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Abstract

Let CRFS denote the category of S-colored rooted forests, and HCRFS
denote

its Ringel-Hall algebra as introduced in [6]. We construct a homomorphism from a
K

+
0 (CRFS)–graded version of the Hopf algebra of noncommutative symmetric func-

tions to HCRFS
. Dualizing, we obtain a homomorphism from the Connes-Kreimer

Hopf algebra to a K
+
0 (CRFS)–graded version of the algebra of quasisymmetric

functions. This homomorphism is a refinement of one considered by W. Zhao in [9].

1 Introduction

In [6] categories LRF ,LFG of labeled rooted forests and labeled Feynman graphs where
constructed, and were shown to possess many features in common with those of finitary
abelian categories. In particular, one can define their Ringel-Hall algebras HLRF , HLFG.
If C is one of these categories, HC is the algebra of functions on isomorphism classes of C,
equipped with the convolution product

f ⋆ g(M) :=
∑

A⊂M

f(A)g(M/A), (1.1)

and the coproduct
∆(f)(M, N) := f(M ⊕ N), (1.2)

where M ⊕ N denotes disjoint union of forests/graphs. Together, the structures 1.1 and
1.2 assemble to form a co-commutative Hopf algebra, which was in [6] shown to be dual
to the corresponding Connes-Kreimer Hopf algebra ([5], [2]). In [6], we also defined the
Grothendieck groups K0(C) for C = LRF ,LFG and showed that HC is naturally graded
by K+

0 (C) - the effective cone inside K0(C).
From the point of view of Ringel-Hall algebras of finitary abelian categories, the charac-

teristic functions of classes in K+
0 are interesting. If A is such a category, and α ∈ K+

0 (A),
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we may consider κα - the characteristic function of the locus of objects of class α inside
Iso(A) (for a precise definition, see [4]). It is shown there that the κα satisfy

∆(κα) =
∑

α1+α2=α

α1,α2∈K+

0
(A)

κα1
⊗ κα2

. (1.3)

In this note, we show that these identities hold also when A is replaced by the category
CRF of colored rooted forests. If S is a set, and CRFS denotes the category of rooted
forests colored by S, we show that K0(CRFS) = Z|S|, and if α ∈ K+

0 (CRFS), we may
define

κα :=
∑

A∈Iso(CRFS)
[A]=α

δA

i.e. the sum of delta functions supported on isomorphism classes with K-class α. We
show that the κα satisfy the identity 1.3.

As an application, we construct a homomorphism to HCRFS
from a K+

0 (CRFS)–graded
version of the Hopf algebra of non-commutative symmetric functions (see [3]). More pre-
cisely, let NCCRFS

denote the free associative algebra on generators Xα, α ∈ K+
0 (CRFS),

to which we assign degree α. We may equip it with a coproduct determined by the
requirement

∆(Xα) :=
∑

α1+α2=α

α1,α2∈K+

0
(CRFS)

Xα1
⊗ Xα2

,

with which it becomes a connected graded bialgebra, and hence a Hopf algebra. We may
now define a homomorphism

ρ : NCCRFS
→ HCRFS

ρ(Xα) := κα.

This is a refinement of a homomorphism originally considered in [9]. Taking the transpose
of ρ, we obtain a homomorphism from the Connes-Kreimer Hopf algebra to a K+

0 (CRFS)–
graded version of the Hopf algebra of quasisymmetric functions.

Acknowledgements: I would like to thank Dirk Kreimer for many valuable conversa-
tions, and the referee for their helpful comments.

2 Recollections on CRFS

We briefly recall the definition and necessary properties of the category CRFS, and cal-
culate its Grothendieck group. For details and proofs, see [6]. While [6] treats the case of
uncolored trees, the extension of the results to the colored case is immediate. Please note
that the notion of labeling in [6] and coloring used here are distinct.
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2.1 The category CRFS

We begin by reviewing some notions related to rooted trees. Let S be a set. For a tree
T , denote by V (T ), E(T ) the vertex and edge sets of T respectively.

Definition 2.1. 1. A rooted tree colored by S is a tree T , with a distinguished vertex
r(T ) ∈ V (T ) called the root, and an map l : V (T ) → S. An isomorphism between
two trees T1, T2 labeled by S is a pair of bijections fv : V (T1) ≃ V (T2), fe : E(T1) ≃
E(T2) which preserve roots, colors, and all incidences - we often refer to this data
simply by f . Denote by RT (S) the set of all rooted trees labeled by S.

