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Abstract

The ratio monotonicity of a polynomial is a stronger property than log-concavity.
Let P (x) be a polynomial with nonnegative and nondecreasing coefficients. We
prove the ratio monotone property of P (x + 1), which leads to the log-concavity of
P (x + c) for any c ≥ 1 due to Llamas and Mart́ınez-Bernal. As a consequence, we
obtain the ratio monotonicity of the Boros-Moll polynomials obtained by Chen and
Xia without resorting to the recurrence relations of the coefficients.
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1 Introduction

This paper is concerned with the ratio monotone property of polynomials derived from
nonnegative and nondecreasing sequences. A sequence {ak}0≤k≤m of positive real numbers
is said to be unimodal if there exists an integer r ≥ 0 such that

a0 ≤ · · · ≤ ar−1 ≤ ar ≥ ar+1 ≥ · · · ≥ am,

and it is said to be spiral if

am ≤ a0 ≤ am−1 ≤ a1 ≤ · · · ≤ a[ m

2
], (1.1)

where [m
2
] stands for the largest integer not exceeding m

2
. We say that a sequence

{ak}0≤k≤m is log-concave if for any 1 ≤ k ≤ m − 1,

a2
k − ak+1ak−1 ≥ 0,
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or equivalently,
a0

a1
≤

a1

a2
≤ · · · ≤

am−1

am
.

It is easy to see that either log-concavity or the spiral property implies unimodality,
while a log-concave sequence is not necessarily spiral, and vice versa.

A stronger property, which implies both log-concavity and the spiral property, was
introduced by Chen and Xia [6] and is called the ratio monotonicity. A sequence of
positive real numbers {ak}0≤k≤m is said to be ratio monotone if

am

a0
≤

am−1

a1
≤ · · · ≤

am−i

ai
≤ · · · ≤

am−[ m−1

2
]

a[ m−1

2
]

≤ 1 (1.2)

and
a0

am−1

≤
a1

am−2

≤ · · · ≤
ai−1

am−i

≤ · · · ≤
a[ m

2
]−1

am−[ m

2
]

≤ 1. (1.3)

Given a polynomial P (x) = a0 + a1x + · · · + amxm with positive coefficients, we say
that P (x) is log-concave (or ratio monotone) if {ak}0≤k≤m is log-concave (resp., ratio
monotone).

Assume that P (x) is a polynomial with nonnegative and nondecreasing coefficients.
Boros and Moll [3] proved the unimodality of P (x + 1) which implies the unimodality of
the Boros-Moll polynomials. They posed the conjecture that the Boros-Moll polynomials
are log-concave, which was confirmed by Kauers and Paule [8]. Alvarez et al. [1] showed
that P (x + n) is also unimodal for any positive integer n. Wang and Yeh [12] obtained
a stronger result that P (x + c) is unimodal for c > 0. Llamas and Mart́ınez-Bernal [9]
proved that P (x + c) is log-concave for c ≥ 1.

In this paper, we prove that if P (x) is a polynomial with nonnegative and nondecreas-
ing coefficients, then P (x + 1) is ratio monotone. This property implies the log-concavity
of P (x+1). Note that by a criterion for log-concavity due to Brenti [5], the log-concavity
of P (x + 1) leads to the log-concavity of P (x + c) for c ≥ 1, as established by Llamas and
Mart́ınez-Bernal [9]. The ratio monotonicity of P (x + 1) serves as a simple proof of the
ratio monotonicity of the Boros-Moll polynomials obtained by Chen and Xia [7] without
resorting to the recurrence relations of the coefficients.

2 The ratio monotone property

The main result of this paper is given below.

Theorem 2.1 If P (x) is a polynomial with nonnegative and nondecreasing coefficients,

then P (x + 1) is ratio monotone.

To prove Theorem 2.1, we need three lemmas. The first lemma is a special case of [6,
Lemma 2.1].
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Lemma 2.2 Suppose that a, b, c, d, e, f are positive real numbers satisfying

a

b
≤

c

d
≤

e

f
.

Then
a + c

b + d
≤

e + c

f + d
.

Lemma 2.3 If B(x) is a ratio monotone polynomial, so is (x + 1)B(x).

Proof. Let

B(x) =

m
∑

k=0

akx
k and (x + 1)B(x) =

m+1
∑

k=0

bkx
k.

