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Abstract

Generalized Paley graphs are cyclic graphs constructed from quadratic or higher
residues of finite fields. Using this type of cyclic graphs to study the lower bounds
for classical Ramsey numbers, has high computing efficiency in both looking for
parameter sets and computing clique numbers. We have found a new generaliza-
tion of generalized Paley graphs, i.e. automorphism cyclic graphs, also having the
same advantages. In this paper we study the properties of the parameter sets of
automorphism cyclic graphs, and develop an algorithm to compute the order of the
maximum independent set, based on which we get new lower bounds for 8 classical
Ramsey numbers: R(3, 22) > 131, R(3, 23) > 137, R(3, 25) > 154, R(3, 28) > 173,
R(3, 29) > 184, R(3, 30) > 190, R(3, 31) > 199, R(3, 32) > 214. Furthermore, we
also get R(5, 23) > 521 based on R(3, 22) > 131. These nine results above improve
their corresponding best known lower bounds.

1 Lower bounds for Ramsey numbers and general-

ized Paley graphs

Let q1, q2, . . . , qm > 3 be given integers with m > 2. The classical Ramsey number
R(q1, . . . , qm) is the minimum positive integer n satisfying the following condition: For
an arbitrary coloring of the complete graph Kn with m colors, there is always a complete
subgraph Kqi

for some 1 6 i 6 m such that every edge of Kqi
has the i-th color. The

determination of Ramsey numbers is a very difficult problem in combinatorics [1]. Various
methods have been designed to compute their bounds.

the electronic journal of combinatorics 17 (2010), #N25 1



When Greenwood and Gleason determined the exact values of a few small Ramsey
numbers in 1955 [4], they utilized the quadratic residues of finite fields to construct self
complementary graphs and thus obtained the lower bounds R(3, 3) > 6 and R(4, 4) >

18. These graphs were Paley graphs, and the same method produced results such like
R(6, 6) > 102 [6] and R(8, 8) > 282 [2].

In 1979, Clapham generalized the Paley graphs by a more general approach than the
construction of self complementary graphs, and obtained the results R(7, 7) > 114 [3].
Another generalization of Paley graphs is the construction of non-self complementary
graphs by using cubic residues of finite fields in [11, 12], and some new lower bounds such
like R(4, 4, 4) > 128 [12] and R(6, 6, 6) > 1070 [11] were obtained.

In the past few years we have used the cyclic graphs of prime order to study the lower
bounds for classical Ramsey numbers to the effect of improvements and generalizations
of the method of Paley graphs. For example, in [7] we pointed out the isomorphism
properties of the self complementary graphs could be used to enhance the computing
efficiency for the computation of clique numbers, from which some new lower bounds
such like R(17, 17) > 8917, R(18, 18) > 11005 and R(19, 19) > 17885 were obtained. In
[7, 11] we constructed cyclic graphs by using cubic residues of finite fields and obtained new
results such like R(4, 12) > 128, R(6, 16) > 434, R(6, 17) > 548. In [8, 13] we constructed
cyclic graphs by using higher residues of finite fields and obtained new lower bounds such
like R(3, 3, 12) > 182, R(3, 3, 13) > 212, R(3, 28) > 164.

As far as we know, all generalized Paley graphs considered so far have been restricted
to finite fields. This is one limit of this method. However it is not easy to generalize the
generalized Paley graphs to cyclic graphs of arbitrary order.

We have noticed that the parameter set of a generalized Paley graph of prime or-
der is related to a cyclic group and automorphism is an important tool to deduce the
isomorphism properties of generalized Paley graphs. In this paper we use this tool to
study cyclic graphs of non-prime order and give a new generalization of generalized Pa-
ley graphs, which we will describe as automorphism cyclic graphs. The parameter sets
of such graphs are also related to cyclic groups. The search for parameter sets and the
computation of clique numbers by using this tool have higher efficiency.