2. A rooted forest colored S is either empty, or an ordered set F = {T1, . . . , Tn} where
Ti ∈ RT (S). Two forests F1 = {T1, . . . , Tn} and F2 = {T ′

1, . . . , T
′
m} are isomorphic if

m = n and there is a permutation σ ∈ Sn, together with isomorphisms fi : Ti ≃ T ′
σ(i).

3. An admissible cut of a labeled colored tree T is a subset C(T ) ⊂ E(T ) such that
at most one member of C(T ) is encountered along any path joining a leaf to the
root. Removing the edges in an admissible cut divides T into a colored rooted
forest PC(T ) and a colored rooted tree RC(T ), where the latter is the component
containing the root. The empty and full cuts Cnull, Cfull, where

(PCnull
(T ), RCnull

(T )) = (∅, T ) and (PCfull
(T ), RCfull

(T )) = (T, ∅)

respectively, are considered admissible.

4. An admissible cut on a colored forest F = {T1, . . . , Tk} is a collection of cuts C =
{C1, . . . , Ck}, with Ci an admissible cut on Ti. Let

RC(F ) := {RC1
(T1), . . . , RCk

(Tk)}

PC(F ) := PC1
(T1) ∪ PC2

(T2) ∪ . . . ∪ PCk
(Tk)

Example 2.1. Consider the labeled rooted forest consisting of a single tree T colored by

S = {a, b} with root drawn at the top,

T := a

b

b a

a

b a

and the cut edges indicated with dashed lines. Then

PC(T ) = b

b a

b and RC(T ) = a

a

a
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We are now ready to define the category CRFS, of rooted forests colored by S.

Definition 2.2. The category CRFS is defined as follows:

Ob(CRFS) := { rooted forests F colored by S }

Hom(F1, F2) := {(C1, C2, f)|Ci is an admissible cut of Fi,

f : RC1
(F1) ∼= PC2

(F2)}.

Note: For F ∈ CRFS, (Cnull, Cfull, id) : F → F is the identity morphism in Hom(F, F ).
We denote by Iso(CRFS) the set of isomorphism classes of objects in CRFS.

Example: if

F1:= a

b

b

b

a b

a

F2:= a

a b

a b

then we have a morphism (C1, C2, f), where Ci are indicated by dashed lines, and f is
uniquely determined by the cuts.

For the definition of composition of morphisms and a proof why it is associative, please
see [6]. The category CRFS has several nice properties:

1. The empty forest ∅ is a null object in CRFS.

2. Disjoint union of forests equips CRFS with a symmetric monoidal structure. We
denote by F1 ⊕ F2 the disjoint union of the rooted forests F1 and F2 labeled by S,
and refer to this as the direct sum.

3. Every morphism possesses a kernel and a cokernel.

4. For every admissible cut C on a forest F , we have the short exact sequence

∅ → PC(F )
(Cnull,C,id)

−→ F
(C,Cfull,id)

−→ RC(F ) → ∅. (2.1)

The second property above allows us to define the Grothendieck group of CRFS as

K0(CRFS) := Z[Iso(CRFS]/ ∼

i.e. the free abelian group generated by isomorphism classes of objects modulo the relation
∼, where ∼ is generated by differences B − A − C for short exact sequences

∅ → A → B → C → ∅.

We denote by [A] the class of A ∈ CRFS in K0(CRFS).
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Lemma 2.1. K0(CRFS) ≃ Z⊕|S|

Proof. Let •s denote the singleton rooted tree colored s. We observe that by repeated
application of 2.1, any rooted forest F is equivalent in K0(CRFS) to a sum of such, coming
from the vertices of F . To say this slightly differently, let v(F, s) denote the number of
vertices in F of color s ∈ S, and let ZS denote the free abelian group on the set S, with
generators es, s ∈ S. Let

Ψ : Z[Iso(CRFS)] → ZS

Ψ(F ) =
∑

s∈S

v(F, s)es

The subgroup generated by the relations ∼ lies in the kernel of Ψ, so we get a well-defined
group homomorphism

Ψ : K0(CRFS) → ZS.

Now, let

Φ : ZS → K0(CRFS)

Φ(
∑

s

ases) =
∑

s∈S

as[•s].

Ψ and Φ are easily seen to be inverse to each other.

We denote by K+
0 (CRFS) ≃ N|S| the cone of effective classes in K0(CRFS).

