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Abstract

We consider the context of a three-person game in which ekgtempselects strings
over {0, 1} and observe a series of fair coin tosses. The winner of theegarthe player
whose selected string appears first. Recently, Chen etlahg#ved that if the string length
is greater and equal to three, two players can collude tinadta advantage by choosing
the pair of stringsl1...10 and00... 01. We call these two strings “complement strings”,
since each bit of one string is the complement bit of the spweding bit of the other
string. In this note, we further study the property of conmpéat strings for three-person
games. We prove that if the string length is greater than fincetevo players choose any
pair of complement strings (except for the phir. .. 10 and00 . . . 01), then the third player
can always attain an advantage by choosing a particulagstri
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1 Introduction and Preliminaries

Consider a game in which players select strings d¥ett } and observe a series of fair coin
tosses, i.e., a string = s;s5 ... where eachs; is chosen independently and randomly from
{0, 1}. The winner of the game is the player whose selected stripga first. This problem
has been formulated as a game or studied as a classical pistbaproblem by Chen [1], Chen
and Lin [2], Chen and Zame [3], Chen et al. [4], Guibas and @kih{6], Li [7], Gerber and Li
[5], and Mori [8]. In [3], Chen and Zame proved that for tworpen games, public knowledge
of the opponent’s string leads to an advantage. In [4], Chexl. eestablished the results for
three-person games. In particular, they showed that if titvegslength is greater and equal to
three, two players can collude to attain an advantage bysthgdhe pair of stringg1...10
ando00...01. We call these two strings “complement strings”, since datbf one string is the
complement bit of the corresponding bit of the other string.

In this note, we further study the property of complemenhgs for three-person games. We
prove that if the string length is greater than five and twygta choose any pair of complement
strings (except for the pairl ... 10 and00...01), then the third player can always attain an
advantage by choosing a particular string. Before we pioee first introduce the following
notations and some useful results obtained in [4].

Let {0, 1}" be the set of all finite strings of lengthover{0, 1}. A stringo € {0, 1}" can be
written aso = sy . . . s, With each bits; € {0, 1}. Given two stringsr, 7, their concatenation
=nif o € {0,1}".
The empty string is the unique string of length zero. Given a stringts prefixesr(o) are all
stringsm such that = 77 for some stringr; its suffixes\(o) are all strings\ such that = 7\
for some stringr.

Let { X;} be a sequence of random variables having valud$.ih}. Define the probability
spacef? which is such that the; are i.i.d. withP(X; = s;) = p; for all i andj. The space
Q2 can be identified with the space of semi-infinite strings oj@&r} by o = s;s,... with
s; = X;(w). The definition of the prefix operation(w) is extended to apply to semi-infinite
w € 2 under this identification. For each stringe {0,1}", letT, be the waiting time for the
first occurrence of in a randomly chosen € (), i.e.,

Ty(w) = min{|7| : 7 € 7(w) ando € A(7)},

or T, (w) = o if o never appears i@.
For stringso = s152...s,, defineP(o) = [[I_, P(X; = s;), i.e., the probability that a
randomly chosew € Q2 begins witho. For stringss, 7 € {0, 1}", define the operation

goT = Z P(p)~".
pEX(o) N m(T)
pFe
Forexample, i = 1111, 7 = 1101, andP(X; = 0) = P(X; = 1) = 1/2,then\(o) (7 (7) =
{1,11} ando o7 = 2 +22 = 6. The complement stringf o = s155...5, is defined as
0 = 515, ...5,, Wheres; = 1 — s; is the complement bit of;. For examplegfl =00...01is
clearly the complement string o, = 11...10.
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We cite Lemma 5 in [4] as Lemma 1 in this note, since it is esakfar proving our main
theorem. For comparison purposes, we also cite Theorem43 as[Theorem 1 in this note.

