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Abstract

We study the asymptotic behavior of the terms in sequences satisfying recur-
rences of the form an = an−1 +

∑n−d
k=d f(n, k)akan−k where, very roughly speaking,

f(n, k) behaves like a product of reciprocals of binomial coefficients. Some examples
of such sequences from map enumerations, Airy constants, and Painlevé I equations
are discussed in detail.

1 Main results

There are many examples in the literature of sequences defined recursively using a con-
volution. It often seems difficult to determine the asymptotic behavior of such sequences.
In this note we study the asymptotics of a general class of such sequences. We prove
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subexponential growth by using an iterative method that may be useful for other recur-
rences. By subexponential growth we mean that, for every constant D > 1, an = o(Dn)
as n → ∞. Thus our motivation for this note is both the method and the applications
we give.

Let d > 0 be a fixed integer and let f(n, k) > 0 be a function that behaves like a
product of some powers of reciprocals of binomial coefficients, in a general sense to be
specified in Theorem 1. We deal with the sequence an for n > d where ad, ad+1, · · · , a2d−1 >

0 are arbitrary and, when n > 2d,

an = an−1 +
n−d
∑

k=d

f(n, k)akan−k. (1)

Without loss of generality,

we assume that f(n, k) = f(n, n − k)

since we can replace f(n, k) and f(n, n − k) in (1) with 1
2
(f(n, k) + f(n, n − k)).

Theorem 1 proves subexponential growth. Theorem 2 provide more accurate estimates
under additional assumptions. In Section 2, we apply the corollary to some examples.

Theorem 1 (Subexponential growth) Let an be defined by recursion (1) with ad > 0.
Suppose there is a function R(x) defined on (0, 1/2], an α > 0 and an r such that

(a) 0 < R(x) < r < 1,

(b) limx→0+ R(x) = 0,

(c) 0 6 f(n, k) = O
(

n−αRk−d(k/n)
)

uniformly for d 6 k 6 n/2.

Then an grows subexponentially; in fact,

an = (1 + O(n−α)) an−1. (2)

Proof: We first note that the an are non-decreasing when n > 2d − 1.
Our proof is in three steps. We first prove that an = O(Cn) for some constant

C > 2. We then prove that C can be chosen very close to 1. Finally we deduce (2) and
subexponential growth.

First Step: Since the bound in (c) is bounded by some constant times the geometric
series n−αrk−d with ratio less than 1,

∑n−d
k=d f(n, k) = O(n−α). Hence we can choose M

so large that
∑n−d

k=d f(n, k) < 1/4 when n > M . Next choose C > 2 so large (C =
max{ad, ad+1, ..., a2d−1, aM , 2} will do) that an < 2Cn for n 6 M . By induction, using the
recursion (1), we have for n > M

an < 2Cn−1 + (1/4)4Cn
6 Cn + Cn = 2Cn.
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Second Step: By (b) there is a λ in (0, 1/2) such that R(x) < 1
2C

for 0 < x < λ. Fix
any D 6 C such that an = O(Dn), which is true for D = C by the First Step.

Split the sum in (1) into λn 6 k 6 (1 − λ)n and the rest, calling the first range of k
the “center” and the rest the “tail”. Noting r < 1, the center sum is bounded by

2

n/2
∑

k=λn+1

f(n, k)akan−k = O

(

Dn

n/2
∑

k=λn+1

rk−d

)

= O
(

(rλD)n
)

. (3)

Since aj are increasing, the tail sum is bounded by

2
λn
∑

k=d

f(n, k)akan−k = O(n−α)an−1

λn
∑

k=d

R(x)k−dDk (4)

= O(n−α)an−1

λn
∑

k=d

(DR(x))k−d = O
(

n−αan−1

)

,

where the last equality follows from the fact that DR(x) < 1/2. Combining (3) and (4),

an =
(

1 + O(n−α)
)

an−1 + O((rλD)n). (5)

When rλD > 1, induction on n easily leads to an = O((rλD′)n) for any D′ > D, an
exponential growth rate no larger than rλD′.