2 The parameter sets of automorphism cyclic graphs

For basic concepts and terms refer to [1].
For a give integer n > 8, let m =

[

n

2

]

be the integer part of n/2. For integers s < t,
denote [s, t] = {s, s + 1, . . . , t}. Let Zn = [−m, m] or [1−m, m] depending on n is odd or
even.

The results of all arithmetic operations modulo n are understood to be in the set Zn

unless mentioned specifically. The equality sign “=” for elements in Zn generally means
“≡ (mod n)”.

Definition 1 For a partition S = S1 ∪ S2 of the set S = [1, m] let Ai = {x | |x| ∈ Si} for
i = 1, 2. Let V = Zn be the vertex set of the complete graph Kn and let E = {(x, y) ∈
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Zn × Zn | x 6= y} be the edge set of Kn. Let

Ei = {(x, y) ∈ E | x − y ∈ Ai}

for i = 1, 2. An edge in Ei is said to be an Ai-colored edge. Denote by Gn(Ai) the subgraph
of Kn derived from the Ai-colored edges. The clique number of Gn(Ai) is denoted by
[Gn(Ai)]. This gives a 2-coloring of Kn in terms of the parameter set A1 or A2 (i.e., S1

or S2). We say that the cyclic graph Gn(Ai) of order n is generated by the parameter set
Si.

By Ramsey’s theorem, it is obvious that R([Gn(A1)] + 1, [Gn(A2)] + 1) > n + 1.

Lemma 1 Assume that k ∈ Zn and (k, n) = 1. Then the transform f : x 7→ kx of Zn

gives rise to isomorphisms of the graphs Gn(Ai) for i = 1, 2.

In general, the transform f changes the parameter set Si into S∗

i and Gn(Ai) into an-
other cyclic graph Gn(A∗

i ), where S∗

i = {|kx| | x ∈ Si}, A∗

i = {kx | x ∈ Ai}. In particular,
when Gn(Ai) = Gn(A∗

i ) we have

Definition 2 For a parameter set Si, if there is some k ∈ Zn such that kAi = Ai, then
the transform f : x 7→ kx is called an automorphism transform of Gn(Ai), and Gn(Ai)
is called an automorphism cyclic graph. The set Si is called an automorphism parameter
set. The number k is called a special element for Gn(Ai) which is also called a special
element of Si or simply of n.

Let P denote the set of all special elements for Gn(Ai). Obviously ±1 ∈ P. They are
called trivial special elements. If P = {1,−1} then Gn(Ai) is called a trivial automorphism
cyclic graphs.

By convention, in what follows all automorphism cyclic graphs are nontrivial ones.

Lemma 2 The graph Gn(Ai) is an automorphism cyclic graph if and only if there exists
k ∈ [2, m] with (k, n) = 1 such that a ∈ Ai ⇔ ka ∈ Ai (i.e. a ∈ Si ⇔ |ka| ∈ Si).

Lemma 3 The set P under multiplication in Zn is a group.

Proof. Assume that k, h ∈ P. It follows from Lemma 2 that kAi = Ai and hAi = Ai.
Thus khAi = Ai. Hence kh ∈ P, which means that P is closed under multiplication.

Obvious 1 ∈ P. It remains to show that every k ∈ P has an inverse. Since (k, n) = 1,
there is some j ∈ Zn such that kj = 1. Hence jAi = Ai, which implies that j is the inverse
of k. 2

Now that P is a group, it can be decomposed as a union of cyclic subgroups. For any
k ∈ P, (k) denotes the cyclic subgroup of P generated by k.

For integer n > 8 and k ∈ [2, m] with (k, n) = 1, let s be the smallest positive integer
such that |ks| = 1. Then k is called a special element of n with order s.
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Lemma 4 Let k be a special element of n with order s. For any a ∈ Ai with a 6= ±1, let

a(k) = {|kja| | 1 6 j 6 s}. (1)

Then Gn(Ai) is an automorphism cyclic graph if and only if a ∈ Si ⇔ a(k) ⊆ Si for
i = 1, 2.

