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Abstract

In this paper we establish some symmetric identities on a sequence of polynomials
in an elementary way, and some known identities involving Bernoulli and Euler
numbers and polynomials are obtained as particular cases.

1 Introduction

Let n e N={0,1,...}, and {f.(x)}>2, be a sequence of polynomials given by
3 fn(x)% = F(t)exp((z — 1/2)1), k. [12] (1.1)
n=0 )

where F(t) is a formal power series. The polynomials f,(z) can be denoted by BY (x),
EY (x), Gslk)(x), known as the Bernoulli, Euler and Genocchi polynomials of order k,
according to whether F'(¢) in Eq. (1.1) is satisfied as follows (see e.g. [10])

+ k

70 = (=) =02 (o)
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The case k = 1in Eq. (1.2) gives the classical Bernoulli, Euler and Genocchi polynomials,
respectively. The corresponding Bernoulli, Euler and Genocchi numbers are defined by

By = B,(0), E,=2"E,(1/2), and G, = G,(0). (1.3)

These numbers and polynomials play important roles in many branches of mathematics
including combinatorics, number theory, special functions and analysis. Numerous inter-
esting properties and relationships for them can be found in many books and papers on
this subject, see for example, [1, 10].

In recent years, some authors took interest in some symmetric identities involving
Bernoulli and Euler numbers and polynomials. For example, In 2001, inspired by the
work of Kaneko [8], Momiyama [9] extended Kaneko’s identity by using p-adic integral
over Z,, and showed that for m,n € N and m +n > 0,

i (m; 1) (n+k+1)Byp + (=)™ Xn: (n Z 1) (m+k+1)Bppr =0.  (1.4)

k=0 k=0

In 2003, by using umbral calculus, Gessel [6] gave another generalization of Kaneko’s
identity, and obtained that for m,n € N,

i (72) By + (—1)m ! ; (Z) Bonir = 0. (1.5)

k=0

A generalization for Eq. (1.4) and Eq. (1.5) can be found in [2] (also see [10]). In 2004,
Wu, Sun and Pan [12] considered Eq. (1.1) and derived that for m,n € N,

n

i (7,?) Fui(@) + (=1)™ 7ty (Z) (=) =0, (1.6)

k=0 k=0

by which they extended the results of Momiyama and Gessel. After that, Sun [11] re-
searched a sequence of complex numbers and further extended the results in [12]. Mean-
while, he also deduced that for m,n € Nand x +y + z = 1,

(_1)n+1xm+n+1

(M ok Gnrkin (Y) mdn "0\ g Gmiksi(2) B
Z(k)x ’fm+(—1) Z(k)x km+k+1_(m+n+1) —, (1.7)
(")

k=0 k=0 m

where g, (x) denotes Bernoulli polynomials B, (x) or Euler polynomials E,(z); the case
where g,,(x) denotes Bernoulli polynomials B, (z) and x = 1,y = z = 0 is due to Gelfand
[5]. For some applications of Sun’s results, we refer to [4, 7]. In 2009, Chen and Sun [3]
presented a computer algebra approach to prove the above authors’ results by using the
extended Zeilberger’s algorithm, and they also gave a new result

’”Z (m;B)(m+k+3)(m+k‘+2)(m+k‘+1)Bm+k:0, (1.8)
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Inspired by the above work, in this paper we generalize the above authors’ results in

an elementary way, and obtain that
Theorem 1.1 Let m,n € N. Then we have

zm: <7Z) 2" gk (y) = z": (Z) (—2)" 7 frngr(z +y).

k=0 k=0
Corollary 1.1 Let m,n € N. Then for any non-negative integer r,

m—r
Z (m];k r) (n + : + k:) S )

k=0

-3 () e st

k=0

Proof. By comparing the coefficients of t"*!/(n 4+ 1)! in Eq. (1.1), one can easily obtain
L f1(z) = (n+1) fo(x). Substituting n + r for n and m + r for m in Theorem 1.1, and
then making r-th derivative for f,4,1x(y) and fo, .ok (x+y) with respect to y, respectively,

the desired result follows immediately. ([l
Corollary 1.2 Let m,n € N. Then for any non-negative integer r and x +y + 2 = 1,
m+r
m+r\[(n+r+k\ , ..
S ("It
k=0
o= (n+r\ [(m+r+k
_I_(_l)m-i-n-i-r—l Z ( N ) ( . )xn+r—kgm+k(z) =0,
k=0
where g, (z) denotes Bernoulli polynomials B, (z) or Euler polynomials E,,(x).
Proof. By comparing the coefficients of " /n! in Eq. (1.1), it is easy to see that
fl—a) = (—1)"]"};(:6), ?f F(t) ?s an even func‘?ion, (19)
(=1)"* f.(x), if F(t)is an odd function.
This together with Corollary 1.1 yields the desired result. U
Corollary 1.3 Let m € N. Then for odd integer r,
m+r m+r
m+r\/(m+r+k m+r\[(m+r+k
Z( f )( . )Bm+k=0, Z( i )( . )Em+k(0):0-
k=0 k=0
Proof. Putting m =n, x =1 and y = z = 0 in Corollary 1.2, the results follow. O
Theorem 1.2 Let m,n € N. Then for any positive integer r,
i (m) xm—k fn—i—k—i—r(y)
—~\k (n+k+1),
n n - fm+k+r($ 4 y) (_1)n+1xm+n+l 1
= (—z)"F t"(1—1t)" froa(x +y — xt)dt,
kZ:O (k) (m+k+1), (r—1)! 0
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where (m), =m(m+1)---(m+r—1).
Corollary 1.4 [11, Theorem 1.2] Let m,n € N. Then for z +y + z = 1,

m m . gn+k+1(y) i n n .- gm+k+1(2) (_1)n+1xm+n+1
T (-1 .
Z<k)x n+k:+1+( ) Z<k)x m+k+1 " (m+n+1)(""

k=0 k=0

where g, (z) denotes Bernoulli polynomials B, (z) or Euler polynomials E,,(x).
Proof. Since By(x) = Eo(x) =1 and

