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Abstract

The asymptotic density of random permutations with given properties of the

kth shortest cycle length is examined. The approach is based upon the saddle point

method applied for appropriate sums of independent random variables.

1 Introduction

Let n ∈ N, Sn be the symmetric group of permutations acting on the set {1, 2, . . . , n}, and
S := S1∪S2 · · · Set νn for the uniform probability measure on Sn. By νn(A) := νn(A∩Sn),
we trivially extend it for all subsets of S. If the limit

lim
n→∞

νn(A) =: d(A), A ⊂ S

exists, d(A) can be called the asymptotic density of A. Let S ⊂ S be the class of A having
an asymptotic density d(A). The triple {S,S, d} is far from being a probability space.
However, the behavior of d(Am) for some specialized subsets Am ∈ S as m → ∞ are
worth to be investigated. In this paper, we demonstrate that by taking sets connected to
the ordered statistics of different cycle lengths.

Recall that each σ ∈ Sn can be uniquely (up to the order) written as a product of
independent cycles. Let kj(σ) > 0 be the number of cycles of length j, 1 6 j 6 n, in such
decomposition. The structure vector is defined as

k̄(σ) : =
(

k1(σ), . . . , kn(σ)
)

.

∗The final version of this paper was written during the author’s stay at Institute of Statistical Science

of Academia Sinica, Taipei. We gratefully acknowledge the support and thank Professors Hsien-Kuei

Hwang and Vytas Zacharovas for the warm hospitality.

the electronic journal of combinatorics 17 (2010), #R100 1



Set ℓ(k̄) := 1k1 + · · · + nkn, where k̄ := (k1, . . . , kn) ∈ Zn
+, then ℓ(k̄(σ)) = n. Moreover,

if ℓ(k̄) = n, then the set {σ ∈ Sn : k̄(σ) = k̄} agrees with the class of conjugate
permutations in Sn. If ξj, j > 1, are independent Poisson random variables (r.vs) given
on some probability space {Ω,F , P}, Eξj = 1/j, and ξ̄ : = (ξ1, . . . , ξn), then [2]

νn

(

k̄(σ) = k̄
)

= 1{ℓ(k̄) = n}
n

∏

j=1

1

jkjkj!
= P

(

ξ̄ = k̄
∣

∣ ℓ(ξ̄) = n
)

,

where 1 denotes the indicator function. Moreover,
(

k1(σ), . . . kn(σ), 0, . . . ,
) νn⇒

(

ξ1, . . . , ξn, ξn+1, . . .
)

(1)

in the sense of convergence of the finite dimensional distributions. Here and in what
follows we assume that n → ∞. The so-called Fundamental Lemma sheds more light
than (1). We state it as the following estimate of the total variation distance. If k̄(σ)r :=
(

k1(σ), . . . , kr(σ)
)

and ξ̄r := (ξ1, . . . , ξr), then [1]

1

2

∑

k̄∈Zr
+

∣

∣

∣
νn

(

k̄(σ)r = k̄
)

− P
(

ξ̄r = k̄
)

∣

∣

∣
= R(n/m) (2)

for 1 6 r 6 n. Here and in the sequel R(u) denotes an error term which has the upper
bound

R(u) = O(e−u log u+O(u)) (3)

with some absolute constants in O(·).
In the recent decade, a lot of investigations were devoted to the limit distributions of

values of additive functions with respect to νn. Given a real two dimensional sequence
{hj(k)}, j, k > 1, hj(0) ≡ 0, such a function is defined as

h(σ) =
∑

j6n

hj(kj(σ)).

The relevant references can be found in [2], [12], [15] and other papers. The family of
additive functions

s(σ, y) =
∑

j6y

1
{

kj(σ) > 1
}

, 1 6 y 6 n,

is closely related to the ordered statistics

j1(σ) < j2(σ) < · · · < js(σ)

of different cycle lengths appearing in the decomposition (1). Now s := s(σ, n) counts all
such lengths. We have s(σ, jk(σ)) = k for each 1 6 k 6 s. The last relation and the laws
of iterated logarithm for s(σ, m) led [14] to the following result.

