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Abstract

We give a new short proof of Koren’s characterization of graphic lists, extended
to multigraphs with bounded multiplicity p, called p-graphs. The Edge-Count Cri-
terion (ECC) for an integer n-tuple d and integer p is the statement that for all
disjoint sets I and J of indices,

∑

i∈I di +
∑

j∈J [p(n− 1)− dj ] > p|I| |J |. An integer
list d is the degree list of a p-graph if and only if it has even sum and satisfies ECC.
Analogous statements hold for bipartite or directed graphs, and an old character-
ization of degree lists of signed graphs follows as a corollary of the extension to
multigraphs.

The problem of characterizing degree lists (also called “degree sequences”) of simple
graphs is well studied. The sum is twice the number of edges and hence must be even, but
this condition is not sufficient. Sierksma and Hoogeveen [11] summarized seven character-
izations. With additional results, these also appear in [7]. The various characterizations
have been proved in many ways; we will not attempt to survey the proofs.

We give a new short proof of another natural characterization, due to Koren [6], which
we call the Edge-Count Criterion. Koren used it to characterize the polytope of degree
lists [10]. We prove the characterization in the more general setting of multigraphs with
bounded multiplicity p. The idea also works for bipartite or directed graphs, and the
multigraph characterization applies to give an immediate characterization of degree lists
for signed graphs (using a transformation due to T.S. Michael).

A multigraph G with bounded multiplicity p is a pair consisting of a set V (G) of
vertices and a multiset E(G) of unordered pairs of vertices, where each pair occurs at
most p times as an edge. Motivated by Berge [1], we call such a multigraph a p-graph (the
1-graphs are the graphs or simple graphs). Let µ(xy) denote the multiplicity of an edge
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xy; if µ(xy) > 0, then x and y are adjacent. The complement of a p-graph G, denoted G, is
the p-graph with vertex set V (G) such that µG(xy) = p−µG(xy) for all xy ∈

(

V (G)
2

)

. The
degree of a vertex v, written d(v), is the sum of the multiplicities of the pairs containing
v. We write an integer list (d1, . . . , dn) simply as d. An integer n-tuple d is p-graphic if
the entries are the vertex degrees of some p-graph. Such a p-graph is a realization of d.
Let [n] = {1, . . . , n}.

Definition 1. An integer n-tuple d satisfies the Edge-Count Criterion (ECC) for p-graphs
if for all I, J ⊆ [n] with I ∩ J = ∅,

∑

i∈I

di +
∑

j∈J

[p(n − 1) − dj] > p|I| |J |. (*)

We call this the Edge-Count Criterion because always µG(xy)+µG(xy) = p. The sum
on the left counts degrees in G for vertices of I and in G for vertices of J . The total must
account for the total multiplicity of all pairs in I × J , regardless of how it splits between
G and G. Thus the condition is necessary. We will give a short proof that when even sum
is also required it becomes sufficient.

Koren’s statement of the ECC for 1-graphs, when expressed in our notation, was
∑

j∈J dj 6
∑

i∈I di + |J |(n − 1 − |I|). We have reordered the terms to facilitate a short
proof and express the natural generalization to p-graphs. Characterizations of p-graphic
lists were given by Chungphaisan [2] and by Berge [1].

Fulkerson–Hoffman–McAndrew [5] proved that every 1-graphic list has a realization
in which any specified vertex v is adjacent to vertices whose degrees are the largest entries
in the list other than its own. We need the extension to p-graphs of an easy special case.

Lemma 2. Let d be a p-graphic list with largest entry k. If dj > 0 and dj is not the only

k in d, then in some realization a vertex of degree dj is adjacent to a vertex of degree k.

Proof. Let G be a realization of d. Let x and v be vertices of degrees k and dj. If
µ(xv) = 0, then v is adjacent to some other vertex u. Since d(u) 6 k, and v is adjacent
to u but not x, there exists y such that µ(xy) > µ(uy). Decreasing µ(xy) and µ(vu) by 1
and increasing µ(xv) and µ(uy) by 1 yields a realization as desired.

Theorem 3. An integer n-tuple d with even sum is p-graphic if and only if it satisfies

the ECC for p-graphs.

Proof. We have observed that the conditions are necessary. For sufficiency, we use induc-
tion on n +

∑

di. For a list d, let SI,J(d) denote
∑

i∈I di +
∑

j∈J [p(n − 1) − dj], so ECC
states that SI,J(d) > p|I| |J | whenever I and J are disjoint.

Suppose that d satisfies ECC. Using pairs I, J in which one set is empty and the other
has size 1, we obtain 0 6 di 6 p(n − 1) for all i, so the induction parameter is positive.
When it equals 1, the only realization is the unique 1-vertex p-graph, which has no edges.

For the induction step, index d so that d1 is a largest entry and dn is smallest. If
dn = 0, then form d′ by deleting dn. Since d′ is an (n− 1)-tuple and ECC holds for d, we
have SI,J(d′) = SI∪{n},J(d) − p|J | > p(|I| + 1) |J | − p|J | = p|I| |J |. Thus ECC holds for

the electronic journal of combinatorics 17 (2010), #N36 2



d′, which has the same sum as d. By the induction hypothesis d′ is p-graphic, and adding
an isolated vertex to a realization of d′ yields a realization of d.

Hence we may assume dn > 1. Form d′ by subtracting 1 from the first and last entries.
If d′ is p-graphic, then applying Lemma 2 to the complement of a realization of d′ yields a
realization of d′ having vertices x and y of degrees d1 − 1 and dn − 1 such that µ(xy) < p.
Increasing the multiplicity of xy completes a realization of d.