Since rλ has a fixed value less than one, we can iterate this process, replacing D by
rλD′ at the start of the Second Step. We finally obtain a growth rate D > 1 with rλD < 1.
This completes the second step.

Third Step: With the value of D just obtained, the last term in (5) is exponentially
small and hence is O(n−αan−1). Thus we obtain (2) which immediately implies subexpo-
nential growth of an, since 1 + O(n−α) < D for any D > 1 and sufficiently large n.

To say more than (2), we need additional information about the behavior of the f(n, k).
When f(n, k)/f(n, d) is small for each k in the range d + 1 6 k 6 n− d− 1, the first and
last terms dominate the sum. The following theorem is based on this observation.

Theorem 2 (Asymptotic behavior) Assume (a)–(c) of Theorem 1 hold. Suppose fur-
ther that there is a β > 0 such that

f(n, k)

f(n, d)
= O(n−βrk−d−1) uniformly for d + 1 6 k 6 n/2. (6)

Then

log an = 2ad

n
∑

k=2d+1

f(k, d) + O

( n
∑

k=2d

f(k, d)
(

k−α + k−β
)

)

. (7)
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Proof: We assume n > 2d. Remove the k = d and k = n − d terms from the sum in (1).
We first deal with the remaining sum. Theorem 1 gives ak = O(Dk) for all D > 1, so we
can assume D < 1/r. Using (6)

n−d−1
∑

k=d+1

f(n, k)akan−k = O
(

f(n, d)n−βan−1

)

n/2
∑

k=d+1

rk−d−1Dk

= O
(

f(n, d)n−βan−1

)

.

Combining this with (1), we obtain

an = an−1 + 2adf(n, d)an−d + f(n, d)O(n−β)an−1

= an−1

(

1 + 2adf(n, d) + {O(n−α) + O(n−β)}f(n, d)
)

,

Taking logarithms and noting for expansion purposes that f(n, d) = O(n−α), we obtain

log an − log an−1 = 2adf(n, d) + O
((

n−α + n−β
)

f(n, d)
)

.

Sum over n starting with n = 2d + 1. The theorem follows immediately when we note
that the constant terms can be incorporated into the O( ) in (7) since the sum therein is
bounded below by a nonzero constant.

Corollary 1 Assume the conditions of Theorem 2 hold and f(n, d) = Θ(n−α).

• If α < 1, then an = exp (Θ (n1−α)).

• If α > 1, then an = K + O(n1−α) for some constant K.

• If f(n, d) − A/n are the terms of a convergent series, then an ∼ Cn2Aad for some
positive constant C.

Proof: Since α > 0 and β > 0, (7) gives log an = Θ(
∑n

k=2d+1 k−α). The case α < 1 follows
immediately; for α > 1, we see that an is bounded and nondecreasing and therefore has
a limit K. For m > n, (2) gives log(am/an) = O(n1−α) uniformly in m. Letting m → ∞,
we obtain the claim regarding α > 1.

For α = 1, the first sum in (7) is A log n + B + o(1) for some constant B, and the last
sum in (7) converges.

2 Examples

We apply Theorem 2 and Corollary 1 to some recursions which arise from combinatorial
applications. In our examples, f(n, k) behaves like a product of the reciprocal of binomial
coefficients, which satisfies the conditions of Theorems 1 and 2. A more general case of
interest is when f(n, k) takes the form of the product of functions like

g(n, k) =
[a]k [a]n−k

[a]n
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for some constant a > 0, where [x]k = x(x+1) · · · (x+k−1) = Γ(x+k)
Γ(k)

, the rising factorial.

We note that when a = 1, g(n, k) =
(

n
k

)−1
.