Lemmal Letoy,o0s,...,0, bek distinct strings in{0, 1}". We have the following system of
k + 1 linear equations, wherg; = P(T,, = Ny)fori=1,... k,

0 1 1 E(Ny) 1
1 P1 01 007
(000 — 0j© Ui)i-i—l,j-i—l

1 Pk Ok O Oy,

Note that for the remaining of this note, we assume fh@X; = 0) = P(X; =1) = 1/2
ando, is always treated as the complement string0fThis means that; o 07 = 03 0 05, and
01 0 09 = 09 0 01. TO simplify the notations, we denotg o o; ando, o o5 by 2" + «, 01 0 09
ando, o oy by 3, 03 0 01 by 7, 03 0 05 by §, 01 0 03 by @, 05 0 03 by b, andos o 03 by 2™ + ¢,
respectively. Thus, we have the following facts.

Fact 1 By the preceding definitions, we havel a < 2" and0 < 3 < 2",

Proof. The result is straightforward from Lemma 1, so the proofristted.
Fact 2 By the preceding definitions, we hayeZ §. Further, ify > 4,

2"+a—-PB)p1—2"+a—B)pa+ (y—0)p3 =0

and

(B—a)pr+ (2" +a—=b)py— (2" +c—d)ps = 0;
while if y < 6,

2"+a—=PB)p1— (2" +a—B)ps— (0 —7)ps =0
and

2" +a—a)pr+ (B—0)ps — (2" +c—~)ps = 0.

Proof. Due to the property of symmetry, here we assumedhat 0. The result can be directly
obtained from Lemma 1.

For notational convenience, a repeating string suchvas . o is written asjo|*.
Theorem 1 Forn > 3, letoy, 0y, andos be three distinct strings if0, 1}", whereo; = [0]*1,

oy = [1]*0, and oy is arbitrary. Letp; = P(1,, = N3) be the probability that; appears first
among the three. Then < max(p1, p2).
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2 Main Results

Lemma?2 Leto; = s155...8, andoy = 51383 .5, satisfyoy, o, € {0,1}™\ {[0]*1, [1]*0}. If
s1 = sy andn > 5, then there exists a string; € {0, 1}"\ {01, 02} such thap; > max(py, ps).

Proof. We consider the following four cases.
Casel:s1=8,=...= 8,1 =8, =0.

In this case, let; = 1[0]*. By Fact 2, we then hav@" ! —2)p; — (2" —2)py+ (2" —2)p3 =
0 and (2"t — 4)p, — 2"ps = 0. Therefore) < p; < p» < ps sincen > 6.

Case2. s;=89=8,.1=5,=0 andal % [0]*

In this case, let; = [01]*00 if n is even; otherwise let; = [10]*100. Thus, we have = 0
or2,b=0o0r2,a+b=2,¢c=00r2,v=06,andé = 0. Sincey > ¢, by Fact 2, we then have
(2" +a—=B)p1— (2" +a—B)p2+6ps = 0and(f — a)pi + (2" +a —b)pr — (2" + ¢)ps = 0.
The last equation can be written @— a)p; + (2" + o — 2+ a)py — (2" + ¢)ps = 0, and thus
(2" + ¢)(p2 — p3) + Bp1 + a(pe — p1) + (e — 2 — ¢)pa = 0. Therefore) < p; < ps < p3 Since
a>6,0<3<2"(byFactl)a < 2,b<2,ande < 2.

Case3: 51 =5,=0 andSn_l =s, = 1.

In this case, lets = [01]*00 if n is even; otherwise let; = [10]*100. Thus, we have
a=0o0r2,b=00r2,c=00r2,a+b=2,v=06,andé = 0. By Fact 2, we then have
(2"+a—0)p1— (2" +a—B)pe+6ps = 0and(8 —a)p1 + (2" + a — b)ps — (2" + ¢)ps = 0.
Hencep, > p, — 0.2ps sincen > 6, a > 0, and3 < 2"~!. Further, since? > 6 anda = 0 or
2 (i.e.,0 > a), we then havé2” + a +  —a — b)p, — (2" + ¢+ 0.2(8 — a))ps < 0. Since
a+b=2andc < 2, we conclude tha2"” + o+ 5 —a —b) > (2" 4+ ¢+ 0.2(6 — a)), and thus
0 <p1 <pa2 <ps.

