On the number of independent sets in a tree
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Abstract

We show in a simple way that for any &, m € N, there exists a tree 1" such that
the number of independent sets of T' is congruent to £ modulo m. This resolves a
conjecture of Wagner (Almost all trees have an even number of independent sets,
Electron. J. Combin. 16 (2009), # R93).

1 The number of independent sets in a tree

A set of vertices in a graph G is called independent if the set induces no edges. We
write i(G) for the number of independent sets in G; i(G) is often known as the Fibonacci
number, or in mathematical chemistry as the Merrifield-Simmons index or the o-index.
The study was initiated by Prodinger and Tichy in [4]. In particular, they showed that
among trees of the same order, the maximum and minimum Fibonacci numbers are at-
tained by the star and the path respectively. The name stems from the fact that the
Fibonacci numbers of paths are the usual Fibonacci numbers. Indeed, as the empty set
is independent, i(Py) = 1,i(P,) = 2 and i(P,) = i(P,_1) + i(P,_2) for n > 2.

The inverse question asks for a positive integer k, whether there exists a graph G such
that i(G) = k. Clearly there does as i(Kj_1) = k (note that the empty set is independent).
The question becomes more interesting if we restrict ourselves to certain classes of graphs.
For the class of bipartite graphs, Linek [3] answered the question affirmatively. Here we
are interested in the class of trees. For k € N, we say that k is constructible if there
exists a tree T' such that i(T) = k. For example, 1, 2, 3 are constructible (from the paths
Py, Py, P, respectively) but 4 is not. In [3], Linek raised the following conjecture (see also

[2])-

Conjecture 1 ([3]). There are only finitely many positive integers that are not con-
structible.
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An interesting paper of Wagner [5] looks at the number of independent sets modulo m.
Wagner showed that the proportion of trees on n vertices with the number of independent
sets divisible by m tends to 1 as n tends to infinity. In the same paper, Wagner [5] proposed
a weaker version of Conjecture 1. Let

C(m) = {i(T) (mod m) : T a tree }.
Conjecture 2 ([5]). Form € N,C(m) = Zy,.

The aim of this paper is to prove Conjecture 2. In fact, we prove a stronger result.
For a rooted tree (T,r), let ig(T,r) denote the number of independent sets not covering
the root. Let

D(m) = {(io(T,7),i(T)) (mod m) : (T,r) a rooted tree}.
Theorem 3. Form € N, D(m) = 7Z2,.

First we note a recursion between the Fibonacci number of a rooted tree and its
subtrees. Suppose 71,72, -, 7; are the neighbours of r, let (T, 7%) be the subtree of T'
rooted at ri. Then we have [2, 5]

-

io(T) = | ]iu(Tk) (1)
k=1
J J
i(T) = [T+ oo ) (2)
k=1 k=1
For rooted trees (Ty,71),-- -, (T}, 7;), we write @_,(Ty, %) for the rooted tree obtained

by adding a vertex r joined to every root 1. Let o(T,r) = (io(T,7),i(T)).

Let u : Z2 — 72, be the Fibonacci operator (a,b) — (b,a + b). The sequence
(,uk(a, b) : ke N) must contain repeated elements since Z?2, is finite. But once it repeats,
the sequence becomes periodic. Moreover, as p is invertible with p=1(a,b) = (b — a, a),
the sequence is periodic from the start. Denote by [a, b] the orbit of (a,b) under pu.

In the following, we write (a,b) - (¢,d) = (ac,bd) and ¢ - (a,b) = (ca, cb).

Proposition 4. For m € N with C = C(m) and D = D(m), we have
1. (a,b) € D= la,b] C D;
2. [0,1 c D;
3. (a,b),(c,d) € D= (ac,bd) € D; and
4. ce C,(a,b) € D= (ca,cb) € D.

Proof. Let (T1,11), (Ts, r2) be trees such that ¢(T1,71) = (a,b), o(Tz,12) = (¢,d) (mod m).
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1. Consider (T,r) obtained from 7} by joining a new vertex r to r1. Then o(T,r) =
(b,b+a). Hence, u(a,b) € D. Inductively adding a leaf to the root, the whole orbit
[a,b] lies in D.

2. Consider the paths: as io(Fp) = i(Py) = 1, we have [0,1] =1,1] C D.

3. o((Th,7m1)®(Ty,1m2),7) = (bd,bd+ac). By (1), [bd,bd+ac] C D. Note that (ac, bd) =
pu=t(bd, bd + ac).

4. If ¢ € C, then (z,c) € D for some z. As (0,1) € D, it follows that (x,¢)-(0,1) =
(0,¢) € D. Then (c,c) = u(0,¢) € D. By (3), (¢,¢) - (a,b) = (ac,bc) € D.