We begin with some useful bounds. When a > 0 and 1 6 k 6 n/2,

g(n, k) =

k−1
∏

j=0

a + j

a + n − k + j
<

(

a + k

a + n

)k

(8)

6 (k/n)k

(

1 + a/k

1 + a/n

)k

= O
(

(k/n)k
)

= O
(

n−1(3k/2n)k−1
)

since k(2/3)k−1 is bounded. So g satisfies the condition on f in Theorem 1(c), with α = 1.
Similarly, when a > 0 and d 6 k 6 n/2,

g(n, k)

g(n, d)
=

k−d−1
∏

j=0

a + d + j

a + n − k + d + j
= O

(

n−1(3k/2n)k−d−1
)

. (9)

This is in accordance with (6) with β = 1.

Example 1 (Map enumeration constants) There are numbers tn appearing in the
asymptotic enumeration of maps in an orientable surface of genus n, whose value does
not concern us here. Define un by

tn = 8
[1/5]n [4/5]n−1

Γ
(

5n−1
2

)

(

25

96

)n

un.

Then u1 = 1/10 and un satisfies the following recursion [3]

un = un−1 +
n−1
∑

k=1

f(n, k)ukun−k for n > 2, (10)

where

f(n, k) =
[1/5]k [1/5]n−k

[1/5]n

[4/5]k−1 [4/5]n−k−1

[4/5]n−1

.

From the observations above, the conditions of Theorem 2 are satisfied with d = 1,
R(λ) = (3λ/2)2 and α = β = 2. Hence, un ∼ K for some constant K. Unlike the proof
in [3], this does not depend on the value of u1.

Example 2 (Airy constants) The Airy constants Ωn are determined by Ω1 = 1/2 and
the recurrence [7]

Ωn = (3n − 4)nΩn−1 +

n−1
∑

k=1

(

n

k

)

ΩkΩn−k for n > 2.
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Let Ωn = n! [2/3]n−1 3nan. Then an satisfies (1) with d = 1 and

f(n, k) =
[2/3]k−1 [2/3]n−k−1

[2/3]n−1

.

Theorem 2 applies with d = 1, R(λ) = 3λ/2 and α = β = 1. Since

f(n, 1) =
1

n − 4/3
=

1

n
+

4/3

n(n − 4/3)

and a1 = 1/6, we have an ∼ Cn1/3 for some constant C.
We note that it is possible to apply the result of Olde Daalhuis [13] to obtain a full

asymptotic expansion for Ωn. Let

An =
Ωn

3nn!
.

Then the recursion for Ωn becomes

An = (n − 4/3)An−1 +
n−1
∑

k=1

AkAn−k, n > 2.

It follows that the formal series

F (z) =
∑

n>1

An

zn

satisfies the Riccati equation

F
′

(z) +

(

1 +
1

3z

)

F (z) − F 2(z) − 1

6z
= 0.

It then follows from the result of Olde Daalhuis [13] that

An ∼ 1

2π

∞
∑

k=0

bkΓ(n − k), as n → ∞,

where b0 = 1 and bk can be computed using the recursion

bk =
−2

k

k+1
∑

j=2

bk+1−jAj , k > 1.

In particular, we have

Ωn ∼ 1

2π
Γ(n)3nn! =

1

2πn
(n!)23n, as n → ∞.

It is well known that solutions to the Riccati equation have infinitely many singulari-
ties, hence F (z) (via its Borel transform [2]) cannot satisfy a linear ODE with polynomial
coefficients. This implies that the sequence An (and hence Ωn) is not holonomic.
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Example 3 The following recursion, with ℓ > 0 and ℓ 6= 1/2, appeared in [6]. The
Airy constants are the special case ℓ = 1. The case ℓ = 2 corresponds to the recursion
studied in [9, 10], which arises in the study of the Wiener index of Catalan trees. We have

C1 = Γ(ℓ−1/2)√
π

and, for n > 2,

Cn = n
Γ(nℓ + (n/2) − 1)

Γ((n − 1)ℓ + (n/2) − 1)
Cn−1 +

1

4

n−1
∑

k=1

(

n

k

)

CkCn−k. (11)

Define an by Cn = n! g(n)an where g(1) = 1 and

g(m) =

m
∏

k=2

Γ(kℓ + (k/2) − 1)

Γ((k − 1)ℓ + (k/2) − 1)
.

