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Abstract

Graham, Hoffman and Hosoya gave a very nice formula aboudébterminant of the
distance matriXD¢ of a graph(z in terms of the distance matrix of its blocks. We generalize
this result to ag-analogue ofDs. Our generalization yields results about the equality of
the determinant of the mod-2 (and in general nigdlistance matrix (i.e. each entry of the
distance matrix is taken modulo 2 by of some graphs. The mod-2 case can be interpreted
as a determinant equality result for tadjacency matriof some graphs.

1 Introduction

Graham and Pollak (se€l[3]) considered the distance mB¥fix= (d, ) of atreeT = (V, E).
Foru,v € V, its distancel, , is the length of a shortest (in this case unique) path betweeml
v in T and since any tree is connected, all entrigs are finite. LetD, be the distance matrix
of T'with |V| = n. They showed a surprising result thiat(Dr) = (—1)""!(n—1)2""2. Thus,
the determinant oD, only depends om, the number of vertices df and is independent of
T's structure.

Graham, Hoffman and Hosoyd [2] proved a very attractivetdeoabout the determinant of
the distance matriX); of a strongly connected digragh as a function of the distance matrix
of its 2-connected block@lso called blocks). Denote the sum of the cofactors of aixdtas
cofsum(A). Graham, Hoffman and Hosoya (s€& [2]) showed the following.

Theorem 1 If GG is a strongly connected digraph with 2-connected blagks+,, . . ., G,, then
cofsum(D¢) = [];_, cofsum(Dg,) anddet(D¢) = 3 ;_, det(Dg,) [ [,..; cofsum(Dg; ).

Since all thgn— 1) blocks of any tred” onn vertices args,’s, we can recover Graham and
Pollak’s result from Theorefd 1. Yan and Yeéh [5] showed a sinfifree structure independent”
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result for the problem of counting the number of signed pdations with a fixed numbeék as
the Spearman measurehere distances are induced from an underlying ree
Bapat et all[lL] obtained g-analogue of Graham and Pollak’s result and Sivasubramania
[4] obtained a;-analogue of Theoref 1 for the case when all the blocks ofphgaee triangles.
In this present work, we showg@analogue of Theored 1.

1.1 Theg-analogue

For a strongly connected digrafgh = (V, F), the g-analogue of its distance matrpD, is
obtained from its distance matrii; by replacing all positive entrigioy [i], = 1+q+- - -+¢" "}
whereq is an indeterminate anf@|, = 0. Let the distance between verticesindv in G be
denoted ag, , and let the cofactor matrix (see Sectldn 2 for definitions) Bf; be qCOF, =
(Cuw). Let the rowsum o§COF, corresponding to row bersum,. Givenw € V, consider the
weighted cofactor sum defined asofsumyy = >, _ ¢*»*rsum,. We note that setting = 1
givesqcofsumy, = >, ., Which is the sum of the cofactors as used.in [2] and that this su
is independent ov. In LemméB, we show thafcofsum¢: is independent o# (and hence can
be denoted agcofsum.). In Subsectiof3]1, we prove the followigganalogue of Graham,
Hoffman and Hosoya'’s result.

Theorem 2 LetG be a strongly connected digraph with distance mafvix Let theg-analogue
of Dg beqD¢ and letG have blocks7,, Go, ..., G,. Foreachl < i < r, letthe distance matrix
of G; and itsg-analogue beD¢;, andqDg, respectively. Then,

1. qcofsumg = []'_; qcofsumg,
2. det(¢Dg) = 3_i, det(¢Dg;,) [ ];; acofsumg .

Thus, we show a polynomial generalisation of Graham, Hoffraad Hosoya’'s Theorem.
We also prove a similar polynomial generalisation - when twa n matricesM;, M, have
the same determinant, then replacing all the entries of bwtrices by twice (or any scalar
times) its original value clearly still gives two differematrices (say\/;, M) also with the
same determinant value. For distance matrices, we showhaestior 313 that replacing each
entry by a “two-times” polynomial (and more generally by/atimes” polynomial, wheré: is
a positive integer) again gives identical determinant@alas polynomials.