Denote Lu = log max{u, e} = L1u, . . . , Lru = L(Lr−1u) for u ∈ R. For 0 < δ < 1 and
r > 2, set

βrk(1 ± δ) =

(

2k
(

L2k +
3

2
L3k + L4k + · · · + (1 ± δ)Lrk

)

)1/2

.
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Theorem ([14]). For arbitrary 0 < δ < 1 and r > 2, we have

lim
n1→∞

lim
n→∞

νn

(

max
n16k6s

| log jk(σ) − k|
βrk(1 + δ)

> 1

)

= 0

and

lim
n1→∞

lim
n→∞

νn

(

max
n16k6s

| log jk(σ) − k|
βrk(1 − δ)

> 1

)

= 1.

Thus, we may say that ”for almost all σ ∈ Sn”

| log jk(σ) − k| 6 βrk(1 + δ)

uniformly in k, n1 6 k 6 s, where n1 → ∞ arbitrarily slowly. This assertion is sharp
in the sense that we can not change δ by −δ. It can be compared with the following
corollary of the invariance principle (see [3], [14]) where the convergence of distributions
is examined.

Theorem ([14]). Uniformly in x ∈ R,

νn

(

max
k6s

| log jk(σ) − k| 6 x
√

log n
)

=
1√
2π

∑

l∈Z

(−1)l

∫ x

−x

e−(u−2lx)2/2du + o(1).

Instead of jk(σ), 1 6 k 6 s, one can deal with the sequence

J1(σ) 6 J2(σ) 6 · · · 6 Jw(σ)

of all cycle lengths appearing in the decomposition of σ. The behavior of these ordered
statistics is similar, however, some technical differences do arise in their analysis. Section
3.2 of the paper by D. Panario and B. Richmond [16] contains rather complicated asymp-
totical formulas for νn(Jk(σ) = m) as m, n → ∞ if k is fixed. We are more interested
into the case when k is unbounded therefore we now include V.F. Kolchin’s result for the
so-called middle region.

Theorem ([9]). Let 0 < α < 1 be fixed, k = α log n + o(
√

log n), and n → ∞. Then

νn

(

log Jk(σ) 6 k + x
√

k
)

=
1√
2π

∫ x

−∞
e−u2/2du + o(1) =: Φ(x) + o(1).

Despite such variety of results, the frequency

νn

(

jk(σ) = m
)

= νn

(

km(σ) > 1, s(σ, m − 1) = k − 1
)

, (4)

where 1 6 k 6 m 6 n, can further be examined. Observe that the event under frequency
is described in terms of the first m components kj(σ) of the structure vector. If m =
o(n), then by (2) its frequency can be approximated by an appropriate probability for
independent random variables ξj, 1 6 j 6 m.

Introduce the independent Bernoulli r. vs ηj , j > 1, such that

P (ηj = 1) = 1 − e−1/j = 1 − P (ηj = 0)

and set Xy =
∑

j6y ηj where 1 6 y 6 n.
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Proposition 1. For 1 6 k 6 m = o(n),

νn

(

jk(σ) = m
)

= P (ηm = 1)P (Xm−1 = k − 1) + R(n/m)

=
(

1 − e−1/m
)

exp

{

−
∑

j<m

1

j

}

∑

16j1<···<jk−1<m

k−1
∏

r=1

(

e1/jr − 1
)

+R(n/m),

where the remainder term is estimated in (3).

This simple corollary following from (2) motivates our interest to the probabilities
Pm(k) := P (Xm = k) if k > 0 and m > 3. Of course, we can exclude the trivial cases
Pm(k) = 0 if k > m,

Pm(0) = exp

{

−
∑

j6m

1

j

}

∼ e−γ

m
,

and

Pm(m) =
∏

j6m

(1 − e−1/j) ∼ C0

√

Pm(0)

m!
.

Here m → ∞, γ is the Euler constant, and

C0 =
∏

j>1

(

1 +
1

2!j
+

1

3!j2
+ · · ·

)

e−1/(2j).