For each k we have bk = ak−1 + ak, where a−1 and am+1 are set to 0.
When m = 2n, the ratio monotonicity of B(x) states that

a2n

a0
≤

a2n−1

a1
≤ · · · ≤

a2n−i

ai
≤ · · · ≤

an+1

an−1
≤ 1 (2.1)

and
a0

a2n−1

≤
a1

a2n−2

≤ · · · ≤
ai−1

a2n−i

≤ · · · ≤
an−1

an

≤ 1. (2.2)

In order to show that (x + 1)B(x) is ratio monotone, we need to verify that

b2n+1

b0
≤

b2n

b1
≤ · · · ≤

b2n+1−i

bi
≤ · · · ≤

bn+1

bn
≤ 1 (2.3)

and
b0

b2n
≤

b1

b2n−1
≤ · · · ≤

bi

b2n−i
≤ · · · ≤

bn−1

bn+1
≤ 1. (2.4)

We first consider (2.3). Since
a2n

a0

≤
a2n−1

a1

,

we see that
a2n

a0
≤

a2n−1 + a2n

a1 + a0
,

that is,
b2n+1

b0

≤
b2n

b1

.

For 1 ≤ i ≤ n − 1, from (2.1) we deduce that

a2n+1−i

ai−1

≤
a2n−i

ai

≤
a2n−i−1

ai+1

.

By Lemma 2.2, we obtain

a2n+1−i + a2n−i

ai + ai−1
≤

a2n−i + a2n−i−1

ai+1 + ai
,
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or equivalently,
b2n+1−i

bi
≤

b2n−i

bi+1
.

In light of (2.1), we see that an+1 ≤ an−1, and thus we have

bn+1

bn

=
an+1 + an

an + an−1

≤ 1.

Next, we proceed to prove (2.4). Since a0

a2n−1

≤ a1

a2n−2

, we get that

a0

a2n−1 + a2n
≤

a1 + a0

a2n−2 + a2n−1
,

that is,
b0

b2n
≤

b1

b2n−1
.

For 2 ≤ i ≤ n − 1, in view of (2.2) we find that

ai−2

a2n−i+1

≤
ai−1

a2n−i

≤
ai

a2n−i−1

.

By Lemma 2.2, we have

ai−1 + ai−2

a2n−i+1 + a2n−i
≤

ai + ai−1

a2n−i + a2n−i−1
,

which can be expressed as
bi−1

b2n−i+1

≤
bi

b2n−i

.

From (2.2) it is clear that an−2 ≤ an+1 and an−1 ≤ an, and hence

bn−1

bn+1
=

an−1 + an−2

an+1 + an
≤ 1.

The case m = 2n + 1 can be dealt with in the same manner. This completes the proof.

The third lemma is concerned with an inequality of increasing positive sequences.

Lemma 2.4 For any nondecreasing positive sequence {ak}0≤k≤m, we have

m(m + 1)

2
a2

m + amam−1 ≥

(

m−2
∑

k=0

(m − 1 − k) ak

)

am−1 +

(

m
∑

k=0

ak

)

am−2.
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Proof. Since 0 < a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am, we have

m(m + 1)

2
a2

m + amam−1 −

(

m−2
∑

k=0

(m − 1 − k) ak

)

am−1 −

(

m
∑

k=0

ak

)

am−2

≥
m(m + 1)

2
a2

m + amam−1 −
m−2
∑

k=0

(m − 1 − k)a2
m −

m
∑

k=1

a2
m − amam−1,

which simplifies to zero, as desired.

Proof of Theorem 2.1. We use induction on the degree m of P (x). Let

P (x) =

m
∑

k=0

akx
k,

where 0 < a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am.

When m = 2, we have

P (x + 1) = a2x
2 + (a1 + 2a2)x + a0 + a1 + a2.

Note that a2 ≤ a0 + a1 + a2, a0 + a1 + a2 ≤ a1 + 2a2. Therefore, the theorem holds for
m = 2.

Now assume that the theorem holds for polynomials of degree m−1. We need to show
that it is also true for polynomials P (x) of degree m. Suppose that

P (x + 1) =
m
∑

k=0

ak(x + 1)k =
m
∑

k=0

dkx
k. (2.5)

We wish to prove that

dm

d0

≤
dm−1

d1

≤ · · · ≤
dm−i

di

≤ · · · ≤
dm−[ m−1

2
]

d[ m−1

2
]

≤ 1 (2.6)

and
d0

dm−1
≤

d1

dm−2
≤ · · · ≤

di−1

dm−i
≤ · · · ≤

d[ m

2
]−1

dm−[ m

2
]

≤ 1. (2.7)

Let

Q(x) =
m−1
∑

k=0

ak+1x
k.

Then
P (x + 1) = a0 + (x + 1)Q(x + 1).

