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Abstract

Graham, Hoffman and Hosoya gave a very nice formula about thedeterminant of the
distance matrixDG of a graphG in terms of the distance matrix of its blocks. We generalize
this result to aq-analogue ofDG. Our generalization yields results about the equality of
the determinant of the mod-2 (and in general mod-k) distance matrix (i.e. each entry of the
distance matrix is taken modulo 2 ork) of some graphs. The mod-2 case can be interpreted
as a determinant equality result for theadjacency matrixof some graphs.

1 Introduction

Graham and Pollak (see [3]) considered the distance matrixDT = (du,v) of a treeT = (V, E).
Foru, v ∈ V , its distancedu,v is the length of a shortest (in this case unique) path betweenu and
v in T and since any tree is connected, all entriesdu,v are finite. LetDT be the distance matrix
of T with |V | = n. They showed a surprising result thatdet(DT ) = (−1)n−1(n−1)2n−2. Thus,
the determinant ofDT only depends onn, the number of vertices ofT and is independent of
T ’s structure.

Graham, Hoffman and Hosoya [2] proved a very attractive theorem about the determinant of
the distance matrixDG of a strongly connected digraphG as a function of the distance matrix
of its 2-connected blocks(also called blocks). Denote the sum of the cofactors of a matrix A as
cofsum(A). Graham, Hoffman and Hosoya (see [2]) showed the following.

Theorem 1 If G is a strongly connected digraph with 2-connected blocksG1, G2, . . . , Gr, then
cofsum(DG) =

∏r

i=1 cofsum(DGi
) anddet(DG) =

∑r

i=1 det(DGi
)
∏

j 6=i cofsum(DGj
).

Since all the(n−1) blocks of any treeT onn vertices areK2’s, we can recover Graham and
Pollak’s result from Theorem 1. Yan and Yeh [5] showed a similar “tree structure independent”
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result for the problem of counting the number of signed permutations with a fixed numberk as
theSpearman measurewhere distances are induced from an underlying treeT .

Bapat et al [1] obtained aq-analogue of Graham and Pollak’s result and Sivasubramanian
[4] obtained aq-analogue of Theorem 1 for the case when all the blocks of a graph are triangles.
In this present work, we show aq-analogue of Theorem 1.

1.1 The q-analogue

For a strongly connected digraphG = (V, E), the q-analogue of its distance matrixqDG is
obtained from its distance matrixDG by replacing all positive entriesi by [i]q = 1+q+· · ·+qi−1

whereq is an indeterminate and[0]q = 0. Let the distance between verticesu andv in G be
denoted asdu,v and let the cofactor matrix (see Section 2 for definitions) ofqDG beqCOFG =
(cu,v). Let the rowsum ofqCOFG corresponding to rowv bersumv. Givenw ∈ V , consider the
weighted cofactor sum defined asqcofsumw

G =
∑

v∈G qdv,wrsumv. We note that settingq = 1
givesqcofsumw

G =
∑

u,v cu,v which is the sum of the cofactors as used in [2] and that this sum
is independent ofw. In Lemma 3, we show thatqcofsumw

G is independent ofw (and hence can
be denoted asqcofsumG). In Subsection 3.1, we prove the followingq-analogue of Graham,
Hoffman and Hosoya’s result.

Theorem 2 LetG be a strongly connected digraph with distance matrixDG. Let theq-analogue
ofDG beqDG and letG have blocksG1, G2, . . . , Gr. For each1 6 i 6 r, let the distance matrix
of Gi and itsq-analogue beDGi

andqDGi
respectively. Then,

1. qcofsumG =
∏r

i=1 qcofsumGi

2. det(qDG) =
∑r

i=1 det(qDGi
)
∏

j 6=i qcofsumGj
.

Thus, we show a polynomial generalisation of Graham, Hoffman and Hosoya’s Theorem.
We also prove a similar polynomial generalisation - when twon × n matricesM1, M2 have
the same determinant, then replacing all the entries of bothmatrices by twice (or any scalar
times) its original value clearly still gives two differentmatrices (sayM ′

1, M
′
2) also with the

same determinant value. For distance matrices, we show in Subsection 3.3 that replacing each
entry by a “two-times” polynomial (and more generally by a “k-times” polynomial, wherek is
a positive integer) again gives identical determinant values as polynomials.