Consider the mod-2 distance matrix of a graph, where onlypédugty of each entry of
the distance matrix is used. We show that if two graphsG, have an identical multiset of
isomorphic blocks, then the mod-2 distance matrice§ padnd G, have the same determinant
value, independent of the tree-like connection of theick# This shows that thadjacency
matrix of several graphs have the same determinant value.

More generally for a positive integér > 3, we first replace all the distance matrix entries
by its mod# values. In the resulting matrix, if we change all entrieg§or 0 < ¢ < k) to
1+ ¢+ ¢4+ 1, where( is a primitivek-th root of unity, then the determinant of this
(complex) matrix is again independent of the tree structuréhe blocks of7. Subsectiof 312
contains these results.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #N21 2



2 Preiminaries

In this section, we note a few linear algebraic preliminatigat we will need for the proof of
TheorenfR. All our vectors will be column vectors and givemar p matrix A, we denote its
transpose byi’. For a square matrid, det(A) denotes its determinant.

Given ann x n matrix A, its row and column indices begin with 1 and we denoté-its
row (for 1 < i < n) by Row; and itsj-th column (forl < j < n) by Col;. It is convenient
for determinant calculations to represent some combinataf elementary row and column
operations oM by multiplications of the following: x n matrices:

1 0 --- 0 1 By - B,
as 1 -+ 0 0O 1 --- 0
R = . . andC = Ce .
a, 0 - 1 0O 0 --- 1

It follows that RAC' is the result of the following elementary row and column @piens on
A performed in any ordeRow; := Row; + «;Row; andCol; := Col; + 3;Col; for2 < i < n.

Given ann x n matrix A andn x 1 vectorsp andr, we will need to findlet(A+zp7r") where
x is a fresh variable, not occurring in, 7 or p. We will restrict attention to vectors, = where
bothp, # 0 andr; # 0. LetcA = (A; ;) be the cofactor matrix oft with A; ; for 1 <i,j <n
denoting the cofactor at positidn ;). Specifically,4; ; is (—1)"*’ times the determinant of the
submatrix ofA obtained by deletin®ow; andCol;. Lastly, defineC,, . (cA) = p'cAr.

Lemmal The coefficient of in det(A + zp7") is C, ,(cA)

Proof: The coefficient ofc in det(A + zptt) is Zi’j pi7;A; j. (This follows by observing that
the only way to get an in the determinant expansion is to choager; from thei-th row and
j-th column and non=terms from other rows and columns.) ]

Let A be obtained from am x n matrix A by performingRow; := Row; — %Rowl for
2 < 1 < n and then performing@ol; := Col; — Z—iCOH- Let

1 0 0 1 -z ... -
-2 1 0 0 1 0
R= & andC = | |
—fnog ... 1 o 0 --- 1

p1

Celarly, A = RAC. We will use the matrice® andC' again in this work and though they
depend on the vectogsandr, instead of using a more correct subscripted notatigmandC'-,
we will define vectorsy andr and only then usé?, C. In our proof of Theorenil2, we will
apply this notation to cases with = ¢ D and with A being each of two principal submatrices
of ¢D¢ with only index 1 in common; vertex 1 will be the separatorviestn one block and
the rest of the graplt. In each of these three cases, the vertices of the apprestigigraph
of G will be labelled by the indices ofl, R, C, cA, p andr and these indices are used in the
multiplications definingC, ,(cA) = p'cAr and M = RMC (for M = A and others). The
common vertex has index 1. In all cases, the cofactot af position(1, 1) is denoted by, ;.
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Lemma 2 p1712171 = CPJ(CA).

Proof:  Since R and C' have determinant ldet(A + zpr’) = det(R(A + 2pr")C) =
det(RAC + M) = det(A + M), where

TP1T1 0

0 0

M = ) ,
0 0

Therefore, the coefficient afin det(A+xzp7!) is ,01712[171. The proof is complete by combining
with Lemmal. n

3 Theg-analogue

3.1 Proofsof results

With the notation of Sectiof 1, we begin with the Lemma below.

