
A generalization of Combinatorial Nullstellensatz

Micha l Lasoń
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science

Jagiellonian University, S.  Lojasiewicza 6, 30-348 Kraków, Poland

Institute of Mathematics of the Polish Academy of Sciences
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Abstract

In this note we give an extended version of Combinatorial Nullstellensatz, with

weaker assumption on nonvanishing monomial. We also present an application of

our result in a situation where the original theorem does not seem to work.

1 Introduction

The following theorem of Alon, known as Combinatorial Nullstellensatz, has numerous
applications in Combinatorics, Graph Theory, and Additive Number Theory (see [1]).

Theorem 1. (Combinatorial Nullstellensatz [1]) Let F be an arbitrary field, and let f be

a polynomial in F[x1, ..., xn]. Suppose the coefficient of xα1 · · ·xαn

n in f is nonzero and

deg(f) =
∑n

i=1 αi. Then for any subsets A1, . . . , An of F satisfying |Ai| > αi + 1, there

are a1 ∈ A1, . . . , an ∈ An so that f(a1, . . . , an) 6= 0.

In this paper we extend this theorem by weakening the assumption on the degree of
nonvanishing monomial. We also provide an explicit formula for coefficients of monomials
in the usual expansion of f . Similar results were obtained independently by Schauz [5],
however our proofs are simple and more direct. The paper is concluded with an application
to a graph labeling problem for which classical approach does not seem to work.

2 Generalized Combinatorial Nullstellensatz

Let F be an arbitrary field, and let f be a polynomial in F[x1, . . . , xn]. We define the
support of f by Supp(f) := {(α1, . . . , αn) ∈ Nn : the coefficient of xα1

1 · · ·xαn

n in f is
nonzero}. On the set Nn and hence also on Supp(f) we have natural partial order:
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(α1, . . . , αn) > (β1, . . . , βn) if and only if αi > βi for all i. The proof of the following
theorem is a simple extension of an argument found by Micha lek [4].

Theorem 2. (Generalized Combinatorial Nullstellensatz) Let F be an arbitrary field, and

let f be a polynomial in F[x1, . . . , xn]. Suppose that (α1, . . . , αn) is maximal in Supp(f).
Then for any subsets A1, . . . , An of F satisfying |Ai| > αi + 1, there are a1 ∈ A1, . . . , an ∈
An so that f(a1, . . . , an) 6= 0.

Proof. The proof is by induction on α1 + . . . + αn. If α1 + . . . + αn = 0, then f ≡ c 6= 0
and the assertion is true. If α1 + . . . + αn > 0, then, without loss of generality, we can
assume that α1 > 0. Fix a ∈ A1 and divide f by (x1 − a). So, we have

f = g · (x1 − a) + h,

where degx1
(h) = 0. This means that h depends only on the variables x2, . . . , xn. If there

exists a2 ∈ A2, . . . , an ∈ An so that h(a2, . . . , an) 6= 0, then we get f(a, a2, . . . , an) =
h(a2, . . . , an) 6= 0, which proves the assertion. Otherwise h|A2×...×An

≡ 0. By the division
algorithm we have

Supp(g) ⊆ {(β1 − r, β2, . . . , βn) : (β1, β2, . . . , βn) ∈ Supp(f), 1 6 r 6 β1},

and (α1 − 1, α2, . . . , αn) ∈ Supp(g). Thus the tuple (α1 − 1, α2, . . . , αn) is maximal
in Supp(g). By inductive assumption we know that there exist a1 ∈ A1 \ {a}, a2 ∈
A2, . . . , an ∈ An so that g(a1, . . . , an) 6= 0. Hence

f(a1, a2, . . . , an) = (a1 − a) · g(a1, . . . , an) 6= 0,

which proves the assertion of the theorem.

3 Coefficient formula

Let F be an arbitrary field and let A1, . . . , An be any finite subsets of F. Define the
function N : A1 × . . . × An → F by

N(a1, . . . , an) =

n
∏

i=1

∏

b∈Ai\{ai}

(ai − b).