Proof. Necessity: Let Gn(Ai) be an automorphism cyclic graph. By Lemma 2 there
is k ∈ [2, m] with (k, n) = 1 such that a ∈ Si ⇔ |ka| ∈ Si for i = 1, 2. It follows that
|k2a| ∈ Si, |k

3a| ∈ Si, · · ·. Thus a(k) ⊆ Si.
Sufficiency: It follows from (1) that |ka| ∈ a(k). Since a ∈ Si ⇔ a(k) ⊆ Si, we obtain

a ∈ Si ⇔ |ka| ⊆ Si. Hence Gn(Ai) is an automorphism cyclic graph. 2

It is easy to see that 1(k) = {1, |k|, |k2|, . . . , |ks−1|} is a cyclic group of order s. Since
a ∈ Si ⇔ a(k) ⊆ Si, the automorphism parameter set Si is related to cyclic groups. It is
the union of several subsets in the form of (1). More precisely

Si = a1(k) ∪ · · · ∪ ar(k) (2)

of which the right hand side is simply denoted by [a1, . . . , ar].

Example 1 Let n = 145 and let

S1 = {1, 12, 17, 20, 28, 41, 46, 50, 55, 57, 59, 65}.

Then P = (12) ∪ (17) ∪ (59) ∪ (28) ∪ (41). The elements 12, 17, 59 are special elements
of order 2 and 28, 41, 46, 57 are special elements of order 4. Choose any one from these
seven special elements and then the parameter set S1 can be expressed in the form of (2).
For instance, we may choose k = 12 of order 2. Then 1(12) = {1, 12} and

S1 = 1(12) ∪ 17(12) ∪ 20(12) ∪ 28(12) ∪ 41(12) ∪ 55(12) = [1, 17, 20, 28, 41, 55].

If we choose the special element k = 46 of order 4, then 1(46) = {1, 46, 59, 41} and
S1 = [1, 17, 20, 28, 41, 55].

From Example 1 one can obtain the result R(3, 25) > 146. Although this lower bound
is not good enough, but it illustrates an extreme case in which the set P is not a cyclic
group and the expression (2) is not unique. We will soon see that the choice of a special
element of highest order among the 7 different expressions of S1 has the advantage of
enhancing the computing efficiency of the clique number of Gn(Ai).

3 The computation of the clique number of the au-

tomorphism cyclic graph Gn(Ai).

In the following discussion we will mainly restrict ourselves to the case of subgroup (k)
in P . For instance, we restrict to the case of one subgroup among (12), (17), (28), (41),
(59) in example.
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Definition 3 Let k be a special element of order s in P , and H = {±kj |1 6 j 6 s}.
Two element a and b in Ai are said to be equivalent if there is k ∈ H such that b = ka.
The equivalence class represented by a is denoted by 〈a〉.

This equivalence relation gives rise to a partition of Ai. In fact, an equivalence class is an
orbit of Ai under the action of H .

Lemma 5 Let k be a special element of order s of the automorphism cyclic graph Gn(Ai).
For an arbitrary a ∈ Ai, let r = |a(k)|. If r > 1, then the equivalence class 〈a〉 =
{a,−a, ka,−ka, . . . , ks−1a,−ks−1a} contains 2r elements. If r = 1 then 〈a〉 = {a,−a}.
In particular,

|〈a〉| =

{

2, if a 6= −a
1, if a = −a

By the symmetry of the graph Gn(Ai) the clique number of Gn(Ai) is the maximal
order of cliques containing the vertex 0. Thus it suffices to consider the cliques containing
0. By Definition 1 all nonzero vertices of such cliques are also elements of Ai. Thus we
have

Lemma 6 Denote the subgraph of Gn(Ai) derived from the vertex set Ai by Gn[Ai] and
its clique number by [Ai]. Then

[Gn(Ai)] = [Ai] + 1.

