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Abstract

A sorting network is a shortest path from 12 · · · n to n · · · 21 in the Cayley graph

of Sn generated by nearest-neighbor swaps. For m 6 n, consider the random m-

particle sorting network obtained by choosing an n-particle sorting network uni-

formly at random and then observing only the relative order of m particles chosen

uniformly at random. We prove that the expected number of swaps in location j in

the subnetwork does not depend on n, and we provide a formula for it. Our proof is

probabilistic, and involves a Pólya urn with non-integer numbers of balls. From the

case m = 4 we obtain a proof of a conjecture of Warrington. Our result is consistent

with a conjectural limiting law of the subnetwork as n → ∞ implied by the great

circle conjecture of Angel, Holroyd, Romik and Virág.

1 Introduction

Let Sn be the symmetric group of all permutations σ = (σ(1), . . . , σ(n)) on {1, . . . , n},
with composition given by (στ)(i) := σ(τ(i)). For 1 6 s 6 n − 1 denote the adjacent
transposition or swap at location s by τs := ( s s + 1 ) = (1, 2, . . . , s + 1, s, . . . , n) ∈ Sn.
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Figure 1: An illustration of the 5-particle sorting network ω = (2, 1, 3, 4, 2, 3, 4, 2, 1, 2),
together with the 3-particle subnetwork ω|A = (2, 1, 2) induced by the subset of particles
A = {1, 2, 4}.

Denote the identity id := (1, 2, . . . , n) and the reverse permutation ρ := (n, . . . , 2, 1).
An n-particle sorting network is a sequence ω = (s1, . . . , sN), where N :=

(
n

2

)
, such

that
τs1

τs2
· · · τsN

= ρ.

For 1 6 t 6 N we refer to st = st(ω) as the t-th swap location, and we call the
permutation σt = σt(ω) := τs1

· · · τst
the configuration at time t. We call σ−1

t (i) the
location of particle i at time t.

Given an n-particle sorting network ω and a subset A of {1, . . . , n} of size m, the in-
duced subnetwork ω|A is the m-particle sorting network obtained by restricting attention
to the particles in A. More precisely, if the elements of A are a1 < a2 < · · · < am, delete
from each configuration σt of ω all elements not in A, and replace ai with i, to give a per-
mutation in Sm, then remove all duplicates from the resulting sequence of permutations;
the result is the sequence of configurations of ω|A. See Figure 1.

The uniform sorting network ωn is a random sorting network chosen according to
the uniform measure on the set all n-particle sorting networks. For m 6 n, the random

m-out-of-n subnetwork ωn
m is the random m-particle sorting network (ωn)|A, where

ωn is a uniform n-particle sorting network, and A is an independent uniformly random
m-element subset of {1, . . . , n}.

Uniform sorting networks were investigated in [3], leading to many striking results and
conjectures. (A different probability measure on sorting networks was considered in [2].)
Our main result is the following surprising fact about random subnetworks. We denote
the falling factorial (a)r := a(a − 1) · · · (a − r + 1) (so r! = (r)r).

Theorem 1. Let m 6 n. In the random m-out-of-n subnetwork, the expected number of
swaps in location j does not depend on n, and equals

E#
{
t : st(ω

n
m) = j

}
=

(j − 1
2
)j−1(m − j − 1

2
)m−j−1

(j − 1)!(m − j − 1)!
, 1 6 j 6 m − 1.

Given only that the left side does not depend on n, the formula on the right side may
be recovered by reducing to the case n = m, which gives ωn

m = ωm, and using known
results on the uniform sorting network (specifically, Proposition 5 below).
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It is natural to seek generalizations of Theorem 1. For example one might ask whether
the law of #

{
t : st(ω

n
m) = j

}
is the same for each n > m. This is true for m = 3 (indeed

the law of ωn
3 is the same for all n > 3), but fails for m = 4 with n = 4, 5.

From the case m = 4 of Theorem 1 we deduce the following result, which was conjec-
tured by Warrington [8]. (We abbreviate (s1, . . . , sN) to s1 · · · sN ).

Corollary 2. For all n > 4, the probability that the random 4-out-of-n subnetwork lies
in {123212, 321232, 212321, 232123} is 1/4.

The present work was triggered by Warrington’s conjecture. Conjecture 2 has a natural
interpretation in terms of geometric sorting networks, which we define next. Consider a
set of n points in R

2 with no three collinear, no two pairs determining parallel lines, and
no pair in the same vertical line. The associated geometric sorting network is defined
as follows. Label the points x1, . . . , xn in order of their projections onto the horizontal
axis. For all but finitely many angles θ, the projections onto the line through 0 in direction
θ fall in an order xσ(1), . . . , xσ(n) corresponding to a permutation σ = σθ of the original
order, and as θ is increased from 0 to π, these permutations form the configurations of a
sorting network.

