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Abstract

In this paper, we introduce a direct method to evaluate the Dyson coefficients.

1 Introduction

In 1962, Dyson [2] conjectured the following constant term identity.

Theorem 1.1 (Dyson’s Conjecture). For nonnegative integers a1, a2, . . . , an,

CT
x

Dn(x, a) =
(a1 + a2 + · · · + an)!

a1! a2! · · · an!
,

where CT
x
f(x) denotes the constant term and

Dn(x, a) :=
∏

16i6=j6n

(

1 −
xi

xj

)ai

. (Dyson product)
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Dyson’s conjecture was proved independently by Gunson [5] and Wilson [11]. In
1970, a brief and elegant proof was published by Good [4]. Later Zeilberger [13] gave a
combinatorial proof.

The q-analog of Theorem 1.1 was conjectured by Andrews [1] in 1975, and was first
proved, combinatorially, by Zeilberger and Bressoud [14]. Recently, Gessel and Xin [3]
gave a different proof by using properties of formal Laurent series.

In recent years, there has been increasing interest in evaluating the coefficients of
monomials M : =

∏n

i=1 xbi

i , where
∑n

i=1 bi = 0, in the Dyson product. Based on Good’s
proof, Kadell [6] gave three non-constant term coefficients. Sills and Zeilberger [10] de-
scribed an algorithm that automatically conjectures and proves closed-form expressions.
Later, Sills [9] extended Good’s idea and obtained the closed-form expressions for M being
xs

xr
, xsxt

x2
r

, xtxu

xrxs
, respectively. By virtue of Zeilberger and Sills’ Maple package GoodDyson,

Lv, Xin and Zhou [7] found two closed-form expressions for M that has a square in the
numerator. Moreover, by generalizing Gessel-Xin’s method [3] for proving the Zeilberger-
Bressoud q-Dyson Theorem, Lv, Xin and Zhou [8] established a family of q-Dyson style
constant term identities.

In this note, we propose a direct calculation approach to evaluating the coefficients
in the Dyson product, and illustrate this approach through the case of M = x2

r/x
2
s. The

applications of our method to other cases like M = x2
r

xsxt
, M = xr

xs
are analogous, and thus

omitted. More explicitly, we will show that our approach leads to the following theorem.

Theorem 1.2 (Theorem 1.2 [7]). Let r and s be distinct integers with 1 6 r, s 6 n. Then

CT
x

x2
s

x2
r

Dn(x,a) =
ar

(1 + a(r))(2 + a(r))

[

(ar − 1) −
n

∑

i=1
i6=r,s

ai(1 + a)

(1 + a(r)
− ai)

]

Cn(a), (1.1)

where a := a1 + a2 + · · · + an, a(j) := a − aj and Cn(a) := (a1+a2+···+an)!
a1! a2! ··· an!

.

2 A New Approach to Theorem 1.2

In this section, we will deduce the coefficient for M = x2
r

x2
s
. By induction on n, we have the

following identity,

n
∑

k=2

(m + k − 1)!

(k − 2)!
=

(m + n)!

(m + 2)(n − 2)!
,m, n ∈ N. (2.1)

Let

∆(x1, x2, . . . , xn) :=
∏

i<j

(xi − xj) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

...
...

1 1 · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

be the Vandermonde determinant in x1, x2, . . . , xn. Then [12] presents the following
result.
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Lemma 2.1 (Lemma 1-2.12, [12]). For each i = 1, 2, . . . , n, if f(xi) ∈ C((xi)), then we
have

∂x2
∂x3

· · · ∂xn
f(x1) = ∆(x1, x2, . . . , xn)−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(x1) f(x2) · · · f(xn)

xn−2
1 xn−2

2 · · · xn−2
n

.

.

.

.

.

.

.

.

.

.

.

.

1 1 · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.2)

=

n
∑

i=1

f(xi)
∏

j 6=i(xi − xj)
, (2.3)

where ∂af(x) := f(x)−f(a)
x−a

.

The following lemma is vital to our approach.

