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Abstract

We study in the present work a recurrence relation, which has long been over-
looked, for the g-Eulerian polynomial AiCS’inV(t,q) = D sce, tdes() ginv(@) - where
des(o) and inv(o) denote, respectively, the descent number and inversion number
of o in the symmetric group &,, of degree n. We give an algebraic proof and a
combinatorial proof of the recurrence relation.

1 Introduction

Let &,, denote the symmetric group of degree n. Any element o of &,, is represented by
the word o103 - 0,, where 0; = (i) for i = 1,2,...,n. Two well-studied statistics on
&, are the descent number and the inversion number defined by

des(o) = Zx(m > 0i11),
i=1

inv(o) := Z x(oi > o),

1<i<j<n

respectively, where o,47 := 0 and x(P) = 1 or 0 depending on whether the statement
P is true or not. It is well-known that des is Eulerian and that inv is Mahonian. The
generating function of the Euler-Mahonian pair (des,inv) over &, is the following g¢-
Eulerian polynomial:

A;ilcs,inv(t’ q) — Z tdcs(cr)qinv(o).

0’6677,
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It is clear that A,(t,1) = A,(t), the classical Eulerian polynomial. Let z and ¢ be
commuting indeterminates. For n > 0, let [n], := 14+ ¢+ ¢*+ --- 4+ ¢"~* be a g-integer,

and [n],! = [1],[2], - - [n], be a ¢-factorial. Define a g-exponential function by
ZTL
e(z;q) == Z :
n=0 [n]q'

Stanley [6] proved that

) 1—t
Ados,lnv LU t q Ados inv t q — ) (1)
% ]q! 1 —te(z(l —t);q)

Alternate proofs of (1) have also been given by Garsia [4] and Gessel [5]. Désarménien
and Foata [2] observed that the right side of (1) is precisely

( tgl—t >_1,

and from which they obtained a “semi” g-recurrence relation for A" (¢ ¢), namely,

Ades 1nv(t q) _ t( n 1 + Z |::| A?OS’inV(t,q)t(l . t)n_l_i.
q

1<i<n—1

The above g-recurrence relation is “semi” in the sense that the summands on the right
involve two factors one of which depends on ¢ whereas the other does not. We shall
establish in the present note that a “fully” g-recurrence relation for AdeV(¢ ¢) exists
such that both factors of the summands depend on ¢ (see Theorem 2.2 below). In the
next section, we derive this recurrence relation algebraically. In the final section, we give
a combinatorial proof of this recurrence relation.

2 The recurrence relation

We derive in the present section the recurrence relation by algebraic means.

Let Q denote, as customary, the set of rational numbers. Let x be an indeterminate,
Q[z] be the ring of polynomials in 2 over Q, and Q[[x]] the ring of formal power series in
x over Q. We introduce an Eulerian differential operator 9, in x by

su(s () = L=,

for any f(z) € Q[¢|[[z]] in the ring of formal power series in x over Q[q]. It is easy to see
that
0a(a") = [n]g2" ",

so that as ¢ — 1, 0,(z™) — na™!, the usual derivative of 2. See [1] for further properties
of 6.
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LEMMA 2.1. We have d,(e(x(1 —1t);q) = (1 —t)e(x(1 —t);q).

Proof. This follows from

(qz(1 —1);q) — ((1—t) )
g " (1 —t)" —a™(1 —t)
;O q—l) []
e
_@1 [n—1]

THEOREM 2.2. Forn > 1, A% (¢ q) satisfies

—

es,inv n es,inv n es,inv des,inv
A 00) = (14 )48 1) + Y [ A A )
1 q

3

B
Il

Proof. From (1) we have that

Ades 1nv(x, t7 q> _ (1 _ t)
Ados,inv(x, t7 q)

te(z(1 = 1);q) =

Applying §, to both sides of (1), and using Lemma 2.1, (1) and (3), we have

des,inv z" _ (1 _t) 1 - !
ZA”‘H (t,q) [n]q! = (¢ — 1):17(1 —te(qu(1 —t); q) 1—t6(517(1—t)§Q))

_ t(1 —t)d.(e(x(1 —1t);9)
[1—te(z(1 —t);q)][1 — te(qr(1l —1); )]

_ t(1 —t)*e(z(1 —t);q)
(1 —te(z(1 —1);g)][1 — te(qz(l —t); q)]

= [A%S™ (2,85 q) — (1 — )] AS™ (g, £ q).