Consider the mod-2 distance matrix of a graph, where only theparity of each entry of
the distance matrix is used. We show that if two graphsG1, G2 have an identical multiset of
isomorphic blocks, then the mod-2 distance matrices ofG1 andG2 have the same determinant
value, independent of the tree-like connection of their blocks. This shows that theadjacency
matrixof several graphs have the same determinant value.

More generally for a positive integerk > 3, we first replace all the distance matrix entries
by its mod-k values. In the resulting matrix, if we change all entriesi (for 0 6 i < k) to
1 + ζ + ζ2 + · · · + ζ i−1, whereζ is a primitivek-th root of unity, then the determinant of this
(complex) matrix is again independent of the tree structureon the blocks ofG. Subsection 3.2
contains these results.
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2 Preliminaries

In this section, we note a few linear algebraic preliminaries that we will need for the proof of
Theorem 2. All our vectors will be column vectors and given ann × p matrixA, we denote its
transpose byAt. For a square matrixA, det(A) denotes its determinant.

Given ann × n matrix A, its row and column indices begin with 1 and we denote itsi-th
row (for 1 6 i 6 n) by Rowi and itsj-th column (for1 6 j 6 n) by Colj . It is convenient
for determinant calculations to represent some combinations of elementary row and column
operations onA by multiplications of the followingn × n matrices:

R =




1 0 · · · 0
α2 1 · · · 0
...

...
. . .

...
αn 0 · · · 1


 andC =




1 β2 · · · βn

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




It follows thatRAC is the result of the following elementary row and column operations on
A performed in any order:Rowi := Rowi + αiRow1 andColi := Coli + βiCol1 for 2 6 i 6 n.

Given ann×n matrixA andn×1 vectorsρ andτ , we will need to finddet(A+xρτ t) where
x is a fresh variable, not occurring inA, τ or ρ. We will restrict attention to vectorsρ, τ where
bothρ1 6= 0 andτ1 6= 0. Let cA = (Ai,j) be the cofactor matrix ofA with Ai,j for 1 6 i, j 6 n

denoting the cofactor at position(i, j). Specifically,Ai,j is (−1)i+j times the determinant of the
submatrix ofA obtained by deletingRowi andColj . Lastly, defineCρ,τ (cA) = ρtcAτ .

Lemma 1 The coefficient ofx in det(A + xρτ t) is Cρ,τ(cA)

Proof: The coefficient ofx in det(A + xρτ t) is
∑

i,j ρiτjAi,j. (This follows by observing that
the only way to get anx in the determinant expansion is to choosexρiτj from thei-th row and
j-th column and non-x terms from other rows and columns.)

Let Ã be obtained from ann × n matrix A by performingRowi := Rowi −
ρi

ρ1

Row1 for
2 6 i 6 n and then performingColi := Coli −

τi

τ1
Col1. Let

R =




1 0 · · · 0
−ρ2

ρ1

1 · · · 0
...

...
. . .

...
−ρn

ρ1

0 · · · 1


 andC =




1 − τ2
τ1

· · · − τn

τ1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




Celarly,Ã = RAC. We will use the matricesR andC again in this work and though they
depend on the vectorsρ andτ , instead of using a more correct subscripted notationRρ andCτ ,
we will define vectorsρ andτ and only then useR, C. In our proof of Theorem 2, we will
apply this notation to cases withA = qDG and withA being each of two principal submatrices
of qDG with only index 1 in common; vertex 1 will be the separator between one block and
the rest of the graphG. In each of these three cases, the vertices of the appropriate subgraph
of G will be labelled by the indices ofA, R, C, cA, ρ andτ and these indices are used in the
multiplications definingCρ,τ(cA) = ρtcAτ andM̃ = RMC (for M = A and others). The
common vertex has index 1. In all cases, the cofactor ofÃ at position(1, 1) is denoted byÃ1,1.
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Lemma 2 ρ1τ1Ã1,1 = Cρ,τ (cA).

Proof: SinceR and C have determinant 1,det(A + xρτ t) = det(R(A + xρτ t)C) =
det(RAC + M) = det(Ã + M), where

M =




xρ1τ1 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0




Therefore, the coefficient ofx in det(A+xρτ t) isρ1τ1Ã1,1. The proof is complete by combining
with Lemma 1.

3 The q-analogue

3.1 Proofs of results

With the notation of Section 1, we begin with the Lemma below.