Contemporary probability theory provides a lot of local theorems for sums of inde-
pendent Bernoulli r. vs. Since

λm := EXm =
∑

j6m

(1 − e−1/j) = log m + C + O
( 1

m

)

,

C := γ +
∑

j>1

(

1 − e−1/j − 1

j

)

,

and, similarly,

VarXm = log m + C1 + O
( 1

m

)

,

where C1 is a constant, and m > 3, the results on the so-called large deviations imply
the approximations for Pm(k) in the region k − log m = o(log m) as m → ∞ (see [17],
Chapter VIII or [7]). H.-K. Hwang’s work [8] as well as many others can be used in this
zone. However, we still have a great terra incognita if (1 + ε) log m 6 k 6 m − 1 where
ε > 0. The present paper sheds some light to it. First, we prove some new asymptotic
formulas for Pm(k) which are nontrivial outside the region of classical large deviations.
Further, we apply them by inserting into the equalities given in Proposition 1. The very
idea goes back to the number-theoretical paper by P. Erdős and G. Tenenbaum [6].
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We now introduce some notation. Denote

F (z, m) =
∑

06k6m

qk(m)zk :=
∏

j6m

(

1 +
(

e1/j − 1
)

z

)

, z ∈ C.

Then Pm(k) = qk(m)/F (1, m). Let ρ(t, m) satisfy the saddle point equation

x
F ′(x, m)

F (x, m)
=

∑

j6m

x

aj + x
= t, aj := (e1/j − 1)−1 (5)

for 0 6 t 6 m − 1. Set
W (t) = Γ(t + 1)t−tet (6)

if t > 0 and W (0) = 1, where Γ(t) denotes the Euler gamma-function.

Theorem 1. Let 0 < ε < 1 be arbitrary, m > 3, and 00 := 1. Then

Pm(k) =
F (ρ(k, m), m)

F (1, m)

1

ρ(k, m)kW (k)

(

1 + O
( 1

log m

)

)

uniformly in 0 6 k 6 m1−ε.

Further analysis of the involved quantities leads to interesting simpler formulae. Set

L(t, m) = log
m

1 + t/ log m
.

Corollary. If 0 6 k 6 m1−ε, then

Pm(k) =
1

F (1, m)

L(k, m)k

k!
exp

{

O
( k

log m

)}

, (7)

and

Pm(k) =
F (k/L(k, m), m)

F (1, m)

(L(k, m)

e

)k 1

k!
exp

{

O
( k

log2 m
+

1

log m

)}

. (8)

The first formula in the corollary implies an asymptotic expression only in the region
k = o(log m), however, it yields an effective estimate of Pm(k) for 0 6 k 6 m1−ε. The
classical results for k − log m = o(log m) are hidden in the second one. Instead of going
into the details of that, we return to the cycle lengths and exploit Proposition 1. Set

dk(m) = d
(

jk(σ) = m
)

= (1 − e−1/m)Pm−1(k − 1). (9)

Theorem 2. Let m > 3, 0 < ε < 1, and 1 6 k 6 m1−ε. Then

dk+1(m)

dk(m)
=

L(k, m)

k

(

1 + O
( 1

log m

)

)

. (10)

Moreover,

max
16k6m

dk(m) =
1

m
√

2π log m

(

1 + O
( 1

log m

)

)

(11)

and the maximum is achieved at

k = km = log m + O(1).
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Having this and some other arguments in mind, we conjecture that dk(m) is unimodal
for 1 6 k 6 m and all m > 3.

Going further, we can exploit an idea from the renewal theory. The event {σ : jk(σ) >
y} occurs if and only if σ ∈ Sn has less than k cycles with lengths in [1, y]. Hence, by (2),

d
(

jk(σ) > y
)

= d
(

s(σ, y) < k
)

= P (Xy < k).

The last probability is traditionally examined as y → ∞ and k = k(y) belonging to
specified regions. This can be exploited. For instance, applying formula (16) from [4], we
have

sup
k>1

∣

∣d
(

jk(σ) > y
)

− Πλy(k)
∣

∣ =
1

2λy

√
2πe

∑

j6y

(1 − e−1/j)2 + O
(

(log y)−3/2
)

,

where Πλy(·) is the Poisson distribution with the parameter λy defined above. The paper
[4] and many other works published in the last decade provide even more exact approxi-
mations applicable for d

(

jk(σ) > y
)

.
We now seek an asymptotical formula for it as k → ∞, where y = y(k) is a suitably

chosen function of k. That may be ascribed to the renewal theory when the summands
ηj , j > 1 in Xy are independent but non-identically distributed. The next our result
resembles in its form the Kolchin’s theorem. The very idea goes back to the number-
theoretical paper [5] by J.-M. De Koninck and G. Tenenbaum.

