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Abstract

Bigrassmannian permutations are known as permutations which have precisely

one left descent and one right descent. They play an important role in the study

of Bruhat order. Fulton introduced the essential set of a permutation and studied

its combinatorics. As a consequence of his work, it turns out that the essential set

of bigrassmannian permutations consists of precisely one element. In this article,

we generalize this observation for essential sets of arbitrary permutations. Our

main theorem says that there exists a bijection between bigrassmanian permutations

maximal below a permutation and its essential set. For the proof, we make use

of two equivalent characterizations of bigrassmannian permutations by Lascoux-

Schützenberger and Reading.

1 Introduction

Bigrassmannian elements play an important role in study of the Bruhat order on Coxeter
groups. They are known as elements which have precisely one left descent and one right
descent. In particular, in the symmetric group (type A), bigrassmannian permutations
have two other equivalent characterizations, one as join-irreducible permutations and one
as monotone triangles with some minimal condition (we will see detail of these in Fact
2.6). Here let us recall the definitions of join and join-irreducibility from poset theory.

Definition 1.1. Let (P, 6) be a finite poset and Q ⊆ P . Then consider the set

{x ∈ P | x > y for all y ∈ Q}.

If this set has a unique minimal element, we call it the join of Q denoted by ∨Q. Define
the meet of Q (∧Q) order dually. P is said to be a lattice if ∨Q and ∧Q exist for all Q.
We say that x ∈ P is join-irreducible if whenever x = ∨Q, then x ∈ Q.
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It is important to note that in a finite poset P , we can write each x ∈ P as the join
of some subsets of join-irreducible elements of P [7, Proposition 9]. Note also that if ∨Q
exists, then ∨Q = ∨Max(Q) where Max means the set of maximal elements of Q.

Unfortunately, the symmetric group Sn with Bruhat order is not a lattice. However,
as already mentioned, a permutation is bigrassmannian if and only if it is join-irreducible.
Consequently, each x ∈ Sn is the join of some subsets of bigrassmannian permutations.
More precisely, define

B(x) = {w ∈ Sn | w 6 x and w is bigrassmannian}.

Then we obtain x = ∨B(x) in Sn. However, it is not easy to see B(x) (and Max B(x))
from the usual definition of Bruhat order. Instead we will make use of the set of mono-
tone triangles (say L(Sn)) because there is a natural identification of permutations with
monotone triangles. It is also helpful that L(Sn) has the partial order which coincides
with Bruhat order all over Sn. Furthermore, it is much easier to say which monotone
triangle is larger or smaller (or incomparable). It helps us find B(x) and MaxB(x). We
will discuss detail in Section 2.

Fulton [5] introduced the essential set of a permutation as the set of southeast corners
of the diagram of the permutations. As the name “essential” suggests, it is a combi-
natorial object which completely determines a permutation. Eriksson-Linusson studied
its combinatorics for 321-avoiding, vexillary permutations and some enumeration [3, 4].
There is a less-known but interesting property of bigrassmannians described in terms of
essential sets (Section 3).

Fact 1.2. If w is bigrassmannian, then its essential set consists of the only one element.

As far as the author is aware, it appears only as a consequence of [5, Proposition
9.18]. In fact, the converse is also true, which we will obtain as a consequence of the main
theorem in Section 4. Notice that we can rephrase “w is bigrassmannian” as “MaxB(w)
consists of the only one element (w itself)”. From this point of view, the main theorem
gives more general aspect to Fact 1.2 for even arbitrary permutations.

Theorem. Let x ∈ Sn and Max B(x) the set of bigrassmannian permutations maximal
weakly below x in Bruhat order, and Ess(x) the essential set of x. Then there exists a
bijection between Max B(x) and Ess(x).
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2 Bigrassmannian permutations and monotone tri-

angles

Throughout this article, we treat the Bruhat order on the symmetric groups as the sub-
order induced by the set of all monotone triangles (for the usual definition of the Bruhat
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order in context of Coxeter groups, see [2, Chapter 2]). This section discusses relation
between this suborder and bigrassmannian (join-irreducible) permutations.