U
Proposition 5. For all x € Z,,, (1,z) and (x,1) are in D(m).
Proof. By Proposition 4, [0,1] C D. Moreover, the Fibonacci sequence looks like
"'727_171707171727”'

Thus, —1 € C and (1,1),(—1,1),(1,2),(2,—1) € D. Moreover, since —1 € C, —1 -
(-1,1)=(1,-1) € D.

Suppose (1,a), (a,1) € D. Applying Proposition 4, we have that each of the following
isin D.

71 . _ o —
L) (a-1,1) S @-1,-1) 2 (-1,a—2) DY (1,a-2)

@D 2 (Lat) B (CLar DS @+2,-1) S (@+2,1).

Applying the argument repeatedly to (1,1), (1,2) and (2,1), we have that {(1,1 — 2b),
(1,2—2b),(24+2b,1), (1 +2b,1) : b€ Zp,} = {(1,2), (z,1) : x € Z,,} C D. O

Proof of Theorem 3. For (x,y) € Z2,, take (x,1) and (1,y) in D and multiply them. O

We remark that the trees in our construction have maximum degree 3, so that for any
integer m > 0, {i(T") (mod m) : T a tree, A(T') < 3} = Z,,. This is in contrast to the
result in [1] that the Fibonacci numbers (of the paths) form a complete system of residues
if and only if m =t-5F,t =1,2,4,6,7,14,37 where k > 0,5 > 1.

2 The number of matchings in a tree

In this section, we turn to the number of matchings in a graph. This is also known as the
Hosoya index, or the Z-index in mathematical chemistry. For a rooted tree T', let Z(T')
be the number of matchings and Zy(7") be those not covering the root. In [5], Wagner
also mentioned that for any m € N, the proportion of trees on n vertices with Z(7T') a
multiple of m tends to 1 as n tends to infinity.

The inverse problem in the family of trees is easy because Z(K;,-1) = k, [2]. Let
B(m) = {(Zy(T), Z(T)) (mod m) : T a rooted tree}. Note that we consider the empty
set as a matching as well. Applying the previous technique, we will show the following.
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Theorem 6. For m € N, B(m) = Z2,.

There are formulae for matchings analogous to (1) and (2), see [5]. However, here we
find it more convenient to consider joining two rooted trees (T1,71), (T, r2) by adding the
edge r179 to form T rooted at . Then

Z()(T,’l"l) = Z()(Tl,’l"l)Z(Tg),
Z2(T) = Z(Th)Z(13) + Zo(T1, 1) Zo(T2, 12).

Let (a,b) ® (¢,d) = (ad, ac + bd).
Proposition 7. For m € N, B = B(m), we have
1. (a,b),(c,d) € B = (ad,ac+ bd) € B;
2. (¢,d) € B=[c,d] C By
3. (0,1 € B; and
4. (¢,d) € B=(d,c) € B.

Proof. 1. Join the two trees corresponding to (a,b), (c,d) at the roots and root it at
the first one. Then (a,b) ® (¢,d) = (ad, ac + bd) € B.

2. By 1, if (¢,d) € B, then (1,1) ® (¢,d) = (d,c+ d) € B. (Note that attaching a new
vertex to the root has exactly the same effect as in the proof of Proposition 4.)

3. Consider the paths: as Z(Py)) = 1 and Z(P;) = 1, we have (1,1) € B so that
[1,1] =[0,1] C B.

4. As (1,0) € [0,1] C B, we have (1,0) ® (¢,d) = (d,c) € B.
U

Proof of Theorem 6. We first show that (1,a) € Bforalla € Z,,. As[0,1] C B, (—1,1) =
p©=2(0,1) and (1,1) = u(0,1) are in B. Suppose (1,a) € B, then by Proposition 7,
(1,a)®(—1,1) = (1,a—1) € B. Repeating the operation with (—1,1), we have (1,a) € B
for all a. Moreover, (0,1) ® (1,a) = (0,a) is in B for all a as well.

Suppose for a fixed 1 < k < m, we have {(i,a) : 0 < i < k—1,Va} C B. In particular,
(i,k) e Bforall 0 <i < k—1. Nowas (1,—1) ® (i, k) = (k,i — k), applying Proposition
7, we get that (i — k, k) € B. Hence, {(i —ak,k) : 0 <i < k—1,Ya} C B. This shows
that for all a, (a, k) € B which, by Proposition 7, implies that (k,a) € B. Repeating the
argument by increasing k, we conclude that B = Z2,. O
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