Lemma 3 For verticesu,, u; € G, uy # ug, qcofsum = qcofsumy?. Thus,qcofsumy; is inde-
pendent of the vertex Further, for allu € G, gcofsum¢, = (¢ — 1) det(¢D¢) + cofsum(qD¢),
wherecofsum(¢D¢) = }_, , cu.» is the sum of the cofactors gD

Proof: We recall thatyD¢; is the g-analogue of the distance matriX; = (d,,) of G and
qCOF = (cu.) is the cofactor matrix of D¢;. For two vertices:, v € G, d,,, is the distance
between them an@l, ], = 1 + ¢+ ¢*> + - - + ¢*~1. Letrsum, be the row-sum o§COF
corresponding to row and for a vertex:, qcofsum¢. = >~ g% rsum,

Elementary properties of the determinant and the adjugmagpdyi for all verticesu € G,

det(qDg) = ZueG[dvm]q “Cyu = ZveG[dv,U]q - rsum,,. Thus,

(q—1)det(¢De) = > (q—1)[dyulq - rsum,

— Yy

veG
= qcofsum¢, — cofsum(¢D¢)

This completes the proof. ]

For simplicity,d; ; denotesi,, ., for verticesv;, v; in any graph and sometimes, the index
will be identified with vertexy;. Lemma[B can be stated in the following alternate way. For a
strongly connected digrap8i, letED; = (e, ) be itsexponential distance matréefined as
ews = q* whered, , is the distance betweenandv, ¢ is an indeterminate ang = 1.
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Corollary 1 Consider the matrixl; = EDtG - qCOF.. The all-ones vectot, of dimension
|V (G)| x 1is an eigenvector af/ corresponding to eigenvalugofsum,,.

Proof: LetRS be the|V(G)| x 1 vector withRS, = rsum,. Clearly,qCOF. - 1 = RS and
(ED, - RS), = Y, ¢%**rsum, = qcofsum,. The proof follows. n

We note the following lemma similar to the lemmalin [2]. Weattthe g-weighted cofactor
sum with respect to columpis qcofsumg, = 37, ., ¢*“rsum;. Since by Lemm&l3ofsumy,

is independent of, we fix j = 1 and writecofsumg = cofsumg. We will use Lemm@l2 with

A=qDg,p" =[1,¢%"¢®, ... ¢"]andr’ = 1. (1)

These values for the;’s and ther,’s define the matrice®?, C and thusgDc. It is simple
to see from the definition thajcofsum; = qcofsum;; = C,,(qCOF), where we recall
C,-(qCOF,) = p'(qCOF)7. The following lemma gives the cofactor @D, at position

(1,1).

Lemma4 With the above notatiort/, - (qCOF) = (¢Dg¢), ;.

Proof: Follows from Lemm&R by noting;, = =, = 1. [

Proof: (Of TheorenR) Pairs of distinct blocks have at most one xérte&eommon; the com-
mon vertex joining two adjacent blocks is called a cut-werfemong the blocks of7, let H be
a block which has only one cut-vertex. We call such blockea&blocks. Clearly, leaf-blocks
exist and letH be a leaf block connected to the rest(ofalong a cut-vertex. Let us label the
vertices so that this cut-vertex is labelled by 1, so whedenotes a vertex off andw; de-
notes a vertex ofy’, v; = u; = 1 denotes this cut-vertex i¥. We recall the cofactor matrix
qCOF; = (c¢f,) of ¢Dy, and theg-weighted cofactor sumjcofsum;; defined above.