Definition 2.1. For w ∈ Sn, define the set of left and right descents as

DL(w) = {1 6 i 6 n− 1 | w−1(i) > w−1(i + 1)},

DR(w) = {1 6 i 6 n− 1 | w(i) > w(i + 1)}.

We say that w is bigrassmannian if #DL(w) = #DR(w) = 1. Define

B(w) = {x ∈ Sn | x 6 w and x is bigrassmannian}.

Example 2.2. 34512 is bigrassmannian, but 42513 is not.

As mentioned in introduction, there is an equivalent characterization of bigrassman-
nian permutations in terms of join-irreducicble monotone triangles. We recall the defini-
tion of monotone triangles following [7].

Definition 2.3. A monotone triangle x of order n is an n(n − 1)/2-tuple (xab | 1 6 b 6

a 6 n − 1) such that 1 6 xab 6 n, xab < xa,b+1, xab > xa+1,b and xab 6 xa+1,b+1 for all
a, b. Regard a permutation x ∈ Sn as a monotone triangle of order n as follows: For each
1 6 a 6 n− 1, let xa1, xa2, . . . , xaa be positive integers such that {x(1), x(2), . . . , x(a)} =
{xa1, xa2, . . . , xaa}, xab < xa,b+1 for all 1 6 b 6 a − 1. Then x = (xab) is a monotone
triangle. Denote by L(Sn) the set of all monotone triangles of order n. We introduce the
partial order on L(Sn) as x 6 y ⇐⇒ xab 6 yab for all a, b.

Sometimes it is convenient to define xnb = b for all x since n-th row is always 1 < 2 <
· · · < n, but we usually omit it.

Example 2.4. As a monotone triangle of order 5, we have

34512 =

3
3 4
3 4 5
1 3 4 5

and 42513 =

4
2 4
2 4 5
1 2 4 5.

Remark 2.5.

(1) In fact, L(Sn) is a smallest lattice containing Sn (MacNeille completion of Sn).
Moreover, for x ∈ L(Sn), x is join-irreducible in Sn if and only if so is x in L(Sn).
See [7, Section 6].

(2) In particular, for permutations x, y ∈ Sn, we have x 6 y in Bruhat order if and only
if x 6 y as monotone triangles (called tableaux criterion [1]).

Now we observe equivalent characterizations of bigrassmannian permutations (as men-
tioned in introduction) and important consequences.
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Fact 2.6. For w ∈ Sn, the following are equivalent:

(1) w is bigrassmannian.

(2) w is join-irreducible.

(3) There exist positive integers (a, b, c) such that 1 6 b 6 a 6 n−1, b+1 6 c 6 n−a+b
and w = Jabc where Jabc is the componentwise smallest monotone triangle such that
a, b entry is > c.

Proof. See [6, Théorème 4.4] for (1) ⇐⇒ (2) and [7, Section 8] for (2) ⇐⇒ (3).

Thanks to Remark 2.5 and Fact 2.6, for x ∈ L(Sn), the symbol B(x) still makes sense
as the set of join-irreducible elements weakly below x in L(Sn). Note that Jabc is the
monotone triangle satisfying the following: For x ∈ L(Sn), we have

c 6 xab ⇐⇒ Jabc 6 x ⇐⇒ Jabc ∈ B(x)

because of minimality of Jabc. This observation is useful to identify Jabxab
∈ B(x) with

the entry xab showing up in the monotone triangle x.
Next we must understand how to choose maximal elements from B(x). The following

proposition describes all covering relations among bigrassmannian permutations.

Proposition 2.7. For each Jabc, define

C1(Jabc) = Ja,b−1,c−1 if b > 2,

C2(Jabc) = Ja+1,b,c if c 6 n− a + b− 1,

C3(Jabc) = Ja−1,b−1,c if b > 2,

C4(Jabc) = Ja,b,c+1 if c 6 n− a + b− 1.