Fm+1)-I'(n+1)
I'(m+n+2)

1
/tm(l—t)”dt — Bm+1n+1) =
0

mln! 1

where B,I" denotes Beta function and Gamma function, respectlvely, then taking r = 1
in Theorem 1.2 the result follows from Eq. (1.9). O

2 The proof of Theorem 1.1

Before proving Theorem 1.1, we need a useful (and obvious) lemma:
Lemma 2.1 Let {f(n)},{g(n)},{h(n)},{h(n)} be sequences, and

=SS G =Ygl HO =Y b O =Y Hw)',

where H(t)H (t) = 1, then we have

1= 3 (3 Jpwatn - = gt = 3 (Jis—m. e

k=0

Next, we give the proof of Theorem 1.1:
Proof. Clearly,

i{i() " fur(y) ] {me m]exp(:ct) (2.2)

k=

Now, let f(y,t) = Yoo fm(y) 57, then S f(y, 1) = >0 frim(y) 5. Tt follows from Eq.

(2.2) that -
S 1% ()amHhueatn)| o = (00 Jespan 2.3

m=0 Lk=0
On the other hand, since the fact exp(—zt) exp(zt) = 1, and for any n-times differentiable
function g(y, t),

(;—;g(y, t) eXp(:Et)) - i (Z) 2"k (ﬁ—;g(y, t))exp(a:t) (with Leibniz rule), (2.4)

k=0
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then by Lemma 2.1 we obtain

(Gt Josotan =3 () = (ot eaton)). 29
So from Eq. (1.1) and Eq. (2.5) we get
(37000 Jesplot) = mfj [Z (L e A ] S

Equating Eq. (2.3) and Eq. (2.6), we complete the proof of Theorem 1.1 by comparing
the coefficients of t™/m/. O

3 The proof of Theorem 1.2

Lemma 3.1 Let n € N, then we have

n

e+ =3 ()

k=

Proof. Applying the series expansion exp(xt) = >~ 2"t"/n! in Eq. (1.1), the desired
result follows immediately. O

Next, we give the proof of Theorem 1.2:
Proof. Clearly,

Let f(y,t) = >, ’E’;;*Trl(;?%, then &= f(y,t) = >0, %ﬁ:l()yg% It follows from Eq.
(3.1) that

S ()err Lm0 (L))ot 62

m=0"*k=0

Substituting &k for m +r in f(y,t), we have

> k—r > m—r
fo=>_ 5 ! ’f(y_ﬁ o (]f_ i ) (33)
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Multiplying exp(zt) in both sides of Eq. (3.4), it follows from Eq. (1.1) that

tm T‘Z

f(y,t) exp(xt) me e fz Z " . (3.5)

m=0

The key idea now is to split the right-hand side of Eq. (3.5) into M; + My — M3 — My,
where

r—1 00
tm—T
M, = fm($+y)w> M, = me( ‘
m=0 m=r
r—1 fl(y r—i—1 mtm_(r_i) r—1 fz(y) 00 mtm_(r_i)
M?’:Z; i! z:oz m! M4:Z; i! Zz m!
Note that in a similar consideration to Eq. (3.3) we have
fm—l—r $+y t fz xm—i—r—i tm
My = 3.6
Z (m+1), m!’ 4 ; il mzo(mle)rlm'7 (3.6)
and M3 can be reduced in the following way
r—=1 - m
fz i tm T tm T
Z Z 5= | ) e e
m=0"i=0 )
Combining Eq. (3.5)—Eq. (3.7) it follows from Lemma 3.1 that
fm-‘,—r LU—l-y m+r 7 tm
. 3.8
Pl exotor) = - [ Ll ) ZZ,mHH " (35)

Thus, by Eq. (2.5) and Eq. (3.8) we derive

(;—;f(y,t))exp(xt) = ili <Z>(—x)”"“‘f(”;'i:k(iﬁ;’) 4 (=1t

k=0

ZZ”T . Z<Z (l{:)(_l)k(m+k1+ 1)7»_2-) fz('y)} tﬁm' (39)

k=0

In view of the properties of Beta and Gamma functions used in Eq. (1.10), we have

Z (Z) (—l)k(m + k1+ 0 — = 11 i /0 "1 —t)"(1 - t)r—l—idt‘

k=0
It follows from Lemma 3.1 that

er - (Z (k) (-1)* (m + k1+ 1)r_i) fiz(!w

_ ﬁ /0 (1 — ) [g (T - 1) ()@ — xt)f—l—l} dt
_ ﬁ /01 (1 = £ oy (2 + y — at)dt. (3.10)
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So from Eq. (3.9) and Eq. (3.10), we have

d” — [~ (7 et frmrkir (T +y) (1) Hamin
(@f(y’”)exp(”) - ;ZOLZ:O (k)(_x> (m: K+, =1~
/1 t"(1—=t)" froa(z +y — at)dt %m' (3.11)

Equating Eq. (3.2) and Eq. (3.11), and comparing the coefficients of " /m! we complete
the proof of Theorem 1.2. O
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