This amounts to saying that we only need to compute the clique number of Gn[Ai] in
order to find that of Gn(Ai). To find [Ai] we introduce a total order in Ai.

Definition 4 For x ∈ Si, denote di(x) = |{y ∈ Ai|x − y ∈ Ai}|. The total order ≺ in Ai

is defined as follows:
(1) Every subset 〈a〉 = {a,−a, ka,−ka, . . . , ks−1a,−ks−1a} of Ai forms an interval

under ≺ with a ≺ −a ≺ ka ≺ −ka ≺ · · · ≺ ks−1a ≺ −ks−1a.
(2) Assume that x ∈ 〈a〉, y ∈ 〈b〉 and a is not equivalent to b. If di(a) < di(b), then

x ≺ y; if di(a) = di(b) and a < b then x ≺ y.

Remark 1 (1) In the subset 〈a〉 = {a,−a, ka,−ka, . . . , ks−1a,−ks−1a} of Ai there is at
least one element belonging to Si.

(2) For arbitrary a, y ∈ Ai, it follows from Lemma 2 that a−y ∈ Ai ⇔ ±kj(a−y) ∈ Ai,
where 0 6 j 6 s − 1. Hence di(a) = di(−a) and di(a) = di(k

ja), so

di(a) = di(−a) = di(ka) = di(−ka) = · · · = di(k
s−1a) = di(−ks−1a).

Remark 1 shows that the total order ≺ is well-defined and (Ai,≺) is an ordered set.
When x ≺ y we say that x precedes y.

Lemma 7 Let M be a set of representatives of all equivalence classes in (Ai,≺). If di(x) =
0 for every x ∈ M, then [Ai] = 1.
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Proof. Otherwise suppose [Ai] > 2. Then [Gn(Ai)] > 3. There would be a 3-clique
{0, x, y} in Gn(Ai) in which x, y ∈ Ai and x − y ∈ Ai. There are following two cases:

Case I) x ∈ M or y ∈ M. Then di(x) > 1 or di(y) > 1, contradicting the hypothesis.
Case II) −x ∈ M or −y ∈ M. Lemma 1 implies that {0,−x,−y} is also a 3-clique of

Gn(Ai), thus di(−x) > 1, which leads to contradiction again. 2

Definition 5 A chain x0 ≺ x1 ≺ · · · ≺ xt of length t > 1 in (Ai,≺) is called an Ai-colored
chain of length t starting at x0. The length of a maximal chain starting at x0 is denoted
by ℓi(x0). If there is no chain of positive length starting at x0, then denote ℓi(x0) = 0.

Lemma 8

[Ai] = 1 + max{ℓi(a)|a ∈ M}.

Proof. First assume that [Ai] = 1. Then for arbitrary a ∈ M and y ∈ Ai, the element
y − a is not in Ai. By Definition 5 ℓi(a) = 0. Hence max{ℓi(a)|a ∈ M} = 0 and the
equality holds.

Then assume that [Ai] > 2. If t = max{ℓi(a)|a ∈ M} > 1, then there is an Ai-colored
chain x0 ≺ x1 ≺ · · · ≺ xt of length t. According to Definition 5 the t + 1 elements of this
chain form a clique of Gn[Ai]. Hence [Ai] > t + 1 = 1 + max{ℓi(a)|a ∈ M}. It remains to
show that [Ai] 6 1 + max{ℓi(a)|a ∈ M}.