The four networks listed in Corollary 2 are precisely those geometric networks in which
one point is in the convex hull of the other three. It turns out that all n-particle sorting
networks are geometric for n 6 4, but not for n > 5, as proved in [6]. In fact it is proved
in [1] that the uniform sorting network is non-geometric with probability tending to 1 as
n → ∞; on the other hand, a principal conjecture of [3] is that in a certain sense the
uniform sorting network is approximately geometric.

The conjectures in [3] lead to the following precise prediction for the limiting law
of the random m-out-of-n subnetwork as n → ∞. We will prove that Theorem 1 is
consistent with this conjecture, thus providing the most detailed confirmation to date of
the conjectures in [3].

Conjecture 3. Let X1, . . . , Xm be independent identically distributed random points in
R

2 chosen according to the Archimedes density

1

2π
√

1 − x2 − y2

on the disc x2 + y2 < 1, and let ω̂m be the associated random geometric sorting network.
The random m-out-of-n subnetwork ωn

m satisfies the convergence in distribution

ωn
m

d→ ω̂m as n → ∞.

Conjecture 3 is implied by [3, Conjecture 3] (and this is implicit in the discussion at
the end of [3, Section 1] and [3, proof of Theorem 5]). The conjecture implies that any
statistic of the law of ωn

m should converge to the appropriate limit; we establish that this
indeed holds for the expected value in Theorem 1.

Proposition 4. Let ω̂m be the random geometric sorting network of Conjecture 3. The
expected number of swaps in ω̂m at location j equals the right side in Theorem 1.
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2 Proof of main result

We will use the following key properties of uniform sorting networks.

Proposition 5 ([3]). Consider a uniform n-particle sorting network, and write N =
(

n

2

)
.

(i) The random sequence of swap locations is stationary. That is,
(s1, . . . , sN−1) and (s2, . . . , sN) are equal in law.

(ii) The probability mass function pn of the first swap location is given by

pn(k) = P(s1 = k) =
1

N
· (k − 1

2
)k−1(n − k − 1

2
)n−k−1

(k − 1)!(n − k − 1)!
, 1 6 k 6 n − 1.

Proposition 5 is proved in [3, Theorem 1(i) and Proposition 9]. For the reader’s
convenience we also summarize the arguments here. Part (i) follows immediately because
(s1, . . . , sN) 7→ (s2, . . . , sN , n − s1) is a permutation of the set of all n-particle sorting
networks. Part (ii) requires more technology. By a bijection of Edelman and Greene [4],
the location of the first swap is equal in law to the position along the diagonal of the
largest entry in a uniformly random standard Young tableau of shape (n − 1, . . . , 2, 1).
The mass function of the latter may be computed by using the hook formula of Frame,
Robinson and Thrall [5] to enumerate Young tableaux with and without a given cell on
the diagonal.

The stationarity of the uniform sorting network will play a key role in our proof of
Theorem 1. We remark that the random m-out-of-n subnetwork ωn

m is not in general
stationary; even ω5

4 is a counterexample, as noted in [8]. Stationarity apparently also fails
for the random geometric sorting network ω̂m of Conjecture 3 (according to simulations),
and therefore it presumably fails to hold asymptotically for ωn

m as n → ∞.
Our proof of Theorem 1 will proceed by relating the mass function pn to a Pólya

urn process, which is defined as follows. An urn contains black and white balls in some
numbers (which for our purposes need not be integers). At each step, one new ball is
added to the urn; if the urn currently contains w white and b black balls, the next ball to
be added is white with probability w/(b + w), otherwise black.

Lemma 6. Consider a Pólya urn that initially contains 11
2

black and 11
2

white balls.

(i) The random sequence of colors of added balls is exchangeable (i.e. invariant in law
under all permutations affecting finitely many elements).

(ii) After n− 2 balls have been added, the probability that k− 1 of them are white equals
pn(k).

(Property (i) is well known, for arbitrary initial numbers of balls).

Proof. The probability of adding k − 1 white followed by n − k − 1 black balls is

11
2

3

21
2

4
· · · k − 1

2

k + 1
× 11

2

k + 2

21
2

k + 3
· · · n − k − 1

2

n
=

2 (k − 1
2
)k−1(n − k − 1

2
)n−k−1

n!
. (1)

Moreover, the probability of adding k − 1 white and n − k − 1 black balls in any given
order also equals (1), since we obtain the same denominators, and the numerators in a
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different order. This gives the claimed exchangeability. Therefore, the probability that
k − 1 of the first n − 2 balls are white is (1) multiplied by

(
n−2
k−1

)
, which equals the right

side in Proposition 5 (ii).

Let hn
m,k be the mass function of a hypergeometric distribution, i.e., let hn

m,k(i) be the
probability of obtaining i white balls when m are chosen at random without replacement
from an urn containing n balls of which k are white. So

hn
m,k(i) = hn

k,m(i) =

(
k

i

)(
n−k

m−i

)
(

n

m

)

(where as usual we take
(

a

b

)
= 0 if b /∈ [0, a]).