Lemma 3 For verticesu1, u2 ∈ G, u1 6= u2, qcofsumu1

G = qcofsumu2

G . Thus,qcofsumv
G is inde-

pendent of the vertexv. Further, for allu ∈ G, qcofsumu
G = (q− 1) det(qDG)+ cofsum(qDG),

wherecofsum(qDG) =
∑

u,v cu,v is the sum of the cofactors ofqDG.

Proof: We recall thatqDG is theq-analogue of the distance matrixDG = (du,v) of G and
qCOFG = (cu,v) is the cofactor matrix ofqDG. For two verticesu, v ∈ G, du,v is the distance
between them and[du,v]q = 1 + q + q2 + · · · + qdu,v−1. Let rsumv be the row-sum ofqCOFG

corresponding to rowv and for a vertexu, qcofsumu
G =

∑
v qdv,ursumv

Elementary properties of the determinant and the adjugate imply for all verticesu ∈ G,
det(qDG) =

∑
v∈G[dv,u]q · cv,u =

∑
v∈G[dv,u]q · rsumv. Thus,

(q − 1) det(qDG) =
∑

v∈G

(q − 1)[dv,u]q · rsumv

=
∑

v∈G

(qdv,u − 1) · rsumv

= qcofsumu
G − cofsum(qDG)

This completes the proof.

For simplicity,di,j denotesdvi,vj
for verticesvi, vj in any graph and sometimes, the indexi

will be identified with vertexvi. Lemma 3 can be stated in the following alternate way. For a
strongly connected digraphG, let EDG = (eu,v) be itsexponential distance matrixdefined as
eu,v = qdu,v wheredu,v is the distance betweenu andv, q is an indeterminate andq0 = 1.
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Corollary 1 Consider the matrixMG = EDt
G · qCOFG. The all-ones vector1, of dimension

|V (G)| × 1 is an eigenvector ofMG corresponding to eigenvalueqcofsumG.

Proof: Let RS be the|V (G)| × 1 vector withRSv = rsumv. Clearly,qCOFG · 1 = RS and
(EDt

G · RS)v =
∑

u qdu,vrsumu = qcofsumG. The proof follows.

We note the following lemma similar to the lemma in [2]. We recall theq-weighted cofactor
sum with respect to columnj is qcofsum

j
G =

∑
16i6n qdi,j rsumi. Since by Lemma 3,cofsum

j
G

is independent ofj, we fix j = 1 and writecofsumG = cofsum
j
G. We will use Lemma 2 with

A = qDG, ρt = [1, qd2,1 , qd3,1 , . . . , qdn,1 ] andτ t = 1. (1)

These values for theρi’s and theτi’s define the matricesR, C and thusq̃DG. It is simple
to see from the definition thatqcofsumG = qcofsum1

G = Cρ,τ (qCOFG), where we recall
Cρ,τ (qCOFG) = ρt(qCOFG)τ . The following lemma gives the cofactor of̃qDG at position
(1, 1).

Lemma 4 With the above notation,Cρ,τ (qCOFG) = (̃qDG)1,1.

Proof: Follows from Lemma 2 by notingρ1 = τ1 = 1.

Proof: (Of Theorem 2) Pairs of distinct blocks have at most one vertex in common; the com-
mon vertex joining two adjacent blocks is called a cut-vertex. Among the blocks ofG, let H be
a block which has only one cut-vertex. We call such blocks as leaf-blocks. Clearly, leaf-blocks
exist and letH be a leaf block connected to the rest ofG along a cut-vertex. Let us label the
vertices so that this cut-vertex is labelled by 1, so whenvi denotes a vertex ofH anduj de-
notes a vertex ofG′, v1 = u1 = 1 denotes this cut-vertex inG. We recall the cofactor matrix
qCOFH = (cH

u,v) of qDH , and theq-weighted cofactor sumqcofsumH defined above.
Let |H| = k andV (H) = {1, v2, . . . , vk}. We recallG′ = G − (H − {1}), and if |G′| = r,

let V (G′) = {1, u2, . . . , ur}. Let us introduce the following notation. Row vector[a]q =

([a2]q, . . . , [ak]q), row vector[f ]q = ([f2]q, . . . , [fr]q), column vector[b]q = ([b2]q, . . . , [bk]q)
t

and column vector[g]q = ([g2]q, . . . , [gr]q)
t. We also use(M(i, j)) to denote the matrix with

entriesM(i, j) and various ranges of indices. We now verify that given the following block
decompositions

qDH =

(
0 [a]q

[b]q P

)
andqDG′ =

(
0 [f ]q

[g]q Q

)

we can express

qD(G) =




0 [a]q [f ]q
[b]q P ([bi]q + qbi [fj ]q)