We may think of the function N as a normalizing factor for the interpolating function on
A1 × ... × An defined by

χ(a1,...,an)(x1, . . . , xn) = N(a1, . . . , an)−1 ·

n
∏

i=1

∏

b∈Ai\{ai}

(xi − b).

Notice that χ(a1,...,an) is everywhere zero on A1 × . . .×An, except at the point (a1, . . . , an)
for which it takes the value of 1.

We will need the following simple lemma.
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Lemma 1. Let A be any finite subset of the field F, with |A| > 2. Then

∑

a∈A

∏

b∈A\{a}

(b − a)−1 = 0.

Proof. Consider the polynomial

f(x) =
∑

a∈A

∏

b∈A\{a}

(x − b)

(a − b)
.

Its degree is at most |A| − 1, and for all a ∈ A it takes value of 1. Hence f ≡ 1 and
the coefficient of x|A|−1 equals 0. But it is also the same as the the left hand side of the
asserted equality.

Theorem 3. (Coefficient Formula) Let f be a polynomial in F[x1, . . . , xn] and let fα1,...,αn

denote the coefficient of xα1

1 · · ·xαn

n in f . Suppose that there is no greater element than

(α1, . . . , αn) in Supp(f). Then for any sets A1, . . . , An in F such that |Ai| = αi + 1 we

have

fα1,...,αn
=

∑

(a1,...,an)∈A1×...×An

f(a1, . . . , an)

N(a1, . . . , an)
. (*)

Proof. The proof is by induction on the number of elements in the set

Cone(f) = {β ∈ Nn : there exists γ ∈ Supp(f) and γ > β}.

If |Cone(f)| = 0 then f ≡ 0 and the theorem is trivial. Otherwise let (β1, . . . , βn) be a
maximal element of Cone(f), so it also belongs to Supp(f). If (β1, . . . , βn) = (α1, . . . , αn),
then consider the polynomial

f ′(x1, . . . , xn) = f(x1, . . . , xn) − fα1,...,αn
·

n
∏

i=1

∏

b∈Ai\{ai}

(xi − b)

for arbitrary a1 ∈ A1, . . . , an ∈ An. Notice that

Cone(f ′) ⊂ Cone(f) \ {(α1, . . . , αn)},

so from inductive assumption we get the assertion for polynomial f ′. Since (*) is F-linear
and holds for f ′, it is enough to prove it for the polynomial

h = f−1
α1,...,αn

· (f − f ′) =

n
∏

i=1

∏

b∈Ai\{ai}

(xi − b).

Now hα1,...,αn
= 1, and the right hand side of (*) is also equal to 1 since h(x1, . . . , xn) 6= 0

only for (a1, . . . , an), so we are done.
If (β1, . . . , βn) 6= (α1, . . . , αn) then we have (β1, . . . , βn) ≯ (α1, . . . , αn) by the assump-

tions. So there exists i such that βi < αi, without loss of generality we can assume that
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β1 < α1. Let B1 ⊂ A1 be any subset with β1 elements. So, we have |A1 \ B1| > 2.
Consider the polynomial

f ′(x1, . . . , xn) = f(x1, . . . , xn) − fβ1,...,βn
· xβ2

2 · · ·xβn

n ·
∏

b∈B1

(x1 − b).

As before we have that

Cone(f ′) ⊂ Cone(f) \ {(β1, . . . , βn)},

so, from inductive assumption we get the assertion for polynomial f ′. It remains to prove
it for the polynomial

h = f−1
β1,...,βn

· (f − f ′) = xβ2

2 · · ·xβn

n ·
∏

b∈B1

(x1 − b).

Obviously, the left-hand side of equality (*) equals zero. After rewriting the right-hand
side we get

∑

(a1,a2,...,an)∈A1×...×An







n
∏

i=1

∏

b∈Ai\{ai}

(b − ai)







−1

· aβ2

2 · · ·aβn

n ·
∏

b∈B1

(a1 − b) =

=
∑

a2∈A2,...,an∈An

n
∏

i=2

∏

b∈Ai\{ai}

(

(b − ai)
−1 · aβi

i

)

·

·





∑

a1∈A1

∏

b∈A1\{a1}

(b − a1)−1
∏

b∈B1

(a1 − b)





The last factor in this product can be simplified to the form

∑

a1∈A1\B1

∏

b∈(A1\B1)\{a1}

(b − a1)−1,

which is zero by the Lemma 1. The proof is completed.