Assume that [Ai] = 1 + t > 2. Then there exist some t + 1-cliques in Gn[Ai]. These
cliques form chains of length t in (Ai,≺). Among all these chains of length t choose
x0 ≺ · · · ≺ xt whose starting vertex x0 precedes the starting vertices of all other chains.
We assert that x0 ∈ M. Otherwise in the equivalent class represented by x0 there is an
element, say kx0, belonging to M. Lemma 1 implies that the transform f : x 7→ kx in
Zn is an automorphism of Gn(Si), which is an automorphism of Gn[Ai] as well. It carries
the t + 1-clique {x0, x1, . . . , xt} into another one {kx0, kx1, . . . , kxt}. From Definition 5
we know that the elements kx0, kx1, . . . , kxt form a chain of length t in (Ai,≺). Recall
the total order in (Ai,≺) as defined in Definition 4 and we know that this chain is in
fact kx0 ≺ kx1 ≺ · · · ≺ kxt, whose starting vertex is exactly kx0. This contradicts the
hypothesis that x0 precedes all other starting vertices of chains of length t. 2

Lemma 8 tells us that in order to find the clique number of Gn[Ai] it suffices to find the
longest chain starting from a ∈ M. Since most equivalence classes contain 2s elements,
the amount of computation is reduced by a factor of 1/2s.

Moreover, since Definition 4 follows the principle of “the vertices with small degrees
have priority”, the efficiency of computation can be raised several more times. In total,
the computation of clique numbers can be enhanced for several dozen times by using this
technique.

Example 2 Choose n = 35 and a special element k = 11 of order 3. Let S1 = [1, 7] =
{1, 7, 11, 16}. By Lemma 4 Si is an automorphism parameter set and G35(Ai) is an
automorphism cyclic graph. It is easy to verify that the clique number of G35(A1) is
[G35(A1)] = 2.
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In order to compute the clique number of G35(A2), follow Lemma 5 to subdivide A2

into 5 equivalence classes:

〈2〉 = {2,−2,−13, 13,−3, 3},

〈14〉 = {14,−14},

〈4〉 = {4,−4, 9,−9,−6, 6},

〈5〉 = {5,−5,−15, 15, 10,−10},

〈8〉 = {8,−8,−17, 17,−12, 12}.

Endow A2 with a total order in terms of Definition 5 and the set of representatives
of equivalence classes is M = {2, 14, 4, 5, 8}. Compute all A2-colored chains starting at
a ∈ M and we obtain an A2-colored chain 2 ≺ −2 ≺ 4 ≺ −4 ≺ −6 ≺ 6 ≺ 8 of length 6,
which is the longest. It follows from Lemma 8 that [A2] = 1 + max{ℓ2(a)|a ∈ M} = 7,
and thus [G35(A2)] = [A2] + 1 = 8. By Ramsey’s theorem we have R(3, 9) > 36.

For brevity, in the following examples we only display n, k, S1 and the new lower
bounds R(3, q).

Example 3 n = 45, special element k = 19 of order 2, S1 = [1, 3, 5] = {1, 3, 5, 12, 19}. It
is easy to verify that G45(Ai) is an automorphism cyclic graph and R(3, 11) > 46.

Example 4 n = 72, special element k = 23 of order 3, S1 = [1, 3, 12, 18, 33] =
{1, 3, 12, 18, 23, 25, 33}. It is easy to verify that G45(Ai) is an automorphism cyclic graph
and R(3, 15) > 73.

Example 5 n = 121, special element k = 3 of order 5, S1 = [1, 17] =
{1, 3, 9, 17, 25, 27, 32, 40, 46, 51}. It is easy to verify that G121(Ai) is an automorphism
cyclic graph and R(3, 21) > 122.

These four examples give the best know lower bounds for their corresponding Ramsey
numbers (compare [10]), in which R(3, 9) = 36 is even the exact value. The computation
of all these examples took less than one minute on a PC with CPU model AMD6400+,
which shows the high efficiency of our method.

4 The main results

Theorem 1 R(3, 22) > 131, R(3, 23) > 137, R(3, 25) > 154, R(3, 28) > 173, R(3, 29) >

184, R(3, 30) > 190, R(3, 31) > 199, R(3, 32) > 214.

the electronic journal of combinatorics 17 (2010), #N25 7



Proof. To save space, except for 1) where the first A2-colored chain of length [A2]− 1
in the automorphism cyclic graph Gn(A2) is explicitly given, we only write down n, k, S1

and the new lower bounds for R(3, q).
1) Choose n = 130 and a special element k = 57 of order 2. LetS1 =

[2, 12, 13, 20, 38, 65], i.e.,

S1 = {2, 12, 13, 16, 20, 30, 34, 38, 39, 44, 65}.