Let|H| =kandV(H) = {1,vy,...,v:}. WerecallG' = G — (H — {1}), and if|G'| = r,

let V(G') = {1,us,...,u,}. Letus introduce the following notation. Row vectaf, =

([az]q, - - larly), row vector[fl, = ([falq. -, [f]q), column vectob], = ([bag, .- -, [belq)*
and column vectofg|, = ([g2)q, - - -, [g-]¢)"- We also uséM (i, j)) to denote the matrix with
entriesM (¢, j) and various ranges of indices. We now verify that given tHefing block
decompositions

iD= (0 ) andgne = (0 )

we can express

0 lal, [l
qD(G) = @ P ([bi]q + qbi [fj]q)
9], | (gilq + ¢#[aylq) Q

We must verify thatd, ;], = [b:], + ¢"[f;], whenv;, i # 1is a vertex ofH andv;, j # 1is
a vertex ofGG’. Consider such a pair of vertices. Singeis a cut-vertex separating andG’,
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the distances satis#; ; = d, 1 + d, ; It follows from the fact thafn + m|, = [n], + ¢"[m],
that[d; ;], = [di1], + q%'[d1 j],- However, by the block decomposition @by, [d; 1], = [bi],;
and by the block decomposition @D¢, [dy ;], = [f;],- We verify in the same manner that
di ;lg = [din]q + q%[aj], wheni # 1 |labels a vertex of’ andj # 1 labels a vertex of{.

As operatiort preserves determinant, and by definitio{@D¢-), , and(¢Dx), ;, we have

i [a] [flq
det(¢Dg) = det(R - qDg - C') = det @ P —([bi], + ¢" [a;],) 0
[g]q 0 Q — ([gi]q + ¢ [fila)
= det ( [b]q pP_ ([bi]q + qbi[aj]q) > det(Q — ([9:]q + ¢”[f5]4))

[/,
Q — (lgil, + a*1131,)

= det(qDpr) - (4D)yy + det(qDer) - (aDi)y
= det(¢Dp) - qcofsum,p , + det(¢Der) - qcofsum,p .

>.@up_<mh+quhn

where the last line follows from Lemniih 4, with the observatizatp, 7 restricted to the vertices
of H, G’ are as in Equatiof] 1, with the dimensions of the restrictioing, ~ matching that of
eitherA = gDy or A = qD . Using LemmdM} again, we note that

_qet [P (il q"laj],) 0
qeofsumypg ‘dt< 0 @—@@+wmm)
= det(P — (Ib], + ¢"[a;],)) - det(Q — (gy + ¢ [fi],))

(qDH)l,l ) (QDG’)M
= qcofsum,p,, - qcofsum,p, .

’

The proof is complete. ]

We apply Theorerfil2 to obtain a few known corollaries and soeve anes as well. When
G = T'is atree, each block'; is an edge (i.e. d,). Itis simple to note thagcofsum, =
—(1+ ¢) anddet(Dg¢,) = —1. Thus, we get g-analogue of Graham, Hoffman and Hosoya’s
result first observed by Bapat et. &l [1, Corollary 5.2].

Corollary 2 (Corollary 5.2,[1]) WhenG is a tree om vertices, themlet(¢Dg) = (—1)" ! (n—
1)(1+q)" 2

When each block of7, is a 3-clique(i.e. d(3), we get

(i1
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thusqcofsum,, = (1 + 2¢) anddet(Dg,) = 2. From this, we recover the following result of
Sivasubramanian[4]. More generally, when each blook @ anr-clique (ieK,), thenDg, =

J — I, whereJ is the matrix of all ones andlis the identity matrix, both of dimensionx r. It

is simple to check thajcofsumg, = (—1)""'[1 4 (r — 1)¢] anddet(Dg,) = (—1)" ' (r — 1).

Corollary 3 Let G havek blocks all of which are--cliques (thusG hasn = (r — 1)k + 1
vertices).

e Whenr = 3, det(qDg) = 2k(1 + 2¢)*~L. ([&, Corollary 3].)

e More generally for any:, det(q¢Dg) = (=1)""1[(r — 1) - k][1 + (r — 1)q]* 1.

3.2 Mod £k distances, setting valuesto g

In this subsection, by setting valuesgowe get a few pleasing corollaries about some modifi-
cations of the distance matrix of graphs, some of which seamoibvious.

If we setq = —1, then it is easy to check that for oddi|, = 1 and for even, [i], = 0. Let
G be a connected graph with distance matbtix and letq D be theg-analogue ofD. If we
setq = —1 in all entries of¢ D, this operation corresponds to considering the distandema
D¢ with all entries modulo 2.