Case4d:. s1=8,=5,=0,8,.1=10rsy =s,=5,_1=0,s, =1, andO'l §£ [0]*1

In this case, let; = [0]*1. Thus, we have =0or2,b=00r2,c=0,a+b=2,7 > 8,
andé = 2. By Fact 2, we then hav@” + a — B)p1 — (2" + o — B)p2 + (v — 2)ps = 0 and
(B—a)pr+ (2" +a—b)ps — (2" — 2)ps = 0. The last equation can be written @8 — 2)(p, —
ps)+ (@ +2="b)p>+ (8 —a)p1 = 0, and thug2" — 2)(p2 — ps) + ap2 + Bp1 + a(p2 — p1) =0
since2 — b = a. Therefore) < p; < ps < p3 sincey > 8, a« > 0, and0 < § < 2" (by Fact 1).

The proof of Lemma 2 is complete by summarizing the resuttsfCase 1 - Case 4.

Lemma3 Leto; = s182...8, andos = §15,...35, satisfyoy, o5 € {0,1}™\ {[0]*1, [1]*0}.
If s1 # s = s3 andn > 5, then there exists a strings € {0,1}" \ {01,092} such that
p3 > max(p1, pa)-

Proof. We consider the following three cases.
Casel: s1=5,_1=58,=0,89=83=10rs; =0, 8, =83 = S,_9 = Sp—1 = S, = 1.

In this case, let; = [01]*1 if n is odd; otherwise lets; = [01]*0011. Thus,a = 0 or
2,b=00r2,a+b=2,¢=0,v=8,andd = 2 or 34. If § = 2, then by Fact 2, we have
(2"+a—L0)p1— (2"+a—B)p2+6ps = 0and(f—a)p1+ (2" +a—b)p, — (2" —2)p3 = 0. Note
that the first equation directly impligs < p,, while the second equation impli€z* — 2)(p, —
p3) + aps + Bp1 + a(p2 — p1) = 0 sinceb = 2 — a. Therefore) < p; < ps < p3 Sincea > 0,

8 > 0,anda > 0. If 6 = 34, then by Fact 2, we ha\@™ +a— 3)p1 — (2" +a— 3)ps —26p3 = 0
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and similarly(2" —8)(p; —ps) + (6+a)p1 +b(p1 —p2) + Bp2 = 0. Therefore) < p, < p1 < p3
sincea > 0, 5 > 0, andb > 0.
Case?2:. s1=5,_.1=0,8,=10rs; =5, =0, s,_1 = 1.

In this case, lets = [0]*1. Thus,a = 0or2,b =00r2,a+b=2,¢=0,7 = 4,
andd = 2. By Fact 2, we then hav®" + o — B)p; — (2" + o — ()ps + 2p3 = 0 and
(2" —2)(p2 — p3) + (@ +2—b)p2 + (B — a)py = 0. Therefore) < p; < py < ps Sincea > 2,
0>2,a<2,andb < 2.

Case3: 51 =5, 9o =0andsy = s3 = 5,1 = s, = 1.

In this case, lets = [0]*1. Thus,a =0,b=6,c=0,a > 8,3 >0,y =4, andj = 2. By
Fact 2, we then hav@" + a — B)p; — (2" +a — B)p2 +2p3 = 0 andﬂm +(2"+a—6)p —
(2" — 2)ps = 0. Therefore) < p; < p2 < p3 Sincea > 8 andf >

The proof of Lemma 3 is complete by summarizing the resudnsnfCase 1- Case 3.

Lemma4 Leto; = s182...5, andoy = 55, ... 5, satisfyoy, 09 € {0, 1} \ {[0]*1, [1]*0}. If
s1 =83 =0, s, = s4 =1, andn > 6, then there exists a stringy € {0,1}" \ {01, 02} such
thatps > max(p1, p2).

Proof. We consider the following four cases.
Casel: s =83=8,-9=5,-1=5,=0,8 =54 =1.