Since d′ has even sum, by the induction hypothesis it suffices to show that d′ satisfies
ECC. If d′

i > d′
j for some i ∈ I and j ∈ J , then moving i to J and j to I reduces SI,J(d′)

without changing |I| |J |. Hence it suffices to prove (∗) when d′
i 6 d′

j for i ∈ I and j ∈ J .
Writing (∗) as

∑

i∈I(d
′
i − p|J |) +

∑

j∈J [p(n − 1) − d′
j ] > 0, we need only prove (∗)

when d′
i < p|J | for i ∈ I. Furthermore, if d′

i′ < d′
i < p|J | and i ∈ I, then i′ /∈ J ,

and adding i′ to I if not already in I reduces the left side. Hence we may assume that
all entries smaller than any indexed by I are also indexed by I. Similarly, to ensure
∑

i∈I d′
i +

∑

j∈J [p(n−1−|I|)−d′
j] > 0, we may assume that d′

j > p(n−1−|I|) for j ∈ J ,
and entries larger than any indexed by J are indexed by J .

Since 0 6 d′
i 6 p(n − 1), (∗) holds when I or J is empty. Hence we may assume that

both are nonempty, with J containing the index of a largest entry and I containing that
of a smallest. In particular, n ∈ I. If d′

j = d1 − 1 for any j ∈ J (including j = 1), then
SI,J(d′) = SI,J−{j}+{1}(d) > |I| |J |. Hence we may assume that d′

j = d1 for j ∈ J .
For j ∈ J , we have d1 = d′

j > p(n− 1− |I|), or −p(n− 1)− d1 > −p|I|. If 1 /∈ I, then

SI,J(d′) = SI,J∪{1}(d) − 1 − [p(n − 1) − d1] > p|I|(|J | + 1) − p|I| = |I| |J |.

Hence we may assume 1 ∈ I. Now d′
1 < p|J |, so d1 6 p|J |. With |I| + |J | 6 n,

SI,J(d′) =
(

∑

i∈I

di

)

− 2 + [p(n − 1) − d1]|J | > d1 + |I| − 1 − 2 + [p(|I| + |J | − 1) − d1]|J |

= |I| − 3 + p|I| |J | + (|J | − 1)(p|J | − d1).

Failure requires (|J | − 1)(p|J | − d1) < 3 − |I| and equality throughout the computation.
Hence I = {1, n} and |J | ∈ {1, d1/p}; also dn = 1 and |I| + |J | = n, so |J | = n − 2. If
|J | = 1, then d = (d1, d1, 1). If p|J | = d1, then d = (p(n − 2), . . . , p(n − 2), 1), with n − 1
entries equal to p(n− 2). In each case, d has odd sum, so these possibilities are excluded.

Hence d′ satisfies ECC, and the induction hypothesis applies to complete the proof.

When p = 1, some cases disappear earlier. The requirement for di = dj with i ∈ I and
j ∈ J is p|J | > d′

i = d′
j > p(n − 1 − |I|), which simplifies to |I| + |J | > n − 1 + 2/p and

cannot hold when p = 1. Therefore, when p = 1 we may assume that I = {i : d′
i < |J |}

and J = {j : d′
j > n − 1 − |I|}. This leads more quickly to n ∈ I and d1 = n − |I|.

For bipartite graphs there is a similar characterization. A pair of lists (r1, . . . , rm) and
(s1, . . . , sn) is bigraphic if there is a bipartite graph with partite sets X and Y such that r
is the list of degrees of vertices in X and s is the list of degrees of vertices in Y . As above,
we consider bipartite p-graphs. A characterization follows from a more general result of
Ore [9], which we state in our notation: A bipartite graph G with partite sets [m] and [n]
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has a spanning subgraph with degree lists r for [m] and s for [n] if and only if, whenever
I ⊆ [m] and J ⊆ [n],

∑

i∈J sj is at most
∑

i∈I ri plus the number of edges joining J and
[m]− I. When G is a complete bipartite p-graph, this reduces to the following statement.

Theorem 4. Integer lists r and s form the degree lists for a bipartite p-graph if and only

if they satisfy the Bipartite Edge-Count Criterion that for all I ⊆ [m] and J ⊆ [n],

∑

i∈I

ri +
∑

j∈J

(pm − sj) > p|I| |J |.

For p = 1, this is known as the Gale–Ryser Theorem. It can be proved using network
flow methods or by a short inductive proof. A proof parallel to that of Theorem 3 is also
quite short, since the difficult case (1 ∈ I) does not occur in the bipartite setting. We
omit the analogous statement for directed graphs.

The ECC also applies to characterize degree lists of “signed” p-graphs. In a signed

multigraph, each edge is positive or negative, and the degree of a vertex is the number of
incident positive edges minus the number of incident negative edges (loops contribute twice
at their vertex). For signed p-graphs, we forbid loops, and each vertex pair has multiplicity
at most p as a positive edge and as a negative edge. Since copies of a single edge with
opposite sign contribute 0 to the degree of its endpoints, for purposes of realizability we
may view a signed p-graph as an edge-weighted complete graph with integer weights in
the interval [−p, p].

T.S. Michael [8] observed that signed p-graphs without repeated edges having opposite
sign are equivalent to unsigned 2p-graphs. The correspondence is simply to add p to each
edge weight in the interpretation as a weighted complete graph. This adds p(n−1) to each
degree. Michael then observed characterizations of signed p-graphs using characterizations
of 2p-graphs, but the particularly simple consequence of the ECC was not included. The
result, observed by Kyle Jao (private communication), is

Theorem 5. An integer n-tuple d is the degree list of a signed p-graph if and only if all

disjoint I, J ⊆ [n] satisfy

∑

i∈I

[p(n − 1) + di] +
∑

j∈J

dj > 2p|I| |J |.
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