Theorem 3 LetG and H be graphs with an identical multiset of isomorphic blocke{t may
differ in the tree structure of the connection among thesekd). LetD;, and D’; be the mod-2
distance matrices (where all distances are all considereduto 2) ofG and H respectively.
Thendet(Dy,) = det(DY;).

Proof: Follows from Theorerll2 by setting= —1. n

Corollary 4 Let G be a tree and leD, be its mod-2 distance matrix where all distances are
all considered modulo 2. Thely, is singular (iedet(Dy;) = 0).

We get the following pleasant mod-2 analogue of Corolldrgraifthich simple proofs would
be interesting.

Corollary 5 Let G be a graph withk blocks, all of which are-cliques (iek,’s), and let Dy,
be its mod-2 distance matrix (i.e. where each entry is camsaimodulo 2).

o If r =3, det(Dy) = 2k(—1)"1.
e Forageneralr, det(Dy,) = (r — 1)k(—r)" 2

Remark 1 TheoreniB answers the following question. Akin to deterntiothe distance ma-
trices of some graphs being equal, are there graphs suclittbateterminant of theadjacency
matrices are identical? Since a mod-2 distance matrix hdsebiries, Theoreid 3 gives fami-
lies of graphs whose adjacency matrices have the same daterinit would be interesting to
see if there is some structure or some description of all @new subset of the graphs which
arise in this mod-2 manner from the distance matrix of grapéaging an identical multiset of
isomorphic blocks.
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Just as we set the valye= —1, we set other values tpand get further corollaries. The
following corollary was suggested by the referee. For atp@sintegerk, let ¢ be a primitive
k-th root of unity. Clearly setting = ¢ corresponds to the following operation: replace each
positive entryi in the distance matrix off by 1 + ¢ + --- + ¢ med k=1 Settingg = —1
corresponds to this operation with= 2. Thus, we get the following.

Corollary 6 LetG and H be graphs with an identical multiset of isomorphic blockeyt may
differ in the tree structure of the connection among theseks). For any fixed positive integer
k, let ¢ be a primitivek-th root of unity. LetD¢, and D7, be the modt distance matrices of
G and H respectively, where all positive distanceare replaced byl + ¢ + --- + 1. Then
det(Dy,) = det(DY).

3.3 [kd],~analogues

In this subsection, for any positive integemwe considek D, analogues oD, where we replace
positive integers in D by [ki], = 1 + ¢+ ¢*> + - - - + ¢*~1. Thus, we replace all entriég, in
qD¢ by [ki], to getkD,. Itis easy to see thaki], = (1 + ¢' + ¢* + - - - + ¢~ V9)[i],. Thus,
if we define[k], analogously as + ¢' + ¢* + - - - + ¢* V¢, we get[ki], = [k],:[i],. It can be
checked that with weightg® > multiplying rsum,, we getqcofsum},, independent of vertex
u. The proofs of all Lemmata and Theoré&in 2 in Subsediioh 3. hgmgh as before. We omit
the details and state the following result for trees in theeéa= 2.

Corollary 7 LetT" be a tree om vertices and letD be its distance matrix. LexD, be the
polynomial matrix obtained from» by replacing all entries by [2i], = 1+q+¢*+---+¢* .
Then,det(2D,) = (—1)"*(n — 1)(1 + ¢)"(1 + ¢*)" 2

Proof: Follows by observing that foll = K5, det(2H,) = —(1 4 ¢)* and thatjcofsum,,; =
—(1+¢*)(1+q) n

We end with a question. Just as multiplying all entries ofnar n matrix by a factora
results in multiplication of its determinant by, multiplying just the elements of a subset
with |S| = k of the rows bya results in multiplication of its determinant ky*. It would be
interesting to see if for some distinct tréBs 75, some subsets; , S, with |.S;| = |S;| exist such
that theg-analogue of just the rows df; in T; can be multiplied to get identical polynomials
for the determinant of the distance matrix.
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