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Abstract

In the random hypergraph H = Hn,p;3 each possible triple appears indepen-
dently with probability p. A loose Hamilton cycle can be described as a sequence
of edges {xi, yi, xi+1} for i = 1, 2, . . . , n/2 where x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 are
all distinct. We prove that there exists an absolute constant K > 0 such that if
p >

K log n
n2 then

lim
n→∞
4|n

Pr(Hn,p;3 contains a loose Hamilton cycle) = 1.

1 Introduction

The threshold for the existence of Hamilton cycles in the random graph Gn,p has been
known for many years, see [7], [1] and [3]. There have been many generalisations of these
results over the years and the problem is well understood. It is natural to try to extend
these results to Hypergraphs and this has proven to be difficult. The famous Pósa lemma
fails to provide any comfort and we must seek new tools. In the graphical case, Hamilton
cycles and perfect matchings go together and our approach will be to build on the deep
and difficult result of Johansson, Kahn and Vu [6], as well as what we have learned from
the graphical case.

A k-uniform Hypergraph is a pair H = (V, E) where E ⊆
(

V
k

)

. We say that a k-uniform
sub-hypergraph C of H is a Hamilton cycle of type ℓ, for some 1 6 ℓ 6 k, if there exists
a cyclic ordering of the vertices V such that every edge consists of k consecutive vertices
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and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges)
we have |Ei−1 \ Ei| = ℓ. When ℓ = k − 1 we say that C is a loose Hamilton cycle and in
this paper we will restrict our attention to loose Hamilton cycles in the random 3-uniform
hypergraph H = Hn,p;3. In this hypergraph, V = [n] and each of the

(

n
3

)

possible edges
(triples) appears independently with probability p. While n needs to be even for H to
contain a loose Hamilton cycle, we need to go one step further and assume that n is a
multiple of 4. Extensions to other k, ℓ and n = 2 mod 4 pose problems. We will prove
the following theorem:

Theorem 1 There exists an absolute constant K > 0 such that if p >
K log n

n2 then

lim
n→∞
4|n

Pr(Hn,p;3 contains a loose Hamilton cycle) = 1.

Thus log n
n2 is the threshold for the existence of loose Hamilton cycles, at least for n a

multiple of 4. This is because if p 6
(1−ǫ) log n

2n2 and ǫ > 0 is constant, then whp1 Hn,p;3

contains isolated vertices.

The proof of Theorem 1 will follow fairly easily from the following three theorems.

We start with a special case of the theorem of [6]: Let X and Y be a disjoint sets. Let
Ω =

(

X
2

)

× Y . Let Γ = Γ(X, Y, p) be the random 3-uniform hypergraph where each triple
in Ω is independently included with probability p. Assuming that |X| = 2|Y | = 2m,
a perfect matching of Γ is a set of m triples (x2i−1, yi, x2i), i = 1, 2, . . . , m such that
X = {x1, . . . , x2m} and Y = {y1, . . . , ym}.

Theorem 2 [6]
There exists an absolute constant K > 0 such that if p >

K log n
n2 then whp Γ contains a

perfect matching.

This version is not actually proved in [6], but can be obtained by straightforward changes
to their proof.

Our next theorem concerns rainbow Hamilton cycles in random regular graphs. If we
edge colour a graph then a set S of edges is rainbow if all edges in S are a different
colour. Janson and Wormald [5] proved the following: Let G2r be a random 2r-regular
multi-graph on vertex set [n]. The distribution is not uniform, it is the one induced by
the configuration model, see e.g. Bollobás [2]. We can condition on there being no loops.

Theorem 3 If the edges of G2r are coloured randomly with n colours so that each colour
is used exactly r times, r > 4, then whp it contains a rainbow Hamilton cycle.

1An event En occurs with high probability, or whp for brevity, if limn→∞ Pr(En) = 1.
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(This of course implies the result for random 2r-regular graphs).

We partition [n = 4m] into X = [2m] and X̄ = [2m + 1, n]. The (multi-)graph G∗ has
vertex set X and an edge (x, x′) of colour y if (x, y, x′) is an edge of H . If G∗ contains a
rainbow Hamilton cycle, then H contains a loose Hamilton cycle. We will use Theorem
2 to show that whp G∗ contains an edge coloured graph that is close to satisfying the
conditions of Theorem 3.

There is a minor technical point in that we can only use Theorem 2 to prove the existence
of a randomly coloured (multi-)graph Γ2r that is the union of 2r independent matchings.
Fortunately,

Theorem 4 Γ2r is contiguous to G2r

By this we mean that if Pn is some sequence of (multi-)graph properties, then

Γ2r ∈ Pn whp ⇐⇒ G2r ∈ Pn whp. (1)

Theorem 4 is proved in Janson [4] (Theorem 11) and in Molloy, Robalewska-Szalat, Robin-
son and Wormald [8].

2 Proof of Theorem 1

We begin by letting Y be a set of size 2rm consisting of r = O(1) copies y1, y2, . . . , yr

of each y ∈ X̄. We will later fix r at 4, but we leave it unspecified for now. Next let
Y1, Y2, . . . , Y2r be a uniformly random partition of Y into 2r sets of size m.

Define p1 by p = 1 − (1 − p1)
2r. With this choice, we can generate Hn,p;3 as the union of

2r independent copies of Hn,p1;3. Similarly, define p2 by p1 = 1 − (1 − p2)
r.

Viewing Hn,p1;3 as the union of r independent copies H1, H2, . . . , Hr of Hn,p2;3 we can
couple Γ(X, Yj, p1) with a subgraph of Hn,p1;3 by placing (x, y, x′) in E(Hi) whenever
(x, yi, x

′) ∈ E(Γ(X, Yj, p1)). It follows from Theorem 2 that whp Γ(X, Yj, p1) contains a
perfect matching Mj. (We need the split into r copies of Hn,p2;3 to allow a “colour” to
appear several times in a matching).

Now each perfect matching Mj gives rise to an edge-coloured perfect matching M∗
j of G∗

where (x, yi, x
′) gives rise to an edge (x, x′) of colour y. By symmetry, these matchings

are uniformly random and they are independent by construction. Also the edges have
been randomly coloured so that each colour appears exactly r times. Indeed to achieve
such a random colouring we can take any partition of the edge set of M∗

1 ∪M∗
2 ∪ · · ·∪M∗

2r

into 2r sets S1, S2, . . . , S2r of size m and then colour the edges by using random bijections
from Yj → Sj for j = 1, 2, . . . , 2r.

We apply Theorems 3 and 4 to finish the proof. For a 2r-regular graph G let ΩG denote
the set of equitable edge colourings of G. By equitable, we mean that each colour is used r
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times. Suppose that σ is chosen uniformly from ΩG and πG = Pr(R) where R is the event
that there is no rainbow Hamilton cycle. Theorem 3 can be expressed as follows: Let G2r

denote the set of 2r-regular loopless multi-graphs with vertex set [n] and configuration
distribution κG. Then,

∑

G∈G2r

κGπG 6
1

ω
(2)

where ω → ∞ as n → ∞. The event Pn of (1) can now be defined:

Pn =

{

πG 6
1

ω1/2

}

.

Think of πG as a random variable for G chosen from G2r. Then (2) states that E(πG) 6

1/ω. The Markov inequality then implies that Pr(πG > 1/ω1/2) 6 1/ω1/2 and so
Pr(Pn) > 1 − 1/ω1/2 and this completes the proof of Theorem 1.
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