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Abstract

In this paper we establish some symmetric identities on a sequence of polynomials
in an elementary way, and some known identities involving Bernoulli and Euler
numbers and polynomials are obtained as particular cases.

1 Introduction

Let n ∈ N = {0, 1, . . .}, and {fn(x)}∞n=0 be a sequence of polynomials given by

∞
∑

n=0

fn(x)
tn

n!
= F (t) exp

(

(x − 1/2)t
)

, c.f. [12], (1.1)

where F (t) is a formal power series. The polynomials fn(x) can be denoted by B
(k)
n (x),

E
(k)
n (x), G

(k)
n (x), known as the Bernoulli, Euler and Genocchi polynomials of order k,

according to whether F (t) in Eq. (1.1) is satisfied as follows (see e.g. [10])

F (t) =

(

t

exp(t) − 1

)k

exp(t/2),

(

2

exp(t) + 1

)k

exp(t/2),

(

2t

exp(t) + 1

)k

exp(t/2). (1.2)
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The case k = 1 in Eq. (1.2) gives the classical Bernoulli, Euler and Genocchi polynomials,
respectively. The corresponding Bernoulli, Euler and Genocchi numbers are defined by

Bn = Bn(0), En = 2nEn(1/2), and Gn = Gn(0). (1.3)

These numbers and polynomials play important roles in many branches of mathematics
including combinatorics, number theory, special functions and analysis. Numerous inter-
esting properties and relationships for them can be found in many books and papers on
this subject, see for example, [1, 10].

In recent years, some authors took interest in some symmetric identities involving
Bernoulli and Euler numbers and polynomials. For example, In 2001, inspired by the
work of Kaneko [8], Momiyama [9] extended Kaneko’s identity by using p-adic integral
over Zp, and showed that for m, n ∈ N and m + n > 0,

m
∑

k=0

(

m + 1

k

)

(n + k + 1)Bn+k + (−1)m+n

n
∑

k=0

(

n + 1

k

)

(m + k + 1)Bm+k = 0. (1.4)

In 2003, by using umbral calculus, Gessel [6] gave another generalization of Kaneko’s
identity, and obtained that for m, n ∈ N,

m
∑

k=0

(

m

k

)

Bn+k + (−1)m+n−1
n

∑

k=0

(

n

k

)

Bm+k = 0. (1.5)

A generalization for Eq. (1.4) and Eq. (1.5) can be found in [2] (also see [10]). In 2004,
Wu, Sun and Pan [12] considered Eq. (1.1) and derived that for m, n ∈ N,

m
∑

k=0

(

m

k

)

fn+k(x) + (−1)m+n−1

n
∑

k=0

(

n

k

)

fm+k(−x) = 0, (1.6)

by which they extended the results of Momiyama and Gessel. After that, Sun [11] re-
searched a sequence of complex numbers and further extended the results in [12]. Mean-
while, he also deduced that for m, n ∈ N and x + y + z = 1,

m
∑

k=0

(

m

k

)

xm−k gn+k+1(y)

n + k + 1
+ (−1)m+n

n
∑

k=0

(

n

k

)

xn−k gm+k+1(z)

m + k + 1
=

(−1)n+1xm+n+1

(m + n + 1)
(

m+n

m

) , (1.7)

where gn(x) denotes Bernoulli polynomials Bn(x) or Euler polynomials En(x); the case
where gn(x) denotes Bernoulli polynomials Bn(x) and x = 1, y = z = 0 is due to Gelfand
[5]. For some applications of Sun’s results, we refer to [4, 7]. In 2009, Chen and Sun [3]
presented a computer algebra approach to prove the above authors’ results by using the
extended Zeilberger’s algorithm, and they also gave a new result

m+3
∑

k=0

(

m + 3

k

)

(m + k + 3)(m + k + 2)(m + k + 1)Bm+k = 0. (1.8)
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Inspired by the above work, in this paper we generalize the above authors’ results in
an elementary way, and obtain that
Theorem 1.1 Let m, n ∈ N. Then we have

m
∑

k=0

(

m

k

)

xm−kfn+k(y) =
n

∑

k=0

(

n

k

)

(−x)n−kfm+k(x + y).