Lemma 7. For integers n, m, j satisfying m 6 n and 1 6 j 6 m − 1,

∑

k∈Z

pn(k)hn−2
m−2,k−1(j − 1) = pm(j).

In particular the left side does not depend on n.

Proof. Consider the Pólya urn of Lemma 6. When n − 2 balls have been added, suppose
m − 2 balls are chosen at random from these n − 2. Then the left side is the probability
that j−1 of those chosen are white. By the exchangeability in (i), this probability remains
the same if we condition on the event that the chosen balls are the first m−2 to be added
to the urn, but then the probability is clearly pm(j) by Lemma 6 (ii).

We remark that a direct computational proof of Lemma 7 is also possible, using
induction on n.

Proof of Theorem 1. Consider the random m-out-of-n subnetwork ωn
m = (ωn)|A. Let

q(n, m, k, j, t) be the probability that the t-th swap in the n-particle network ωn occurs
in location k, and that this swap corresponds to some swap in location j in the m-out-of-
n-network. We note first that q is constant in t. To check this, consider the configuration
σt−1(ωn) = τs1

· · · τst−1
at time t − 1. Since A is a uniformly random m-element subset

of {1, . . . , n} independent of ωn, it follows that σt−1(A) is also a uniform subset and is
independent of st (even though st is not independent of σt−1). The claim therefore follows
by the stationarity in Proposition 5(i).

On the other hand we have

q(n, m, k, j, 1) = pn(k) hn
m,2(2) hn−2

m−2,k−1(j − 1),

since given that the first swap in ωn has location k, the event in question occurs if and
only if the m chosen elements comprising A include the pair k, k + 1, and exactly j − 1
of 1, . . . , k − 1. Now the required expectation is

∑
k∈Z

∑N

t=1 q(n, m, k, j, t). By the above
observations, together with Lemma 7 and the fact that hn

m,2(2) =
(

m

2

)
/
(

n

2

)
, this sum equals(

m

2

)
pm(j).
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3 Proofs of additional results

Proof of Corollary 2. It is easy to check that of the 16 4-particle sorting networks, the
given 4 each have 3 swaps in location 2, while the remaining 12 each have 2. But Theorem 1
gives that the expected number of swaps in location 2 is 9/4 = (1/4)3 + (3/4)2.

Proof of Proposition 4. Let X1, . . . , Xm be i.i.d. with Archimedes density as in Conjec-
ture 3. We start by noting two properties. First, the projection of X1 onto any fixed
direction has uniform distribution on [−1, 1]. Second, the signed distance from 0 of the
line through X1 and X2 has semicircle law, i.e. density function 2

π

√
1 − r2 on [−1, 1]. (See

[3, proof of Theorem 5]).
Since each pair of particles swaps somewhere in ω̂m, it suffices to compute the proba-

bility that a given pair, say those corresponding to X1, X2, swap in location j (and then
multiply by

(
m

2

)
). This swap occurs when the rotating projection line is perpendicular to

the line through X1 and X2, at which time the projections of X1 and X2 coincide, at a
point R with semicircle law. This swap is at location j precisely if j − 1 of X3, . . . , Xm

are projected to the left (say) of R; but the projections of these points are uniform and
independent of R. Thus the required expectation is

(
m

2

) ∫ 1

−1

(
m − 2

j − 1

)(1 + r

2

)j−1(1 − r

2

)m−j−1 2

π

√
1 − r2 dr. (2)

Leaving aside multiplicative constants and applying the change of variable t = (r + 1)/2,
the integral reduces to a standard Beta integral (see e.g. [7, p. 148]):

∫ 1

0

tj−
1

2 (1 − t)m−j− 1

2 dt =
Γ(j + 1

2
)Γ(m − j + 1

2
)

Γ(m + 1)
.

Using Γ(1
2
) =

√
π, a routine computation then shows that (2) equals the right side in

Theorem 1.

We remark that the last computation may be viewed as an asymptotic version of
Lemma 7 in the limit n → ∞: the sum in Lemma 7 is a Riemann sum for some integral∫ 1

0
fn(t)dt, with fn(t) → tj−

1

2 (1 − t)m−j− 1

2 .

Open questions

(i) Does the law of the random m-out-of-n sorting network converge as n → ∞, for
fixed m? (Conjecture 3 makes a specific prediction about the limit, but even its
existence is not known.)

(ii) Our use of the Pólya urn can be viewed as a natural way to couple the law of the
first swap location s1(ωn) for different values of n – indeed the coupling has the
property that s1(ωn+1)− s1(ωn) ∈ {0, 1}. Is there a natural way to couple the entire
uniform sorting networks ωn and ωn+1? In particular, does there exist a joint law of
ωn, ωn+1 and some random set B ⊂ {1, . . . , n + 1}, such that ωn = (ωn+1)|B?
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