Then (11) becomes

an = an−1 +

n−1
∑

k=1

g(k)g(n − k)

4g(n)
akan−k,

so f(n, k) = g(k)g(n− k)/4g(n).
With a fixed and x → ∞ and using 6.1.47 on p.257 of [1] (or using Stirling’s formula),

we have

Γ(x + a)

Γ(x)
= xa

(

1 +
a(a − 1)

2x
+ O(1/x2)

)

= xa

(

1 +
a − 1

2x

)a
(

1 + O(1/x2)
)

(12)

=

(

x +
a − 1

2

)a
(

1 + O(1/x2)
)

. (13)

When m > 1, (13) gives us

g(m) =
m
∏

k=2

(

(2ℓ + 1)k − ℓ − 3

2

)ℓ
(

1 + O(1/k2)
)

= Θ(1)

(

(ℓ + 1/2)m

m
∏

k=2

(

k − ℓ + 3

2ℓ + 1

)

)ℓ

= Θ(1)
(

(ℓ + 1/2)m [a]m−1

)ℓ
, where a =

3ℓ − 1

2ℓ + 1
.

Hence

f(n, k) = Θ(1)

∣

∣

∣

∣

[a]k−1 [a]n−k−1

[a]n−1

∣

∣

∣

∣

ℓ

.

where the absolute values have been introduced to allow for a < 0. A slight adjustment
of the argument leading to (8) and (9) leads to

f(n, k) = O(n−ℓ(3k/2n)ℓ(k−1)) and
f(n, k)

f(n, 1)
= O(n−ℓ(3k/2n)ℓ(k−d−1))
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for 1 6 k 6 n/2. Hence Theorem 2 applies with α = β = ℓ, and an converges to a
constant when ℓ > 1 by Corollary 1.

It is interesting to note that there is a simple relation between the sequence un in
Example 1 and the sequence an in Example 3 with ℓ = 2. It is not difficult to check that
the f(n, k) defined in Example 3 is exactly five times the f(n, k) in Example 1: since
a1 = 5u1, we have an = 5un for all n > 1. This simple relation suggests a relationship
between the number of maps on an orientable surface of genus g and the gth moment of
a particular toll function on a certain type of trees. Using a bijective approach, Chapuy
[4] recently found an expression for tg as the gth moment of the labels in a random
well-labelled tree.

3 A convolutional recursion arising from Painlevé I

The following is recursion (44) in [11].

αn = (n − 1)2αn−1 +
n−2
∑

k=2

αkαn−k, n > 1, n > 3. (14)

It follows from Proposition 14 of [11] that, for 0 < α1 < 1 and α2 = α1 − α2
1,

αn = c(α1)((n − 1)!)2

(

1 − 2α2(n − 3)

3(n − 1)2(n − 2)2
+ δn

)

, (15)

where c(α1) depends only on α1, and

δn = O(1/n4).

We note that αn for n > 3 depends only on α2. The proof of (15) relies on the fact
that 0 < α2 < 1/4 for 0 < α1 < 1. It is conjectured in [11] that the asymptotic expression
(15) actually holds for a wider range of values of α1.

For n > 1, let

pn =
αn

((n − 1)!)2
.

Then, as shown in [11], pn satisfies recursion (1) with d = 2 and

f(n, k) =

(

(n − k − 1)!(k − 1)!

(n − 1)!

)2

.

We note here f(n, 2) = O(n−4). It follows from Theorem 2 that

pn = p(1 + ǫn) for any α2 > 0,

where p = p(α2) is a positive constant and ǫn = O(1/n3).
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It is also interesting to note that, with α1 = 1/50, α2 = 49/2500, the sequence αn is
related to the sequence un in Example 1 by

αn = [1/5]n [4/5]n−1 un.

