilberger [3].
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2 The interpretation of (5) in partitions

A partition A is defined as a finite sequence of nonnegative integers (A1, Ag,...,Ap,) in
decreasing order A\ > A\ > --- > \,,. Each nonzero ); is called a part of \. The number
and sum of parts of A are denoted by ¢(\) and |A|, respectively.

Recall [1, Theorem 3.1] that

[”j’“]: S g (6)
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Therefore
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where p; = m — i — A1 (1 < i < k). Moreover, the coefficient of z* in (—2q"; q)nik—r

is equal to
Z qm _ q( )+rs Z q\u|
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where v; = \; — 7 — s+ (0 < i < s). It follows that the coefficient of x* in the left-hand
side of (5) is given by

+(5)+rs Z(_l)m—k Z Z Z g A=l (7)
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Now we need to prove the following relation

Z Z GMH = Z Z g (8)

LN L(v)<s LA)Sr+s L(v)<r
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In view of (6), the last identity is equivalent to
n+klnt+k—r| [n+k||r+s ()
r s Colrs| o
Zeilberger [3] gave a bijective proof of (9) using the partition interpretation (8). This
bijection is then called Algorithm Z (see also [2]). For reader’s convenience, we include a

brief description of this algorithm. Note that Fu [6] also used this algorithm in her recent
study of the Lebesgue identity.
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3 Algorithm Z

For simplicity, performing parameter replacements n +k —r —s — t and v — pu, we can

rewrite (8) as follows:
Z Z qP\l-Hu\ Z Z qP\l-Hu\

A <r £(p)<s LN)Sr+s (1)
)\1<s+t <t A<t u1<s
The Algorithm Z constructs a bijection between pairs of partitions (A, u) and (N, ') with
zeros permitted, satisfying

(i) A has r + s parts, all <t,

(ii) p has r parts, all < s

(iii) A\ has s parts, all < t,

(iv) u' has r parts, all < s+,
)

(v

Here is a brief description of this algorithm. Let A = (A1, ..., Ays) and g = (g, .. ., )
be two partitions with A\ < ¢ and p; < s. For 1 < ¢ < r, place p; under A\,_,,1;. Note
that 1 <s—p;+¢<r+sandif i # jthen s — p; +7 # s — p; + j. The parts from A
with nothing below form a new partition \. It is clear that A has s parts, all less than or
equal to t. Each of the other parts from )\ is added to the parts from p which lies below
it, yielding a part in p/. Note that y’ has r parts, all less than or equal to s + ¢.

For instance, let r = 6, s = 4, t = 10, and let A = (9,8,7,7,6,6,6,4,2,0) and
w=(4,2,2,1,1,0), then N = (8,7,6,2) and ' = (13,9,8,7,5,0).

Al [ = N+ 1]

8 7 6 2 N
A9 87 766 6 420
o4 2 2 11 0

13 9 8 75 0

The algorithm is clearly reversible. Let N = (aq,...,as) and y/ = (by,...,b,). If
by < ag, then A = (aq,...,as,b1,...,b.) and p = (0,...,0). Otherwise, for any b, > as,
we take the smallest i, > 1 such that by — iy < as_;, (ap = +00) and by — i), becomes a
part of A and 7, becomes a positive part of p.

4 The proof of (5)

By the inverse of Algorithm Z, the relation (8) holds and therefore (7) may be rewritten
as

7‘+s

3 3 Z gl (10)
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For any pair (u; \) = (pl,...,uk;)\l,...,)\HS) such that m — 1> py > -+ > pup = 0 and
n+k—r—s>=A =2 M\Nys >0, we construct a new pair (u'; \') as follows:

o If i >0 or u=0, then p/ = (p1, ..., px,0) and X = \;
o If ypy =0and A\ <n+k—r—s, then p/ = (p1,..., 1r—1) and X = X,

o If yp = 0and \; = n+k—r—s, we choose the largest ¢ and j such that pg 1, =i—1
and \; = A, If 1 < jand ¢ <m — 1, then let

,u/:(,ula'"a,uk—iaiauk-i-l—i)"'a,uk) and )\/: ()\1+17"'7)\i+]-7)\i+la"'a)\7“+s)-

If « > j, then let
/Jj:(,Ula'"7/J“k—j—1>/~j“k+1—ja"'7/~j“k) and )\/:()\1_17"'a)\j_]-7)\j+1>"'a)\7“+s)-

Note that |[A| — |u| = |N| — |¢/| and the lengths of u and p' differ by 1. It is easy to see
that the mapping (u; A) — (u'; \') is a weight-preserving-sign-reversing involution. Only
the pairs (u; A\) such that u = (m—1,m—2,...,1,0), r+s>mand \y =--- =\, =
n+m —r —s will survive. That is to say, the expression (10) is equal to 0 if r+s < m—1,
and

L5 Y Pt ity s m, (1)

LN)<r+s—m L(v)<r
A <n+m—r—s V1<s

[ n } [r + s] qmn+(r+s;m)’
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which is the coefficient of #* in the right-hand side of (5). This completes the proof.

namely
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