[g]q ([gi]q + qgi[aj]q) Q




We must verify that[di,j]q = [bi]q + qbi[fj ]q whenvi, i 6= 1 is a vertex ofH andvj, j 6= 1 is
a vertex ofG′. Consider such a pair of vertices. Sincev1 is a cut-vertex separatingH andG′,
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the distances satisfydi,j = di,1 + d1,j It follows from the fact that[n + m]q = [n]q + qn[m]q
that [di,j]q = [di,1]q + qdi,1 [d1,j]q. However, by the block decomposition ofqDH , [di,1]q = [bi]q;
and by the block decomposition ofqDG′ , [d1,j]q = [fj ]q. We verify in the same manner that
[di,j]q = [di,1]q + qgi[aj ]q wheni 6= 1 labels a vertex ofG′ andj 6= 1 labels a vertex ofH.

As operation∼ preserves determinant, and by definition of̃(qDG′)1,1 and(̃qDH)1,1, we have

det(qDG) = det(R · qDG · C) = det




0 [a]q [f ]q
[b]q P − ([bi]q + qbi [aj ]q) 0

[g]q 0 Q − ([gi]q + qgi[fj]q)




= det

(
0 [a]q

[b]q P − ([bi]q + qbi[aj ]q)

)
· det(Q − ([gi]q + qgi[fj ]q))

+ det

(
0 [f ]q

[g]q Q − ([gi]q + qgi[fj ]q)

)
· det(P − ([bi]q + qbi[aj ]q))

= det(q̃DH) · (̃qDG′)1,1 + det(q̃DG′) · (̃qDH)1,1

= det(qDH) · qcofsumqDG′
+ det(qDG′) · qcofsumqDH

where the last line follows from Lemma 4, with the observation thatρ, τ restricted to the vertices
of H, G′ are as in Equation 1, with the dimensions of the restrictionsof ρ, τ matching that of
eitherA = qDH or A = qDG′ . Using Lemma 4 again, we note that

qcofsumqDG
= det

(
P − ([bi]q + qbi [aj]q) 0

0 Q − ([gi]q + qgi[fj]q)

)

= det(P − ([bi]q + qbi[aj ]q)) · det(Q − ([gi]q + qgi[fj ]q))

= (̃qDH)1,1 · (̃qDG′)1,1

= qcofsumqDH
· qcofsumqDG′

The proof is complete.

We apply Theorem 2 to obtain a few known corollaries and some new ones as well. When
G = T is a tree, each blockGi is an edge (i.e. aK2). It is simple to note thatqcofsumGi

=
−(1 + q) anddet(DGi

) = −1. Thus, we get aq-analogue of Graham, Hoffman and Hosoya’s
result first observed by Bapat et. al [1, Corollary 5.2].

Corollary 2 (Corollary 5.2,[1]) WhenG is a tree onn vertices, thendet(qDG) = (−1)n−1(n−
1)(1 + q)n−2.

When each block ofG, is a 3-clique(i.e. aK3), we get

DGi
=




0 1 1
1 0 1
1 1 0



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thusqcofsumGi
= (1 + 2q) anddet(DGi

) = 2. From this, we recover the following result of
Sivasubramanian [4]. More generally, when each block ofG is anr-clique (ieKr), thenDGi

=
J − I, whereJ is the matrix of all ones andI is the identity matrix, both of dimensionr × r. It
is simple to check thatqcofsumGi

= (−1)r−1[1 + (r − 1)q] anddet(DGi
) = (−1)r−1(r − 1).

Corollary 3 Let G havek blocks all of which arer-cliques (thus,G hasn = (r − 1)k + 1
vertices).

• Whenr = 3, det(qDG) = 2k(1 + 2q)k−1. ( [4, Corollary 3].)

• More generally for anyr, det(qDG) = (−1)n−1[(r − 1) · k][1 + (r − 1)q]k−1.

3.2 Mod k distances, setting values to q

In this subsection, by setting values toq, we get a few pleasing corollaries about some modifi-
cations of the distance matrix of graphs, some of which seem non obvious.