By Lemma 4 Si is an automorphism parameter set and G130(Ai) is an automorphism cyclic
graph. It is easy to verify that the clique number of G130(A1) is [G130(A1)] = 2. Compute
all A2-colored chains starting at a ∈ M and we obtain the first longest A2-colored chain
of length 19 :

3 ≺ −3 ≺ 6 ≺ 48 ≺ 55 ≺ 29 ≺ −29 ≺ −61 ≺ −25 ≺ −8 ≺ −51 ≺ 51 ≺
−58 ≺ 58 ≺ 54 ≺ −54 ≺ −50 ≺ −26 ≺ −4 ≺ −18. It follows from Lemma 8 that
[A2] = 1 + max{ℓ2(a)|a ∈ M} = 20, and thus [G130(A2)] = [A2] + 1 = 21. By Ramsey’s
theorem we have R(3, 22) > 131.

2) n = 136, special element k = 67 of order 2, S1 = [1, 5, 8, 20, 26, 32, 42, 44, 56] =
{1, 5, 8, 20, 26, 32, 42, 44, 56, 63, 67}. Computation shows that R(3, 23) > 137.

3) n = 153, special element k = 50 of order 3, S1 = [1, 19, 36, 48, 60, 63, 66, 75] =
{1, 19, 32, 36, 48, 50, 52, 60, 63, 66, 70, 75}. Computation shows that R(3, 25) > 154.

4) n = 172, special element k = 85 of order 2,

S1 = [1, 23, 34, 44, 54, 60, 70, 72, 76, 80, 82]

= {1, 23, 34, 44, 54, 60, 63, 70, 72, 76, 80, 82, 85}.

Computation shows that R(3, 28) > 173.
5) n = 183, special element k = 62 of order 2,

S1 = [1, 4, 13, 15, 27, 33, 43, 51, 72, 90]

= {1, 4, 13, 15, 27, 33, 43, 51, 62, 65, 72, 74, 79, 90}.

Computation shows that R(3, 29) > 184.
6) n = 189, special element k = 62 of order 3,

S1 = [1, 3, 10, 15, 24, 36, 42, 69, 81, 90]

= {1, 3, 10, 15, 24, 36, 42, 53, 62, 64, 69, 73, 81, 90}.

Computation shows that R(3, 30) > 190.
7) n = 198, special element k = 65 of order 3,

S1 = [2, 7, 21, 24, 27, 39, 69, 72, 81, 84]

= {2, 7, 21, 24, 27, 39, 59, 64, 68, 69, 72, 73, 81, 84}.

Computation shows that R(3, 31) > 199.
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8) n = 213, special element k = 70 of order 2,

S1 = [1, 3, 10, 18, 24, 30, 44, 57, 65, 84, 93]

= {1, 3, 10, 18, 24, 30, 44, 57, 61, 65, 70, 77, 84, 93, 98}.

Computation shows that R(3, 32) > 214. 2

The computing time for these results on a PC with AMD6400+ CPU is about six
hours. By comparing the corresponding results in [10] the 8 results in Theorem 1 im-
prove the corresponding best known results R(3, 22) > 125, R(3, 23) > 136, R(3, 25) >

153, R(3, 28) > 172, R(3, 29) > 182, R(3, 30) > 187, R(3, 31) > 198, R(3, 32) > 212.
We would also like to mention that our result R(3, 22) > 131 and the formula R(5, t) >

4R(3, t − 1) − 3, (t > 5) in [14] imply R(5, 23) > 521, which is superior to the result
R(5, 23) > 509 in [10].
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