Corollary 1.1 Let m, n ∈ N. Then for any non-negative integer r,

m+r
∑

k=0

(

m + r

k

)(

n + r + k

r

)

xm+r−kfn+k(y)

=
n+r
∑

k=0

(

n + r

k

)(

m + r + k

r

)

(−x)n+r−kfm+k(x + y).

Proof. By comparing the coefficients of tn+1/(n + 1)! in Eq. (1.1), one can easily obtain
d
dx

fn+1(x) = (n + 1)fn(x). Substituting n + r for n and m + r for m in Theorem 1.1, and
then making r-th derivative for fn+r+k(y) and fm+r+k(x+y) with respect to y, respectively,
the desired result follows immediately. �

Corollary 1.2 Let m, n ∈ N. Then for any non-negative integer r and x + y + z = 1,

m+r
∑

k=0

(

m + r

k

)(

n + r + k

r

)

xm+r−kgn+k(y)

+(−1)m+n+r−1
n+r
∑

k=0

(

n + r

k

)(

m + r + k

r

)

xn+r−kgm+k(z) = 0,

where gn(x) denotes Bernoulli polynomials Bn(x) or Euler polynomials En(x).
Proof. By comparing the coefficients of tn/n! in Eq. (1.1), it is easy to see that

fn(1 − x) =

{

(−1)nfn(x), if F (t) is an even function,

(−1)n+1fn(x), if F (t) is an odd function.
(1.9)

This together with Corollary 1.1 yields the desired result. �

Corollary 1.3 Let m ∈ N. Then for odd integer r,

m+r
∑

k=0

(

m + r

k

)(

m + r + k

r

)

Bm+k = 0,
m+r
∑

k=0

(

m + r

k

)(

m + r + k

r

)

Em+k(0) = 0.

Proof. Putting m = n, x = 1 and y = z = 0 in Corollary 1.2, the results follow. �

Theorem 1.2 Let m, n ∈ N. Then for any positive integer r,
m

∑

k=0

(

m

k

)

xm−k fn+k+r(y)

(n + k + 1)r

=

n
∑

k=0

(

n

k

)

(−x)n−k fm+k+r(x + y)

(m + k + 1)r

+
(−1)n+1xm+n+1

(r − 1)!

∫ 1

0

tm(1 − t)nfr−1(x + y − xt)dt,
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where (m)r = m(m + 1) · · · (m + r − 1).
Corollary 1.4 [11, Theorem 1.2] Let m, n ∈ N. Then for x + y + z = 1,

m
∑

k=0

(

m

k

)

xm−k gn+k+1(y)

n + k + 1
+ (−1)m+n

n
∑

k=0

(

n

k

)

xn−k gm+k+1(z)

m + k + 1
=

(−1)n+1xm+n+1

(m + n + 1)
(

m+n

m

) .

where gn(x) denotes Bernoulli polynomials Bn(x) or Euler polynomials En(x).
Proof. Since B0(x) = E0(x) = 1 and

∫ 1

0

tm(1 − t)ndt = B(m + 1, n + 1) =
Γ(m + 1) · Γ(n + 1)

Γ(m + n + 2)

=
m!n!