As mentioned in [11], the formal series v(t) =
∑

n>1 αnt−n satisfies

t2v′′ + tv′ − (t + 2α1)v + tv2 + α1 = 0, (16)

and hence, with

t =
8
√

6

25
x5/2,

y(x) = (x/6)1/2(1 − 2v(t)) satisfies the following Painlevé I:

y′′ = 6y2 − x.

This connection with Painlevé I is used in [8] to show that the sequence αn is not holonomic
(It follows that un and tn in Example 1 are also not holonomic). The proof uses the fact
that solutions to Painlevé I have infinitely many singularities and hence cannot satisfy a
linear ODE with polynomial coefficients.

In the following we apply the techniques of [14] to prove that (15) holds for any complex
constant α1. It is convenient to introduce the formal series

u0(z) = v(z2) =

∞
∑

n=2

bnz−n =

∞
∑

n=1

αnz−2n.

It follows from (16) that u = u0(z) is a formal solution to the differential equation

1

4
u′′ +

1

4z
u′ −

(

1 +
2α1

z2

)

u + u2 +
α1

z2
= 0.

The Stokes lines for this differential equation are the positive and the negative real axes.
When the negative real axis is crossed the Stokes phenomenon switches on a divergent
series

u1(z) = Ke2zz−1/2
∞
∑

n=0

cnz−n,

in which the Stokes multiplier K is a constant (depending on the constant α1). To
determine the coefficients cn we observe that u1 is a solution of the linear differential
equation

1

4
u′′

1 +
1

4z
u′

1 −
(

1 +
2α1

z2
− 2u0

)

u1 = 0.

Hence, for the coefficients cn we can take c0 = 1 and for the others we have

ncn =
1

4

(

n − 1

2

)2

cn−1 + 2
n+1
∑

k=4

bkcn+1−k, n > 1.
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The first five coefficients are

c0 = 1, c1 =
1

16
, c2 =

9

512
, c3 =

75

8192
+

2

3
α2, c4 =

3675

524288
+

13

24
α2.

In a similar manner it can be shown that when the positive real axis is crossed the Stokes
phenomenon switches on a divergent series

u2(z) = iKe−2zz−1/2

∞
∑

n=0

(−1)ncnz−n.

This is all the information that is needed to conclude that

αn = b2n ∼ K

π

∞
∑

k=0

(−1)kck

Γ(2n − k − 1
2
)

22n−k−(1/2)
, as n → ∞.

By taking the first 4 terms in this expansion we can verify that (15) holds for any complex
constant α1.

For more details see [12], [13] and [14]. (It’s best to get the version of the first reference
on the website http://www.maths.ed.ac.uk/ adri/public.htm.)

Acknowledgement We would like to thank Philippe Flajolet for bringing our attention
to references [5] and [7]

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
With Formulas, Graphs and Mathematical Tables, National Bureau of
Standards, Applied Mathematics Series - 55 (1964). Available online at
http://www.math.sfu.ca/∼cbm/aands/ and other sites.

[2] W. Balser, From divergent series to analytic functions, Springer-Verlag Lecture Notes,
No 1582 (1994)

[3] E.A. Bender, Z.C. Gao and L.B. Richmond, The map asymptotics constant tg, Elec-
tron. J. Combin. 15 (2008), R51.

[4] G. Chapuy, The structure of unicellular maps, and a connection between maps of
positive genus and planar labelled trees, preprint, 2009.

[5] J. A. Fill , P. Flajolet, and N. Kapur, Singularity analysis, Hadamard products, and
tree recurrences, J. Comput. Appl. Math. 174 (2005), 271–313.

[6] J. A. Fill and N. Kapur, Limiting distributions for additive functionals, Theoret.
Comput. Sci. 326 (2004), 69–102.

[7] P. Flajolet and G. Louchard, Analytic variations on the Airy distribution, Algorith-
mica 31 (2001), 361–377.
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