Extracting the coefficients of 2™, we finally have

n

es,inv n es,inv es,inv n es,inv
A0 = 3 1] FAE A 00) — (- 0 A g
q

k=0

3
—

n es,inv n es,inv es,inv
= A )+ 3 [} AR A o)
q

1

e
Il
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The identity (2) is a g-analogue of the following convolution-type recurrence [3, p. 70]

Api(t) = (1+1)A +Z() )Ak(t),

satisfied by the classical Eulerian polynomials A, (t) := > .o ¢4

3 A combinatorial proof

We give a combinatorial proof of Theorem 2.2 in the present section.

Recall that elements of &,,.; can be obtained by inserting n 4+ 1 to elements of &,,.
Let o =010, € S,. Denote by o4, =010 (n+ 1)o7 0n, 0 < k < n. It is easy
to see that

des(oy9) =des(o) + 1, inv(oso) =inv(o) +n,
des(oy,) = des(o), inv(oy,) = inv(o),

and for 1 <k <n—1,

des(o1y) = des(oy - - - 0y) + des(ogt1 - - - on),
inv(oyg) =inv(oy - - op) +inv(ogyr - 0y)
+n—k+#{(r,s): 0, >0, 1 <r<kk+1<s<n}.

Let S = {oy,...,0k}. Then the partial permutations oy ---0x € &(S) and op41-- 0, €
S([n] \ 9), where &(S) denotes the group of permutations of the set S. It is clear that
the product &(S) x &([n] \ ) is a subgroup of &,, isomorphic to &y x &,,_. Also,
the quotient &,,/(6) x &,,_1) = ([Z}) (see [8, p. 351]), where ([Z]) denotes the set of all
k-subsets of [n], which is in bijective correspondence with the set of multipermutations
S({1%,277*}) of the multiset {1* 2"7*} consisting of k copies of 1’s and n — k copies of
2’s.
Define a multipermutation w = wyws, - - - w, € &({1*,2"*}) by

1 ifieS={o1,...,01},
w; =
2 ifien\S={0kt1,..-,0n}

Let 1 < ¢ < j < n. Itis clear that (4,7) is an inversion of w if and only if i = oy, j = o,
for some 1 <r <k, k+1<s<nand o, > o, so that

#{(r,5): 00 >0, 1 <r <k, k+1<s<n} =inv(w).

As S ranges over ([Z}), w so defined ranges over G({1%,2"7%}). Putting pieces together
and using the fact [7, Proposition 1.3.17] that

inv(w) __ n
Y <>_Mq’

weS({1k 2n—kY})
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we have

des,inv
An—i—l (tv q)

— Zn: Z td05(0+k)qinv(0+k)

k=0 c€S,,
(1 -+ 1q") AL 1, )

n—1
+ § § tdes(al---Jk)+des(ak+1~~~U7l)qinv(01~~~Uk)+inv(ak+1---Jn)—i-n—k—i-inv(w)
k=1

010, ESE
0’k+1'”0’n€6n7k
weB({1*,2n~k})

(1 + tqn)A;iLes,inv(t’q) + qn—k Z qinv(w) Z tdoS(T)qinV(T) Z tdeS(W)qinV(ﬂ)

weS({1k 27—k} TESK €S, _k

1
n—1
n es,inv n— n es,inv es,inv
(Ut A () + 0 ] A4 ),
q

B
Il
—

(4)

which is equivalent to (2) (by virtue of the symmetry of the g-binomial coefficient).
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