In the poset of all bigrassmannian permutations in Sn, Jabc is covered by Ci(Jabc) if and
only if Ci(Jabc) is a valid monotone triangle. More specifically, (i)Jabc is covered by
C1(Jabc) and C3(Jabc) if and only if b > 2. (ii)Jabc is covered by C2(Jabc) and C4(Jabc) if
and only if c 6 n− a + b− 1. (iii)Furthermore, no other elements cover Jabc (and hence
at most four elements cover Jabc).

Proof. Reading described all covering relations in bigrassmannian permutations by certain
triples {(i, j, k)} which are another (equivalent) expressions of {Jabc} with the relation
a = j − i + k, b = j − i + 1 and c = j + 1. For detail, see [7, p.91-94].

In particular, the covering relation of type C4 tells us that it is easy to compare
two bigrassmannian permutations at the same position (a, b) as Jabc < Jabd ⇐⇒ c < d.
Hence in order to choose maximal elements from B(x) (here x need not be a permutation.
It may be a general monotone triangle), it is enough to determine maximal elements
of {Jabxab

| 1 6 b 6 a 6 n − 1}. By Proposition 2.7 and the above observation on
type C4, we only need to check whether Ci(Jabxab

)(i = 1, 2, 3) is in B(x) or not. The

the electronic journal of combinatorics 17 (2010), #N27 4



procedure of finding MaxB(x) is as follows: First, write entries of monotone triangle of
x. Second, cross out all entries such that xab = b. Third, following three types of covering
relations C1, C2, C3, cross out non-maximal elements accordingly under the identification
xab ←→ Jabxab

as in Figure 1. For example, if there exists c such that xab = c = xa+1,b,
then draw an arrow from the upper c to the lower c to mean Jabc � Ja+1,b,c. Then cross
out the upper c. In the same way, check all other possible covering relations. Survived
entries (circled in Figure 2) correspond to maximal elements of B(x).

Figure 1: Crossing out non-maximal Jabxab
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Example 2.8. Figure 2 below illustrates Max B(34512) = {J313} (bigrassmannian) and
Max B(42513) = {J114, J312, J324}.

Figure 2: Choosing maximal elements from B(x)
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3 Bigrassmannian permutations and essential set

This section discusses another property of bigrassmannian permutaitons described in
terms of the essential set. Their essential sets consist of only one element.
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Definition 3.1. Let w ∈ Sn.

(1) The diagram of w is D(w) = {(i, j) | 1 6 i, j 6 n− 1, i < w−1(j), j < w(i)}.

(2) The essential set of w (a subset of D(w)) is

Ess(w) = {(i, j) | i < w−1(j), j < w(i), w(i + 1) 6 j, w−1(j + 1) 6 i}.

We draw a picture of D(w) and Ess(w) as follows: take an n × n matrix. Plot
(i, w(i)) (1 6 i 6 n) in the matrix (indicated by # as in Figure 3). Then kill all cells
right or below of these. The survived cells (×) are elements of D(w). The set of all points

( × ) at southeast corner of D(w) is Ess(w).

Example 3.2. Figure 3 below shows that Ess(34512) = {(3, 2)} (bigrassmannian) and
Ess(42513) = {(1, 3), (3, 1), (3, 3)}.

Figure 3: Ess(34512) and Ess(42513)
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Fact 3.3. Let w ∈ Sn. If w is bigrassmannian, then #Ess(w) = 1.

Proof. See [5, Proposition 9.18].

In other words, if #MaxB(w) = 1, then #Ess(w) = 1 as discussed after Fact 1.2. We
will see that the converse is also true as a cosequence of the main theorem.

4 Main theorem

This section gives a proof of main theorem.

Theorem. For all x ∈ Sn, there exists a bijection between Max B(x) and Ess(x).
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Note that we may assume that x is not the identity permutation since

Max B(x) = ∅ ⇐⇒ x is the identity permutation ⇐⇒ Ess(x) = ∅.

The proof of Theorem follows from the following two lemmas.