By the induction hypothesis and Lemma 2.3, we deduce that the polynomial

(x + 1)Q(x + 1) = d0 − a0 +
m
∑

k=1

dkx
k
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is ratio monotone. It follows that

dm

d0 − a0
≤

dm−1

d1
≤ · · · ≤

dm−i

di
≤ · · · ≤

dm−[ m−1

2
]

d[ m−1

2
]

≤ 1 (2.8)

and
d0 − a0

dm−1
≤

d1

dm−2
≤ · · · ≤

di−1

dm−i
≤ · · · ≤

d[ m

2
]−1

dm−[ m

2
]

≤ 1. (2.9)

Clearly, (2.6) follows from (2.8). To prove (2.7), it remains to show that

d0

dm−1
≤

d1

dm−2
.

From (2.5), we see that

d0 =

m
∑

k=0

ak, dm−1 = am−1 + mam,

and

d1 =

m
∑

k=0

kak, dm−2 = am−2 + (m − 1)am−1 +

(

m

2

)

am.

Consequently, it suffices to show that

∑m
k=0 ak

am−1 + mam
≤

∑m
k=0 kak

am−2 + (m − 1)am−1 +
(

m
2

)

am

,

or equivalently,

(

m
∑

k=0

kak

)

am−1 +

(

m
∑

k=0

mkak

)

am −

(

m
∑

k=0

ak

)

am−2

−

(

m
∑

k=0

(m − 1)ak

)

am−1 −

(

m
∑

k=0

(

m

2

)

ak

)

am ≥ 0.

The left hand side of the above inequality can be simplified to

(

m
∑

k=0

2k − m + 1

2
ak

)

mam +

(

m
∑

k=0

(k − m + 1) ak

)

am−1 −

(

m
∑

k=0

ak

)

am−2,

which can be rewritten as a sum of
(

m−1
∑

k=0

2k − m + 1

2
ak

)

mam (2.10)
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and

m(m + 1)

2
a2

m + amam−1 −

(

m−2
∑

k=0

(m − 1 − k) ak

)

am−1 −

(

m
∑

k=0

ak

)

am−2. (2.11)

By Lemma 2.4, the sum in (2.11) is nonnegative. The sum in (2.10) is also nonnegative,
since

m−1
∑

k=0

2k − m + 1

2
ak =

m−1
∑

k=[ m−1

2
]+1

2k − m + 1

2
ak −

[ m−1

2
]

∑

k=0

m − 1 − 2k

2
ak

=

m−2−[ m−1

2
]

∑

k=0

m − 1 − 2k

2
am−1−k −

[ m−1

2
]

∑

k=0

m − 1 − 2k

2
ak

=

[ m−1

2
]

∑

k=0

m − 1 − 2k

2
(am−1−k − ak),

which is nonnegative, and thus the proof is complete.

Theorem 2.1 leads to the following result of Llamas and Mart́ınez-Bernal [9], since the
ratio monotonicity implies log-concavity of P (x + 1) and the log-concavity of P (x + 1)
implies the log-concavity of P (x + c) for c ≥ 1 by a criterion of Brenti [4, 5].

Corollary 2.5 If P (x) is a polynomial with nonnegative and nondecreasing coefficients,

then for any c ≥ 1 the polynomial P (x + c) is log-concave and has no internal zero

coefficients.

Theorem 2.1 also serves as a simple proof of the ratio monotonicity of the Boros-Moll
polynomials Pm(x), which were introduced by Boros and Moll [2] in their study of the
following quartic integral

∫ +∞

0

1

(t4 + 2xt2 + 1)m+1
dt =

π

2m+3/2(x + 1)m+1/2
Pm(x).

Let

ck(m) = 2−2m+k

(

2m − 2k

m − k

)(

m + k

k

)

.

Boros and Moll showed that

Pm(x) =

m
∑

k=0

ck(m)(x + 1)k. (2.12)

They also observed that, for 0 ≤ k ≤ m − 1,

ck(m)

ck+1(m)
=

(2m − 2k − 1)(k + 1)

(m − k)(m + k + 1)
< 1.
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Thus, Pm(x − 1) is a polynomial with nonnegative and nondecreasing coefficients. Boros
and Moll [2] proved that Pm(x) is unimodal for any m ≥ 0, and Moll [10] conjectured that
Pm(x) is log-concave for any m. This conjecture was confirmed by Kauers and Paule [8].
The ratio monotonicity of Pm(x) was established by Chen and Xia and the proof is quite
involved and heavily depends on inequalities on the coefficients. The proof of Theorem 2.1
shows that the log-concavity and ratio monotonicity only depend on the nondecreasing
property of the coefficients of Pm(x − 1).
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