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Abstract

We study in the present work a recurrence relation, which has long been over-
looked, for the q-Eulerian polynomial A

des,inv
n (t, q) =

∑

σ∈Sn
tdes(σ)qinv(σ), where

des(σ) and inv(σ) denote, respectively, the descent number and inversion number
of σ in the symmetric group Sn of degree n. We give an algebraic proof and a
combinatorial proof of the recurrence relation.

1 Introduction

Let Sn denote the symmetric group of degree n. Any element σ of Sn is represented by
the word σ1σ2 · · ·σn, where σi = σ(i) for i = 1, 2, . . . , n. Two well-studied statistics on
Sn are the descent number and the inversion number defined by

des(σ) :=

n
∑

i=1

χ(σi > σi+1),

inv(σ) :=
∑

16i<j6n

χ(σi > σj),

respectively, where σn+1 := 0 and χ(P ) = 1 or 0 depending on whether the statement
P is true or not. It is well-known that des is Eulerian and that inv is Mahonian. The
generating function of the Euler-Mahonian pair (des, inv) over Sn is the following q-
Eulerian polynomial:

Ades,inv
n (t, q) :=

∑

σ∈Sn

tdes(σ)qinv(σ).
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It is clear that An(t, 1) ≡ An(t), the classical Eulerian polynomial. Let z and q be
commuting indeterminates. For n > 0, let [n]q := 1 + q + q2 + · · · + qn−1 be a q-integer,
and [n]q! := [1]q[2]q · · · [n]q be a q-factorial. Define a q-exponential function by

e(z; q) :=
∑

n>0

zn

[n]q!
.

Stanley [6] proved that

Ades,inv(x, t; q) :=
∑

n>0

Ades,inv
n (t, q)

xn

[n]q!
=

1 − t

1 − te(x(1 − t); q)
. (1)

Alternate proofs of (1) have also been given by Garsia [4] and Gessel [5]. Désarménien
and Foata [2] observed that the right side of (1) is precisely

(

1 − t
∑

n>1

(1 − t)n−1 xn

[n]q!

)−1

,

and from which they obtained a “semi” q-recurrence relation for Ades,inv
n (t, q), namely,

Ades,inv
n (t, q) = t(1 − t)n−1 +

∑

16i6n−1

[

n
i

]

q

Ades,inv
i (t, q)t(1 − t)n−1−i.

The above q-recurrence relation is “semi” in the sense that the summands on the right
involve two factors one of which depends on q whereas the other does not. We shall
establish in the present note that a “fully” q-recurrence relation for Ades,inv

n (t, q) exists
such that both factors of the summands depend on q (see Theorem 2.2 below). In the
next section, we derive this recurrence relation algebraically. In the final section, we give
a combinatorial proof of this recurrence relation.

2 The recurrence relation

We derive in the present section the recurrence relation by algebraic means.
Let Q denote, as customary, the set of rational numbers. Let x be an indeterminate,

Q[x] be the ring of polynomials in x over Q, and Q[[x]] the ring of formal power series in
x over Q. We introduce an Eulerian differential operator δx in x by

δx(f(x)) =
f(qx) − f(x)

qx − x
,

for any f(x) ∈ Q[q][[x]] in the ring of formal power series in x over Q[q]. It is easy to see
that

δx(x
n) = [n]qx

n−1,

so that as q → 1, δx(x
n) → nxn−1, the usual derivative of xn. See [1] for further properties

of δx.
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Lemma 2.1. We have δx(e(x(1 − t); q) = (1 − t)e(x(1 − t); q).

Proof. This follows from

δx(e(x(1 − t); q) =
e(qx(1 − t); q) − e(x(1 − t); q)

(q − 1)x

=
∑

n>0

qnxn(1 − t)n − xn(1 − t)n

(q − 1)x[n]q!

=
∑

n>1

xn−1(1 − t)n

[n − 1]q!

= (1 − t)e(x(1 − t); q).

Theorem 2.2. For n > 1, Ades,inv
n (t, q) satisfies

Ades,inv
n+1 (t, q) = (1 + tqn)Ades,inv

n (t, q) +

n−1
∑

k=1

[

n
k

]

q

qkAdes,inv
n−k (t, q)Ades,inv

k (t, q). (2)

Proof. From (1) we have that

te(x(1 − t); q) =
Ades,inv(x, t; q) − (1 − t)

Ades,inv(x, t; q)
. (3)

Applying δx to both sides of (1), and using Lemma 2.1, (1) and (3), we have

∑

n>0

Ades,inv
n+1 (t, q)

xn

[n]q!
=

(1 − t)

(q − 1)x

(

1

1 − te(qx(1 − t); q)
−

1

1 − te(x(1 − t); q)

)

=
t(1 − t)δx(e(x(1 − t); q)

[1 − te(x(1 − t); q)][1 − te(qx(1 − t); q)]

=
t(1 − t)2e(x(1 − t); q)

[1 − te(x(1 − t); q)][1 − te(qx(1 − t); q)]

= [Ades,inv(x, t; q) − (1 − t)]Ades,inv(qx, t; q).