(m + n + 1)!
=

1

(m + n + 1)
(

m+n

m

) , (1.10)

where B,Γ denotes Beta function and Gamma function, respectively, then taking r = 1
in Theorem 1.2 the result follows from Eq. (1.9). �

2 The proof of Theorem 1.1

Before proving Theorem 1.1, we need a useful (and obvious) lemma:
Lemma 2.1 Let {f(n)}, {g(n)}, {h(n)}, {h(n)} be sequences, and

F (t) =

∞
∑

n=0

f(n)
tn

n!
, G(t) =

∞
∑

n=0

g(n)
tn

n!
, H(t) =

∞
∑

n=0

h(n)
tn

n!
, H(t) =

∞
∑

n=0

h(n)
tn

n!
,

where H(t)H(t) = 1, then we have

f(n) =
n

∑

k=0

(

n

k

)

h(k)g(n − k) ⇐⇒ g(n) =
n

∑

k=0

(

n

k

)

h(k)f(n − k). (2.1)

Next, we give the proof of Theorem 1.1:
Proof. Clearly,

∞
∑

m=0

[ m
∑

k=0

(

m

k

)

xm−kfn+k(y)

]

tm

m!
=

[

∞
∑

m=0

fn+m(y)
tm

m!

]

exp(xt). (2.2)

Now, let f(y, t) =
∑

∞

m=0 fm(y) tm

m!
, then dn

dtn
f(y, t) =

∑

∞

m=0 fn+m(y) tm

m!
. It follows from Eq.

(2.2) that
∞

∑

m=0

[ m
∑

k=0

(

m

k

)

xm−kfn+k(y)

]

tm

m!
=

(

dn

dtn
f(y, t)

)

exp(xt). (2.3)

On the other hand, since the fact exp(−xt) exp(xt) = 1, and for any n-times differentiable
function g(y, t),

(

dn

dtn
g(y, t) exp(xt)

)

=
n

∑

k=0

(

n

k

)

xn−k

(

dk

dtk
g(y, t)

)

exp(xt) (with Leibniz rule), (2.4)
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then by Lemma 2.1 we obtain

(

dn

dtn
g(y, t)

)

exp(xt) =
n

∑

k=0

(

n

k

)

(−x)n−k

(

dk

dtk
g(y, t) exp(xt)

)

. (2.5)

So from Eq. (1.1) and Eq. (2.5) we get

(

dn

dtn
f(y, t)

)

exp(xt) =
∞

∑

m=0

[ n
∑

k=0

(

n

k

)

(−x)n−kfm+k(x + y)

]

tm

m!
. (2.6)

Equating Eq. (2.3) and Eq. (2.6), we complete the proof of Theorem 1.1 by comparing
the coefficients of tm/m!. �

3 The proof of Theorem 1.2

Lemma 3.1 Let n ∈ N, then we have

fn(x + y) =

n
∑

k=0

(

n

k

)

fk(y)xn−k.

Proof. Applying the series expansion exp(xt) =
∑

∞

n=0 xntn/n! in Eq. (1.1), the desired
result follows immediately. �

Next, we give the proof of Theorem 1.2:
Proof. Clearly,

∞
∑

m=0

[ m
∑

k=0

(

m

k

)

xm−k fn+k+r(y)

(n + k + 1)r

]

tm

m!
=

[

∞
∑

m=0

fn+m+r(y)

(n + m + 1)r

tm

m!

]

exp(xt). (3.1)

Let f(y, t) =
∑

∞

m=0
fm+r(y)
(m+1)r

tm

m!
, then dn

dtn
f(y, t) =

∑

∞

m=0
fn+m+r(y)
(n+m+1)r

tm

m!
. It follows from Eq.

(3.1) that

∞
∑

m=0

[ m
∑

k=0

(

m

k

)

xm−k fn+k+r(y)

(n + k + 1)r

]

tm

m!
=

(

dn

dtn
f(y, t)

)

exp(xt). (3.2)

Substituting k for m + r in f(y, t), we have

f(y, t) =
∞

∑

k=r

fk(y)

(k − r + 1)r

tk−r

(k − r)!
=

∞
∑

m=r

fm(y)
tm−r

m!
. (3.3)

So from Eq. (1.1) we obtain

f(y, t) =
F (t) exp

(

(y − 1/2)t
)

tr
−

r−1
∑

i=0

fi(y)
ti−r

i!
. (3.4)
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Multiplying exp(xt) in both sides of Eq. (3.4), it follows from Eq. (1.1) that

f(y, t) exp(xt) =

∞
∑

m=0

fm(x + y)
tm−r

m!
−

r−1
∑

i=0

fi(y)

i!