Lemma 4.1. Let x ∈ Sn. For each 1 6 b 6 a 6 n − 1, xab is equal to either xa+1,b or
xa+1,b+1. Moreover,

xab = xa+1,b ⇐⇒ x(a + 1) > xab ⇐⇒ x(a + 1) > xa+1,b+1,
xab = xa+1,b+1 ⇐⇒ x(a + 1) < xab ⇐⇒ x(a + 1) 6 xa+1,b.

Proof. Clear by the construction of monotone triangles from permutations (see Definition
2.3).

Lemma 4.2. Let x ∈ Sn. For 1 6 a, c 6 n− 1, set

b = b(a, c) = #{a′ | 1 6 a′
6 a and x(a′) 6 c + 1}.

Then (a, c) ∈ Ess(x)⇐⇒ Ja,b,c+1 ∈ Max B(x).

Before the proof, we make several comments. Let y = Ja,b,c+1. By Proposition 2.7, y
is covered by at most four elements in the set of bigrassmannian permutations. Therefore
in order to show y ∈ Max B(x), we need to verify all of the following five statements:

(a)C1(y) = Ja,b−1,c 66 x or equivalently xa,b−1 6 c− 1
(b)C2(y) = Ja+1,b,c+1 66 x or equivalently xa+1,b 6 c
(c)C3(y) = Ja−1,b−1,c+1 66 x or equivalently xa−1,b−1 6 c
(d1)C4(y) = Ja,b,c+2 66 x or equivalently xab 6 c + 1
(d2) y ∈ B(x) or equivalently xab > c + 1

Note that if some of Ci(y) do not exist, then Ci(y) 66 x is vacuously true. Hence to prove
Lemma 4.2 (and Theorem), it is enough to show that for each 1 6 a, c 6 n − 1, the
statements (i)-(iv) below are equivalent to the statements (a)-(d) below:

(i) a < x−1(c)

(ii) c < x(a)

(iii) x(a + 1) 6 c

(iv) x−1(c + 1) 6 a

⇐⇒

(a)xa,b−1 6 c− 1

(b) xa+1,b 6 c

(c) xa−1,b−1 6 c

(d) xab = c + 1

where b = b(a, c) is as in the statement of Lemma 4.2.
The key of the proof is to consider repeated entries in the monotone triangles of permu-
tations. In the proof below, for convenience, by x[a] we will mean entries of a-th row of
x

x[a] = {xa1, xa2, . . . , xaa} = {x(1), x(2), . . . , x(a)}.
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Proof. (=⇒): Suppose (i)-(iv). First, (iv) implies c+1 ∈ x[a]. Then by the very definition
of b, we have xab = c + 1. Second, (i) implies that c 6∈ x[a]. That is, c does not appear in
x[a] while c + 1 appears in x[a] as xab = c + 1 as just seen. Hence xa,b−1 6 c− 1. Third,
to see (b), recall from Lemma 4.1 that xab is equal to xa+1,b or xa+1,b+1. Now (iii) tells
us that x(a + 1) 6 c < xab, and hence we must have (the second case of Lemma 4.1)
c + 1 = xab = xa+1,b+1. Thus xa+1,b 6 c. Fourth, apply Lemma 4.1 to xa−1,b−1. Since
x(a) > c, i.e., x(a) > c + 1 = xab, we have the first case xa−1,b−1 = xa,b−1. Since we know
xab = c + 1, we obtain xa,b−1 6 c.
(⇐=): Suppose (a)-(d). First, (iv) follows immediately from xab = c + 1, i.e., c + 1 ∈ x[a].
Second, xa,b−1 6 c − 1 and xab = c + 1 imply that c 6∈ x[a]. Thus a < x−1(c). Third,
since xa−1,b−1 6 c− 1 and xab = c + 1, we see xa−1,b−1 6= xab. Then we have the first case
of Lemma 4.1 xa−1,b−1 = xa,b−1. Thus x(a) > xab = c + 1 > c. Fourth, in the same way,
since xab = c+1 and xa+1,b 6 c, we have xab 6= xa+1,b. The first case of Lemma 4.1 implies
that x(a + 1) < xab = c + 1, i.e., x(a + 1) 6 c.

We completed the proof of Lemma 4.2 and Theorem.
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