Extracting the coefficients of xn, we finally have

Ades,inv
n+1 (t, q) =

n
∑

k=0

[

n
k

]

q

qkAdes,inv
n−k (t, q)Ades,inv

k (t, q) − (1 − t)qnAdes,inv
n (t, q)

= (1 + tqn)Ades,inv
n (t, q) +

n−1
∑

k=1

[

n
k

]

q

qkAdes,inv
n−k (t, q)Ades,inv

k (t, q).
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The identity (2) is a q-analogue of the following convolution-type recurrence [3, p. 70]

An+1(t) = (1 + t)An(t) +

n−1
∑

k=1

(

n

k

)

An−k(t)Ak(t),

satisfied by the classical Eulerian polynomials An(t) :=
∑

σ∈Sn
tdes(σ).

3 A combinatorial proof

We give a combinatorial proof of Theorem 2.2 in the present section.
Recall that elements of Sn+1 can be obtained by inserting n + 1 to elements of Sn.

Let σ = σ1 · · ·σn ∈ Sn. Denote by σ+k = σ1 · · ·σk(n+1)σk+1 · · ·σn, 0 6 k 6 n. It is easy
to see that

des(σ+0) = des(σ) + 1, inv(σ+0) = inv(σ) + n,

des(σ+n) = des(σ), inv(σ+n) = inv(σ),

and for 1 6 k 6 n − 1,

des(σ+k) = des(σ1 · · ·σk) + des(σk+1 · · ·σn),

inv(σ+k) = inv(σ1 · · ·σk) + inv(σk+1 · · ·σn)

+ n − k + #{(r, s) : σr > σs, 1 6 r 6 k, k + 1 6 s 6 n}.

Let S = {σ1, . . . , σk}. Then the partial permutations σ1 · · ·σk ∈ S(S) and σk+1 · · ·σn ∈
S([n] \ S), where S(S) denotes the group of permutations of the set S. It is clear that
the product S(S) × S([n] \ S) is a subgroup of Sn isomorphic to Sk × Sn−k. Also,
the quotient Sn/(Sk × Sn−k) ∼=

(

[n]
k

)

(see [8, p. 351]), where
(

[n]
k

)

denotes the set of all
k-subsets of [n], which is in bijective correspondence with the set of multipermutations
S({1k, 2n−k}) of the multiset {1k, 2n−k} consisting of k copies of 1’s and n − k copies of
2’s.

Define a multipermutation w = w1w2 · · ·wn ∈ S({1k, 2n−k}) by

wi =

{

1 if i ∈ S = {σ1, . . . , σk},

2 if i ∈ [n] \ S = {σk+1, . . . , σn}.

Let 1 6 i < j 6 n. It is clear that (i, j) is an inversion of w if and only if i = σs, j = σr

for some 1 6 r 6 k, k + 1 6 s 6 n and σr > σs, so that

#{(r, s) : σr > σs, 1 6 r 6 k, k + 1 6 s 6 n} = inv(w).

As S ranges over
(

[n]
k

)

, w so defined ranges over S({1k, 2n−k}). Putting pieces together
and using the fact [7, Proposition 1.3.17] that

∑

w∈S({1k ,2n−k})

qinv(w) =

[

n
k

]

q

,
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we have

Ades,inv
n+1 (t, q)

=
n
∑

k=0

∑

σ∈Sn

tdes(σ+k)qinv(σ+k)

= (1 + tqn)Ades,inv
n (t, q)

+
n−1
∑

k=1

∑

σ1···σk∈Sk

σk+1···σn∈Sn−k

w∈S({1k ,2n−k})

tdes(σ1···σk)+des(σk+1···σn)qinv(σ1···σk)+inv(σk+1···σn)+n−k+inv(w)

= (1 + tqn)Ades,inv
n (t, q) +

n−1
∑

k=1

qn−k
∑

w∈S({1k ,2n−k})

qinv(w)
∑

τ∈Sk

tdes(τ)qinv(τ)
∑

π∈Sn−k

tdes(π)qinv(π)

= (1 + tqn)Ades,inv
n (t, q) +

n−1
∑

k=1

qn−k

[

n
k

]

q

Ades,inv
k (t, q)Ades,inv

n−k (t, q),

(4)

which is equivalent to (2) (by virtue of the symmetry of the q-binomial coefficient).
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