3 Ringel-Hall algebras

We recall the definition of the Ringel-Hall algebra of CRFS following [6]. For an intro-
duction to Ringel-Hall algebras in the context of abelian categories, see [8]. We define
the Ringel-Hall algebra of CRFS, denoted HCRFS

, to be the Q–vector space of finitely
supported functions on isomorphism classes of CRFS. I.e.

HCRFS
:= {f : Iso(CRFS) → Q | # supp(f) < ∞}.

As a Q–vector space it is spanned by the delta functions δA, forA ∈ Iso(CRFS). The
algebra structure on HCRFS

is given by the convolution product:

f ⋆ g(M) :=
∑

A⊂M

f(A)g(M/A).

HCRFS
possesses a co-commutative co-product given by

∆(f)(M, N) = f(M ⊕ N), (3.1)
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as well as a natural K+
0 (CRFS)–grading in which δA has degree [A] ∈ K+

0 (CRFS). The
algebra and co-algebra structures are compatible, and HCRFS

is in fact a Hopf algebra
(see [6]). It follows from 3.1 that

∆(δA) =
∑

A′⊕A′′≃A

δA′ ⊗ δA′′ , (3.2)

where the sum is taken over all distinct ways of writing A as A′ ⊕ A′′ .

4 K+
0 (CRFS)–graded noncommutative symmetric

functions and homomorphisms

Let NCCRFS
denote the free associative algebra on K+

0 (CRFS), i.e. the free algebra
generated by variables Xα, for α ∈ K+

0 (CRFS). We give it the structure of a Hopf
algebra through the coproduct

∆(Xγ) :=
∑

α+β=γ

α,β∈K+

0
(CRFS)

Xα ⊗ Xβ, (4.1)

and equip it with a K+
0 (CRFS)–grading by assigning Xα degree α. This is a K+

0 (CRFS)–
graded version of the Hopf algebra of non-commutative symmetric functions (see [3]).

For α ∈ K+
0 (CRFS), let κα be the element of HCRFS

given by

κα :=
∑

A∈Iso(C),[A]=α

δA.

Example 4.1. Suppose that S = {a, b}. We then have K0(CRFS) ≃ Z2, and may identify

the pair (i, j) ∈ K+
0 (CRFS) as the class representing forests possessing i vertices colored

“a” and j colored “b”. We have for instance

κ(1,1) = δ a
b

+ δ b
a

+ δ

a

⊕

b

Theorem 1. The map ρ : NCCRFS
→ HCRFS

determined by ρ(Xα) = κα is a Hopf algebra

homomorphism.

Proof. Since NCCRFS
is free as an algebra, we only need to check that the κα are com-

patible with the coproducts 4.1, i.e. that

∆(κγ) =
∑

α+β=γ

α,β∈K+

0
(CRFS)

κα ⊗ κβ. (4.2)
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We have

∆(κγ) =
∑

A∈Iso(CRFS)
[A]=γ

∆(δA)

=
∑

A∈Iso(CRFS)
[A]=γ

∑

A′⊕A′′≃A

δA′ ⊗ δA′′ .

The result now follows by observing that the term δA′ ⊗ δA′′ occurs exactly once in κ[A′] ⊗
κ[A′′], which is an element of the right-hand side of 4.2, since [A′] + [A′′] = γ.

4.1 Connection to work of W. Zhao

Let NC denote the “usual” Hopf algebra of non-commutative symmetric functions. I.e.
NC is the free algebra on generators Yn, n ∈ N, with coproduct defined by

∆(Yn) =
∑

i+j=n

Yi ⊗ Yj

(we adopt the convention that Y0 = 1). Suppose that the labeling set S is a subset of N.
We then have group homomorphism

V : K0(CRFS) → N

V (
∑

ases) :=
∑

ass,

which amounts to adding up the labels in a given forest. We can now define an algebra
homomorphism

JS : NC → NCCRFS

JS(Yn) :=
∑

α∈K+

0
(CRFS)

V (α)=n

Xα.

Lemma 4.1. JS is a Hopf algebra homomorphism

Proof. We only need to check the compatibility of the coproduct. We have

∆(JS(Yn)) =
∑

α∈K+

0
(CRFS)

V (α)=n

∆(Xα)

=
∑

α∈K+

0
(CRFS)

V (α)=n

∑

γ1+γ2=α

Xγ1
⊗ Xγ2

=
∑

γ,γ′

V (γ)+V (γ′)=n

Xγ ⊗ Xγ′

= JS(∆(Yn)).
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Composing ρ and JS, we obtain a Hopf algebra homomorphism

ρ ◦ JS : NC → HCRFS

ρ ◦ JS(Yn) =
∑

A∈Iso(CRFS)
V ([A])=n

δA

which was considered in [9].