∞
∑

m=0

xm tm−(r−i)

m!
. (3.5)

The key idea now is to split the right-hand side of Eq. (3.5) into M1 + M2 − M3 − M4,
where

M1 =

r−1
∑

m=0

fm(x + y)
tm−r

m!
, M2 =

∞
∑

m=r

fm(x + y)
tm−r

m!

M3 =
r−1
∑

i=0

fi(y)

i!

r−i−1
∑

m=0

xm tm−(r−i)

m!
, M4 =

r−1
∑

i=0

fi(y)

i!

∞
∑

m=r−i

xm tm−(r−i)

m!
.

Note that in a similar consideration to Eq. (3.3) we have

M2 =

∞
∑

m=0

fm+r(x + y)

(m + 1)r

tm

m!
, M4 =

r−1
∑

i=0

fi(y)

i!

∞
∑

m=0

xm+r−i

(m + 1)r−i

tm

m!
, (3.6)

and M3 can be reduced in the following way

M3 =

r−1
∑

i=0

fi(y)

i!

r−1
∑

m=i

xm−i tm−r

(m − i)!
=

r−1
∑

m=0

[ m
∑

i=0

(

m

i

)

fi(y)xm−i

]

tm−r

m!
. (3.7)

Combining Eq. (3.5)–Eq. (3.7) it follows from Lemma 3.1 that

f(y, t) exp(xt) =

∞
∑

m=0

[

fm+r(x + y)

(m + 1)r

−

r−1
∑

i=0

fi(y)xm+r−i

i!(m + 1)r−i

]

tm

m!
. (3.8)

Thus, by Eq. (2.5) and Eq. (3.8) we derive
(

dn

dtn
f(y, t)

)

exp(xt) =

∞
∑

m=0

[ n
∑

k=0

(

n

k

)

(−x)n−k fm+k+r(x + y)

(m + k + 1)r

+ (−1)n+1xm+n+1 ×

r−1
∑

i=0

xr−1−i

( n
∑

k=0

(

n

k

)

(−1)k 1

(m + k + 1)r−i

)

fi(y)

i!

]

tm

m!
, (3.9)

In view of the properties of Beta and Gamma functions used in Eq. (1.10), we have
n

∑

k=0

(

n

k

)

(−1)k 1

(m + k + 1)r−i

=
1

(r − 1 − i)!

∫ 1

0

tm(1 − t)n(1 − t)r−1−idt.

It follows from Lemma 3.1 that
r−1
∑

i=0

xr−1−i

( n
∑

k=0

(

n

k

)

(−1)k 1

(m + k + 1)r−i

)

fi(y)

i!

=
1

(r − 1)!

∫ 1

0

tm(1 − t)n

[ r−1
∑

i=0

(

r − 1

i

)

fi(y)(x− xt)r−1−i

]

dt

=
1

(r − 1)!

∫ 1

0

tm(1 − t)nfr−1(x + y − xt)dt. (3.10)
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So from Eq. (3.9) and Eq. (3.10), we have

(

dn

dtn
f(y, t)

)

exp(xt) =

∞
∑

m=0

[ n
∑

k=0

(

n

k

)

(−x)n−k fm+k+r(x + y)

(m + k + 1)r

+
(−1)n+1xm+n+1

(r − 1)!
×

∫ 1

0

tm(1 − t)nfr−1(x + y − xt)dt

]

tm

m!
. (3.11)

Equating Eq. (3.2) and Eq. (3.11), and comparing the coefficients of tm/m! we complete
the proof of Theorem 1.2. �
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