If we setq = −1, then it is easy to check that for oddi, [i]q = 1 and for eveni, [i]q = 0. Let
G be a connected graph with distance matrixDG and letqDG be theq-analogue ofDG. If we
setq = −1 in all entries ofqDG, this operation corresponds to considering the distance matrix
DG with all entries modulo 2.

Theorem 3 Let G andH be graphs with an identical multiset of isomorphic blocks (they may
differ in the tree structure of the connection among these blocks). LetD′

G andD′
H be the mod-2

distance matrices (where all distances are all considered modulo 2) ofG andH respectively.
Thendet(D′

G) = det(D′
H).

Proof: Follows from Theorem 2 by settingq = −1.

Corollary 4 Let G be a tree and letD′
G be its mod-2 distance matrix where all distances are

all considered modulo 2. ThenD′
G is singular (iedet(D′

G) = 0).

We get the following pleasant mod-2 analogue of Corollary 3 for which simple proofs would
be interesting.

Corollary 5 Let G be a graph withk blocks, all of which arer-cliques (ieKr’s), and letD′
G

be its mod-2 distance matrix (i.e. where each entry is considered modulo 2).

• If r = 3, det(D′
G) = 2k(−1)k−1.

• For a generalr, det(D′
G) = (r − 1)k(−r)n+k−2.

Remark 1 Theorem 3 answers the following question. Akin to determinant of the distance ma-
trices of some graphs being equal, are there graphs such thatthe determinant of theiradjacency
matrices are identical? Since a mod-2 distance matrix has 0-1 entries, Theorem 3 gives fami-
lies of graphs whose adjacency matrices have the same determinant. It would be interesting to
see if there is some structure or some description of all or even a subset of the graphs which
arise in this mod-2 manner from the distance matrix of graphshaving an identical multiset of
isomorphic blocks.
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Just as we set the valueq = −1, we set other values toq and get further corollaries. The
following corollary was suggested by the referee. For a positive integerk, let ζ be a primitive
k-th root of unity. Clearly settingq = ζ corresponds to the following operation: replace each
positive entryi in the distance matrix ofG by 1 + ζ + · · · + ζ (i mod k)−1. Settingq = −1
corresponds to this operation withk = 2. Thus, we get the following.

Corollary 6 LetG andH be graphs with an identical multiset of isomorphic blocks (they may
differ in the tree structure of the connection among these blocks). For any fixed positive integer
k, let ζ be a primitivek-th root of unity. LetD′

G and D′
H be the mod-k distance matrices of

G andH respectively, where all positive distancesi are replaced by1 + ζ + · · · + ζ i−1. Then
det(D′

G) = det(D′
H).

3.3 [kd]q-analogues

In this subsection, for any positive integerk, we considerkDq analogues ofD, where we replace
positive integersi in D by [ki]q = 1 + q + q2 + · · · + qki−1. Thus, we replace all entries[i]q in
qDG by [ki]q to getkDq. It is easy to see that[ki]q = (1 + qi + q2i + · · · + q(k−1)i)[i]q. Thus,
if we define[k]qi analogously as1 + qi + q2i + · · · + q(k−1)i, we get[ki]q = [k]qi [i]q. It can be
checked that with weightsqk·du,v multiplying rsumv, we getqcofsumu

kG, independent of vertex
u. The proofs of all Lemmata and Theorem 2 in Subsection 3.1 go through as before. We omit
the details and state the following result for trees in the casek = 2.

Corollary 7 Let T be a tree onn vertices and letD be its distance matrix. Let2Dq be the
polynomial matrix obtained fromD by replacing all entriesi by [2i]q = 1+ q+ q2 + · · ·+ q2i−1.
Then,det(2Dq) = (−1)n−1(n − 1)(1 + q)n(1 + q2)n−2.

Proof: Follows by observing that forH = K2, det(2Hq) = −(1 + q)2 and thatqcofsum2Hq
=

−(1 + q2)(1 + q)

We end with a question. Just as multiplying all entries of ann × n matrix by a factorα
results in multiplication of its determinant byαn, multiplying just the elements of a subsetS

with |S| = k of the rows byα results in multiplication of its determinant byαk. It would be
interesting to see if for some distinct treesT1, T2, some subsetsS1, S2 with |S1| = |S2| exist such
that theq-analogue of just the rows ofSi in Ti can be multiplied to get identical polynomials
for the determinant of the distance matrix.
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