In this case, let; = 10[01]* if n is even; otherwise let; = 10011[01]*. Thus,a = 0,
b=2,c=2,a>22,3>0,v2>4,§ > 8,andy # 6. If v > 6, then by Fact 2, we have
(2" +a—B)p1— (2" +a—B)py+(y—08)ps = 0andfp; + (2" +a—2)p, — (2" +2—d)p3 = 0.
Therefore) < p; < p < p3 Sincea > 2, 6 > 0, andd > 8. If v < ¢, then by Fact 2, we have
(2" +a—=PF)p1—(2"+a—PB)p2— (6 —7)ps = 0@and(2" +a)p1+ (6 —2)p2 — (2" +2—7)ps = 0.
Therefore0 < p, < p1 < p3 sincea > 2, 5 > 0, andy > 4.

Case2:. s; = $S3=58p-1=5, =20 and82 =S4 = Sp_9 = 1.

In this case, lets = [0]*101. Thus,a = 6,b = 0,¢c =0, > 2,3 > 0, v = 20,
andy = 10. By Fact 2, we then hav@®™ + o — B)p; — (2" + a — B)p2 + 10p3 = 0 and
(6—6)p1 + (2" 4+ a)ps — (2" — 10)ps = 0. Note that the first equation directly impligs < p,.
The second equation impligs = (:2=55) pi + (£55) po, thu5p3 (57%5) p1 + (222) po
since > 0. Sincep; < p, anda > 2, we then have; > (2=F) ps, and thug) < p; < p, <
Ps-

Case3:51=83=5,_1=0,89=84=5,=10rsy =83=5,=0,8 =84 = 58,_1 = 1.

In this case, let; = [0]*1. Thus,a=00r2,b=00r2,a+b=2,c=0,0 > 2,5 > 2
v = 4,andd = 2. By Fact 2, we then hav@™ + a — f)p1 — (2" + a — B)ps + 2p3 = 0 and
(B—a)p1+ (2" +a—b)py — (2" — 2)p3 = 0. Therefore) < p; < ps < p3 Sincea > 2,5 > 2,

a < 2,andb < 2.
Case4: sy =s3=0andsy = s4 = 5,,_1 = s, = 1.

In this case, let; = 0[01]* if n is odd; otherwise let; = 00[10]*. Thus,a = 0, b = 6,
c=00r2,aa>0,02>2v>10,0 > 10, andy # 6. If v > 4, then by Fact 2, we have
(2"+a—=B)p1— (2" +a—B)p2+ (y—0)ps = 0andfBp; + (2" +a—6)ps — (2" +c—d)ps = 0.
Therefore,0 < p; < ps < p3 sincea > 0,6 > 2, ¢ < 2,andd > 10. If v < 6, then by Fact
2, we have2" + o — B)p1 — (2" + a — B)p2 — (6 — )ps = 0 and(2" + a)p1 + (8 — 6)p2 —
(2" + ¢ — v)p3 = 0. Thereforep) < p; < p; < p3 sincea > 0, 5 > 2, ¢ < 2, andy > 10.

2m— 10
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The proof of Lemma 4 is complete by summarizing the resuttsifCase 1 - Case 4.

Lemmab Leto; = s159...5, andoy = 552... 85, satisfyo,, 00 € {0,1}"\ {[0]*1, [1]*0}.
If 51 = s3 = s4 # so andn > 6, then there exists a strings € {0,1}" \ {01, 02} such that
p3 > max(pi, pa).

Proof. We consider the following four cases.
Casel: sy =83 =84 =5,-9=5,-1=25, =0,5=1.