Lemma 2.2 (Main Lemma). For n > 2, we have

V1

x1

+
V2

x2

+ · · ·+
Vn

xn

=
1

x1

+
1

x2

+ · · ·+
1

xn

, (2.4)

where Vm :=
n
∏

i=1
i6=m

(

1 −
xm

xi

)−1

for m = 1, 2, . . . , n.

Proof. Let f(xi) = 1
x2

i

for i = 1, 2, . . . , n. First we claim that

∂x2
∂x3

· · ·∂xn
f(x1) =

(−1)n−1

x1x2 · · ·xn

( 1

x1
+

1

x2
+ · · ·+

1

xn

)

. (2.5)

We prove (2.5) by induction on n. Clearly, (2.5) holds when n = 2. Assume that (2.5)
holds with n replaced by n − 1. Then we have

∂x2
∂x3

· · ·∂xn
f(x1) = ∂x2

[

(−1)n−2

x1x3 · · · xn

( 1

x1
+

1

x3
+ · · · +

1

xn

)

]

by induction hypothesis

=

[

(−1)n−2

x1x3···xn

(

1
x1

+ 1
x3

+ · · · + 1
xn

)

]

−

[

(−1)n−2

x2x3···xn

(

1
x2

+ 1
x3

+ · · · + 1
xn

)

]

x1 − x2

=
(−1)n−2

x3 · · · xn

[

( 1

x2
1

−
1

x2
2

)

+
( 1

x1x3
−

1

x2x3

)

+ · · · +
( 1

x1xn

−
1

x2xn

)

]

1

x1 − x2

=
(−1)n−2

x3 · · · xn

[

−
x1 + x2

x2
1x

2
2

−
1

x1x2x3
− · · · −

1

x1x2xn

]

=
(−1)n−1

x1x2 · · · xn

( 1

x1
+

1

x2
+ · · · +

1

xn

)

.
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Furthermore, it follows by (2.3) that
n

∑

i=1

1/x2
i

∏

j 6=i(xi − xj)
=

(−1)n−1

x1x2 · · ·xn

( 1

x1
+

1

x2
+ · · · +

1

xn

)

⇔ x1x2 · · ·xn

n
∑

i=1

1/x2
i

∏

j 6=i(xj − xi)
=

1

x1
+

1

x2
+ · · · +

1

xn

⇔

n
∑

i=1

1

xi

·
1

∏

j 6=i(1 − xi/xj)
=

1

x1
+

1

x2
+ · · · +

1

xn

⇔
V1

x1
+

V2

x2
+ · · · +

Vn

xn

=
1

x1
+

1

x2
+ · · · +

1

xn

.

This completes the proof.

Now we are ready to prove Theorem 1.2. Without loss of generality, we may assume
r = 1 and s = 2 in Theorem 1.2.

A new approach to Theorem 1.2. By (2.4) we have

V1 − 1

x1

+
V2 − 1

x2

+ · · ·+
Vn − 1

xn

= 0.

Multiplying both sides by x2

V4−1
yields

x2

x4
=

(1 − V1)x2

(V4 − 1)x1
+

1 − V2

V4 − 1
+

(1 − V3)x2

(V4 − 1)x3
+

(1 − V5)x2

(V4 − 1)x5
+ · · · +

(1 − Vn)x2

(V4 − 1)xn

. (2.6)

Note that Dn(x, a) = V −a1

1 V −a2

2 · · ·V −an
n , (2.6) implies that

x2
2

x1x4
Dn(x,a) =

x2
2

x1x4

n
∏

j=1

V
−aj

j

=
x2

x1

[

(1 − V1)x2

(V4 − 1)x1
+

1 − V2

V4 − 1
+

(1 − V3)x2

(V4 − 1)x3
+

(1 − V5)x2

(V4 − 1)x5
+ · · · +

(1 − Vn)x2

(V4 − 1)xn

] n
∏

j=1

V
−aj

j . (2.7)

Multiplying both sides by V4 − 1 and taking the constant term in the x’s, (2.7) can be
rewritten as follows

F (a1) − F (a1 − 1) = CT
x

[

x2

x1
(V2 − 1) +

x2
2

x1x3
(V3 − 1) + · · · +

x2
2

x1xn

(Vn − 1)

] n
∏

j=1

V
−aj

j , (2.8)

where F (a1) := CT
x

x2

2

x2

1

∏n

j=1 V
−aj

j .