5 The transpose of ρ

The graded dual of the Hopf algebra NCCRFS
is a K+

0 (C)–graded version of the Hopf alge-
bra of quasi-symmetric functions (see [1]), which we proceed to describe. Let QSymCRFS

denote the Q–vector space spanned by the symbols Z(α1, α2, . . . , αk), for k ∈ N, and
αi ∈ K+

0 (CRFS). We make QSymCRFS
into a co-algebra via the coproduct

∆(Z(α1, . . . , αk)) = 1 ⊗ Z(α1, . . . , αk)

+

k−1
∑

i=1

Z(α1, . . . , αi) ⊗ Z(αi+1, . . . , αk) + Z(α1, . . . , αk) ⊗ 1

The algebra structure on QSymCRFS
is given by the quasi-shuffle product, as follows.

Given Z(α1, . . . , αk) and Z(β1, . . . , βl), their product is determined by:

1. Inserting zeros into the sequences α1, . . . , αk and β1, . . . , βl to obtain two sequences
ν1, . . . , νp and µ1, . . . , µp of the same length, subject to the condition that for no i
do we have νi = µi = 0.

2. For each such pair ν1, . . . .νp, and µ1, . . . , µp, writing Z(ν1 + µ1, . . . , νp + µp).

3. Summing over all possible such pairs of sequences {ν1, . . . , νp}, {µ1, . . . , µp}.

Example 5.1. We have

Z(α1)Z(β1, β2) = Z(α1 + β1, β2) + Z(β1, α1 + β2) + Z(β1, β2, α1)

+ Z(β1, α1, β2) + Z(α1, β1, β2).

One checks readily that the two structures are compatible, and that they respect the
K+

0 (CRFS)–grading determined by

deg(Z(α1, . . . , αk)) = α1 + . . . + αk.

The pairing
〈, 〉 : QSymCRFS

×NCCRFS
→ Q
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determined by

〈Z(α1, . . . , αn), Xβ1
. . .Xβm

〉 := δm,nδα1,β1
. . . δαn

δβm

makes QSymCRFS
and NCCRFS

into a dual pair of K+
0 (CRFS)–graded Hopf algebras. I.e.

〈a ⊗ b, ∆(v)〉 = 〈ab, v〉

〈∆(a), v ⊗ w〉 = 〈a, vw〉.

This implies that QSymCRFS
is isomorphic to the graded dual of NCCRFS

. Passing to
graded duals, and taking the transpose of the homomorphism ρ, we obtain a Hopf algebra
homomorphism

ρt : H∗
CRFS

→ QSymCRFS
.

As shown in [6], H∗
CRFS

is isomorphic to the Connes-Kreimer Hopf algebra on colored
trees (see [5]).

We proceed to describe ρt. Let {WA, A ∈ Iso(CRFS)} be the basis of H∗
CRFS

dual to
the basis {δA} of HCRFS

.

Theorem 2.

ρt(WA) =
∑

k

∑

V1⊂...⊂Vk=A

Z([V1], [V2/V1], . . . , [Vk/Vk−1]),

where the inner sum is over distinct k–step flags

V1 ⊂ V2 ⊂ . . . ⊂ Vk = A, Vi ∈ Iso(CRFS).

Proof. We have
ρt(WA)(Xα1

. . .Xαk
) = N(A; α1, . . . , αk),

where N(A; α1, . . . , αk) is the coefficient of δA in the product κα1
κα2

. . . καk
. It follows

from the definition of the multiplication in the Ringel-Hall algebra that this is exactly the
number of flags

V1 ⊂ V2 . . . ⊂ Vk,

where [V1] = α1, [V2/V1] = α2, . . . , [Vk/Vk−1] = αk.

Example 5.2. Let S = {a, b} as in example 4.1. Using the notation introduced there, we

have

ρt
(

W a

b a

)

= Z((2, 1)) + Z((0, 1), (2, 0)) + Z((1, 0), (1, 1))

+ Z((1, 1), (1, 0)) + Z((1, 0), (0, 1), (1, 0)) + Z((0, 1), (1, 0), (1, 0)).
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