In this case, letb; = 0111010 whenn = 7. Thus, by Fact 2, it is easy to see tlfak
P < p2 < p3. Whenn > 8, letos = 01[10]* if n is even; otherwise let; = 01101[10]*.
Thus,a = 2,6 =0,c=2,a > 2,08 > 0,7 = 10, andé = 4. By Fact 2, we then have
(2" +a—LB)p1—(2"+a—[)pa+6ps = 0and(3—2)p1+(2"+a)p2—(2"—2)p; = 0. Note that the
first equation directly implies; < p.. The second equationimplips = (2=%) pi+ (322 ps,
thusp; > (5%) 1 + (552) po since > 0. Sincep; < p, anda > 2, we then have
p3 > (2n 2)]32, and thud) < p1 < p2 < P3.

Case2: s1=83=581=0, 8y = Spp_9 = Sp_1 = S, = 1.

In this case, let; = 1[10]* if n is odd; otherwise lets = 1100[10]*. Thus,a = 6, b = 0,

c=0,a>0,0>2v=10,andd = 4. By Fact 2, we then hav@" + a — ()p; — (2" +
— B)p2 + 6ps = 0 and(5 — 6)py + (2" + a)p2 — (2™ — 4)ps = 0. Note that the first equation

directly impliesp, < p,, while the second equation implies = (2=5) p1 + (222) ps,

thusp; > (3%5)p + (522) po since > 2. Sincep; < p, anda > 0, we then have

ps > (5=1) p2 = p2, and thud) < p; < ps < ps.

Case 3. $1=83=584=258p,-2=0,8 =s,_1=s5, = 1.

In this case, let; = 110[1]*010 if n is odd; otherwise lets = 11[10]*. The proof for this
case is the same as that foase 2, so it is omitted.

Cased: s1=83=81=8,_1=0,89=5,=10rsy =83=5,=25,=0,8,=5,_1 = 1.

In this case, let; = [0]*1. Thus,a =00r2,b =00r2,c=0,a > 2,08 > 2,7 =4,
andd = 2. By Fact 2, we then hav®" + o — B)p; — (2" + o — ()ps + 2p3 = 0 and
(B—a)p1+ (2" +a—b)py — (2" — 2)p3 = 0. Therefore) < p; < ps < ps3 Sincea > 2,5 > 2,

a < 2,andb < 2.
Caseb: s1=83=81=5,_1=5,=0,8, = 5,2 = 1.

It suffices to consider the following two sub-cases.

Sub-Case5-1: a+f > 4. Inthis case, let; = 0[01]*0if n is even; otherwise let; = 00[01]*0.
Thus,a = 6,6 =0,c=2,a > 2,08 > 0,7 = 10, andé = 4. By Fact 2, we then have
2" +a—PB)pr — (2" +a — PB)p2+6ps = 0and (B — 6)p1 + (2" + a)ps — (2" — 2)p3 =
0. Note that the first equation directly impligs < p-, while the second equation implies
(2" — 2)(p2 — p3) + aps + 2(p2 — p1) + Bp1 — 4p1 = 0. Therefore) < p; < p < p3 Since
a+ 3 >4

Sub-Case 5-2: o = 2 and( = 0. The fact thatx = 2 implies thats,,_3 = 1, sinces; = s3 =
S4 = Sp_1 = 8, = 0andsy = s,_o = 1. It also implies that;s, ... s; # Sp_it1Sn_it2- .- Sn
foralli = 2,3,...,n — 1. The fact that3 = 0 implies thats;sy...s; # S, i+ 150—it2---Sn
ands;8y...8; # Sp_it1Sn_is2..-Sp forall ¢ = 1,2,... n. Sinces,_3 = s, o = 1 and
s3 = s4 = s,_1 = 0, we then have that > 8. To selectr; for each possible;, we consider a
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substrings; sy - - - s,,_1 0f 01. Letoz = 0s182- - - s,_1, we then have that = 6, = 0, ¢ = 2,
a=2,03=0,v=2""1+2and4 < § < 4+2"5. By Fact 2, we then hay@" + 2)p; — (2" +
2)pa+ (271 +2—§)ps = 0 and—6p; + (2" +2)ps — (2" +2—0)ps = 0. Note that the first equa-

tion impliesp; < ps (since2” ' +2—6 > 0) andp; = py— <2”;i:[§‘5) ps. Adding these results

to the second equation, we then havép, + 6 (2"*1”‘5) P34 (27 42)py — (2" +2—6)ps = 0,

2742
thus (2" — 4)py = [—3 (%;iﬁ;‘s) +2n 42— 5} ps=[2"-1-6+3 (2;5,‘—111)] ps. Since
n>8andd < < 4+2"°, we have tha" —1—§+3 (72517) < 2" —4. Thus, we conclude

that0 < p; < p2 < p3. The proof of Lemma 5 is complete by summarizing the resudisf
Case 1 - Case 5.