For j = 3, 4, . . . , n, observe that

CT
x

x2
2

x1xj

(Vj − 1)

n
∏

j=1

V
−aj

j = CT
x

x2
2

x1xj

Dn

(

x, (a1, . . . , aj−1, aj − 1, aj+1, . . . , an)
)

− CT
x

x2
2

x1xj

Dn(x,a)

=

[

a1 + aj − 1

1 + a − a1 − aj

−
a1

a − a1
−

aj − 1

1 + a − aj

]

aj

a
Cn(a)

−

[

a1 + aj

1 + a − a1 − aj

−
a1

1 + a − a1
−

aj

1 + a − aj

]

Cn(a) by [9, Theorem 1.4]

= −

[

a1aj

(1 + a − a1)(1 + a − a1 − aj)
+

a1aj

a(a − a1)

]

Cn(a) (2.9)
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and

CT
x

x2

x1
(V2 − 1)

n
∏

j=1

V
−aj

j = CT
x

x2

x1
Dn

(

x, (a1, a2 − 1, a3, . . . , an)
)

− CT
x

x2

x1
Dn(x,a)

=

[

−
a1

a − a1
·
a2

a
+

a1

1 + a − a1

]

Cn(a) by [9, Theorem 1.1]

=

[

a1

1 + a − a1
−

a1a2

a(a − a1)

]

Cn(a). (2.10)

Combining (2.8), (2.9) and (2.10), we obtain the following recurrence

F (a1) − F (a1 − 1)

=

[

a1

1 + a − a1
−

a1a2

a(a − a1)
−

n
∑

j=3

( a1aj

(1 + a − a1)(1 + a − a1 − aj)
+

a1aj

a(a − a1)

)

]

Cn(a)

=

[

a1

1 + a − a1
−

a1a2

a(a − a1)
−

a1(a − a1 − a2)

a(a − a1)
−

n
∑

j=3

a1aj

(1 + a − a1)(1 + a − a1 − aj)

]

Cn(a)

=

[

a1(a1 − 1)

a(1 + a − a1)
−

n
∑

j=3

a1aj

(1 + a − a1)(1 + a − a1 − aj)

]

Cn(a). (2.11)

Further noting that F (0) = 0, which can be easily verified, (2.11) finally gives

F (a1) =

[ a1
∑

k=1

k(k − 1)(a − a1 + k)!

(1 + a − a1)(a − a1 + k)k!
−

a1
∑

k=1

n
∑

j=3

kaj(a − a1 + k)!

(1 + a − a1)(1 + a − a1 − aj)k!

]

1

a2! · · · an!

=

[ a1
∑

k=2

(a − a1 + k − 1)!

(1 + a − a1)(k − 2)!
−

a1
∑

k=1

n
∑

j=3

kaj(a − a1 + k)!

(1 + a − a1)(1 + a − a1 − aj)k!

]

1

a2! · · ·an!

=

[

a1(a1 − 1)

(1 + a − a1)(2 + a − a1)
·

a!

a1!
by (2.1) for the case n = a1 and m = a − a1.

−

n
∑

j=3

a1
∑

k=1

kaj(a − a1 + k)!

(1 + a − a1)(1 + a − a1 − aj)k!

]

1

a2! · · · an!

=

[

a1(a1 − 1)

(1 + a − a1)(2 + a − a1)
·

a!

a1!

−

n
∑

j=3

a1aj

(1 + a − a1)(2 + a − a1)(1 + a − a1 − aj)
·
(1 + a)!

a1!

]

1

a2! · · · an!
by (2.1)

=
a1

(1 + a(1))(2 + a(1))

[

(a1 − 1) −

n
∑

i=3

ai(1 + a)

(1 + a(1) − ai)

]

Cn(a).

This completes the proof.
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