Notice that Theorem 3 implies Theorem 2. Indeed, if fα1,...,αn
6= 0, then f cannot

vanish on every point of A1 × . . . × An. Also if fα1,...,αn
= 0, then either f vanishes on

the whole set A1 × . . .×An, or there are at least two points for which f takes a non-zero
value.

4 Applications

In this section we give an example of possible application of Theorem 2. In some sense it
generalizes the idea of lucky labelings of graphs from [2]. Given a simple graph G = (V, E)
and any function c : V → N, let S(u) =

∑

v∈N(u) c(v) denote the sum of labels over the
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set N(u) of all neighbors of u in G. The function c is called a lucky labeling of G if
S(u) 6= S(w) for every pair of adjacent vertices u and w. The main conjecture from [2]
states that every k-colorable graph has a lucky labeling with values in the set {1, 2, . . . , k}.
One of the results of [2] in this direction asserts that the set of labels {1, 2, 3} is sufficient
for every bipartite planar graph G. This result is a special case of the following general
theorem.

Theorem 4. Let G be a bipartite graph, which has an orientation with outgoing degree

bounded by k. Suppose each vertex v is equipped with a non-constant polynomial fv ∈ R[x]
of degree at most l and positive leading coefficient. Then there is a labeling c : V (G) →
{1, 2, . . . , kl + 1} such that for any two adjacent vertices u and w,

c(u) −
∑

v∈N(u)

fv(c(v)) 6= c(w) −
∑

v∈N(w)

fv(c(v)).

Proof. Assign to each vertex v ∈ V (G) a variable xv. Consider the polynomial

h =
∏

uw∈E(G)

(
∑

v∈N(u)

fv(xv) + xw −
∑

v∈N(w)

fv(xv) − xu)

We want to show that we can choose values for xv from the set {1, . . . , kl + 1} so that h
is non-zero. Let us fix an orientation of G where outgoing degree is bounded by k. For
each edge uw ∈ E(G) oriented u → w choose the leading monomial in fu(xu) from the
factor corresponding to this edge in h. The product of these monomials over all edges
of G is a monomial M of h satisfying degxv

(M) 6 kl (since monomials from fu(xu) are
taken at most k times). We claim that the coefficient of M in h is nonzero. Indeed, each
time we take a product of monomials from factors of h resulting in the monomial M , the
sign of M is the same (because G is bipartite and leading coefficients of fv are positive).
So the copies of M cannot cancel as we are working in the field R. Finally maximality of
M in Supp(h) can be seen easily by giving weight 1/ deg(fu) to variable xu, M is then of
maximal degree. The assertion follows from Theorem 2.

Notice that in the above theorem the labels can be taken from arbitrary lists of size
at least kl + 1.

Let us conclude the paper with the following remark. Suppose that we want to use clas-
sical Combinatorial Nullstellensatz to the polynomial f(x1, . . . , xn) of degree

∑n

i=1 αi with
nonzero coefficient of xα1

1 · · ·xαn

n . If f(x1, . . . , xn) = g(h(x1), x2, . . . , xn) with deg(h) = k,
then for arbitrary sets A1, A2, . . . , An ⊂ F, with h(a) 6= h(b) for all distinct a, b ∈ A1

and of size at least α1/k + 1, α2 + 1, . . . , αn + 1, f does not vanish on A1 × . . . × An.
So we gain almost k times smaller first set in comparison with the classical version. It
is an immediate consequence of the substitution x′

1 := h(x1) and Theorem 2 applied to
f ′(x′

1, x2, . . . , xn) = f(x1, . . . , xn). An analogous corollary is true for more variables being
in fact equal to some polynomials.
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