Note that whem = 6, there are eight strings that are not included in the casksmima 2 -
Lemma 5. Now we show that how to choasgso thatps > max(p, po) for each of these eight
strings. Whenr; = 010000 ando, = 101111, choosers = 011010; wheno; = 010001 and
oy = 101110, chooser; = 111100; wheno; = 010010 ando, = 101101, chooser; = 100000;
wheno; = 010011 andoy = 101100, choosesrs = 111010; wheno; = 010100 andoy =
101011, choosers = 001010; wheno; = 010101 ando, = 101010, choosers = 000000; when
o1 = 010110 andoy, = 101001, chooser; = 111000; wheno; = 010111 ando, = 101000,
choosers = 110010. Combining this result with those from Lemma 2 - Lemma 5, weetthe
following main theorem:

Theorem 2 For any stringo; and its complement string, in {0, 1}™ \ {[0]*1, [1]*0}, there
always exists a strings in {0,1}" \ {01, 02} such thatps; > max(p;, p2) whenn > 5.

Remark 1. Note that Theorem 2 does not hold when= 4 or 5. For example, it; = 0011
ando, = 1100, thenps < max(py, p2) for any stringos in {0,1}*\ {01, 0,}. In addition,

if oy = 0100 ando, = 1011, thenps < max(p, po) for any stringos in {0,1}*\ {01, 02}.

In summary, numerical results show that for any stringand its complement string, in
{0,1}*\ {0001, 1110,0011, 1100, 0100, 1011, 0111, 1000}, there always exists a string; in
{0,1}*\ {01, 02} such thap; > max(p;, p2). Analogously, numerical results show that for any
stringo; and its complement string, in {0, 1}° \ {00001, 11110,01000, 10111}, there always
exists a stringrs in {0, 1} \ {0y, 02} such thaps > max(p;, p2).

We next present some other interesting results regarditigetcomplement strings. These
results are summarized in the following Theorem 3 and Thaate

Theorem 3 Leto,, 02, ando; be three distinct strings ifi0, 1}", wheres; = [0]*1, o2 = [1]*0,
and o3 is arbitrary. Whenn > 3, we have that eitheP(7,,, < 71,,) > P(T,, < T,,) or

pP(1,, <T1,,) > P(1,, < 1,,), i.e., eithers, or o, has the better chance of occurring before
03.

Proof. The proof is similar to that of Theorem 1 and therefore omaitt
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Theorem 4 Leto; = s152...5, andoy = 55, ... 5, satisfyo,, 0, € {0,1}"\ {[0]*1, [1]*0}.
Whenn > 5, there always exists a stringy € {0,1}" \ {01, 02} such thatP(7,, < 7,,) >
P, <171,,)and P(T,, < T,,) > P(1,, < T,,), i.e.,o3 has the same or better chance of
occurring beforer; andos.

Proof. The proof can be shown in a similar fashion to that of Theo2eso it is omitted.

Remark 2. It should be noted that the inequalities in Theorem 4 canbeateplaced by the
strict inequalities. In addition, the string; chosen in Theorem 4 may not work in Theorem
2. To illustrate, let us consider the pair of complemenmngsioc; = 101001000 and oy, =
010110111. Letoy; = 011110101, some algebra shows th&(7,, < T,,) = 2% > 3 and
P(T,, < T,,) = 1, which clearly satisfy the result of Theorem 4. However,liistcase we

have thaps < 0.331 < max(p;, p2), Which contradicts the result of Theorem 2.
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