Theorem 3. We have

d
(

log jk(σ) 6 k + x
√

k
)

= Φ(x) − x2 − 1 − 3C

3
√

2πk
e−x2/2 + O

(1

k

)

(12)

uniformly in k > 1 and x ∈ R.

Finally, we observe that these results can be used to obtain asymptotical formulas for
maxm>k dk(m) as k → ∞. We intend to discuss that in a forthcoming paper.

2 The saddle point method

Since Pm(k) = qk(m)/F (1, m), it suffices to analyze the Cauchy integral

qk(m) =
1

2πi

∫

|z|=ρ

F (z, m)

zk+1
dz. (13)

Similar but more complicated integrals have been the main task in the work on the number
of permutations missing long cycles (see [10] and [11]). We now exploit this experience
and the ideas coming from paper [6].

Henceforth let k > 0, m > 3, and 0 < ε < 1. For 0 6 t 6 m1−ε, we have L :=
L(t, m) ≍ log m. Here and in the sequel the symbol a ≍ b means a ≪ b and b ≪ a while
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≪ is an analog of O(·). The implicit constants in estimates depend at most on ε therefore
the remainder O(1/L) is just a shorter form of O(1/ logm).

Observe that the functions x/(aj + x), 1 6 j 6 m − 2, are strictly increasing for
x ∈ [0,∞) = R+ therefore the sum over j varies from 0 to the value m − 0. This proves
the existence of a unique ρ(t, m) > 0 for 0 < t 6 m−1 and m > 3. Moreover, ρ(0, m) = 0.
The main task of this section is to prove the following proposition.

Proposition 2. Let ρ(k, m) be the solution to equation (5) for t = k. Then

qk(m) =
F (ρ(k, m), m)

ρ(k, m)kW (k)

(

1 + O
( 1

L

)

)

uniformly in 0 6 k 6 m1−ε. The function W (t) has been defined in (6).

Firstly, we prove a few lemmas.

Lemma 1. For all 0 6 t 6 m1−ε,

ρ(t, m) =
t

L(t, m)

(

1 + O
( 1

L

)

)

. (14)

Proof. By the definition, using the inequalities 0 < j − aj 6 2 for all j > 1 and the
abbreviation ρ := ρ(t, m), for t > 0, we obtain

t

ρ
=

∑

j6m

1

j + ρ
+

∑

j6m

(

1

aj + ρ
− 1

j + ρ

)

=

∫ m

1

du

u + ρ
+ O(1) = log

m + ρ

1 + ρ
+ O(1). (15)

By virtue of

m1−ε
> t >

mρ

m + ρ
,

we have ρ ≪ m1−ε. Now (15) reduces to

t

ρ
= log

m

1 + ρ
+ O(1). (16)

If ρ ≪ 1, then t/ρ = log m + O(1). The last equality is equivalent to (14).
In the remaining case 1 ≪ ρ ≪ m1−ε, where m > m(ε) is sufficiently large, by (16),

log m + O(1) >
t

ρ
> ε log m + O(1).

Hence ρ = Bt/ log m with some B = B(t, m), where 0 < c(ε) 6 B 6 C(ε) for all m > 3
and some constants c(ε) and C(ε) depending on ε. Since

log(1 + ρ) = log
(

1 +
t

log m

)

+ log
log m + Bt

log m + t

= log
(

1 +
t

log m

)

+ O(1),

the electronic journal of combinatorics 17 (2010), #R100 7



from (16) we obtain the desired formula (14).
The lemma is proved.

We set bj := a−1
j = e1/j − 1 and examine an analytic function ϕ(z) which, for |z| < a1

or ℜz > 0, is defined by

ϕ(z) :=
∑

j6m

log(1 + bjz) = log F (z, m).

Denote

sr =
drϕ(ρew)

dwr

∣

∣

∣

∣

w=0

.

Lemma 2. In the above notation, if 1 6 k 6 m1−ε, then

ϕ(ρ) = k + O(ρ) = k
(

1 + O(L−1)
)

. (17)

If |z − 1| 6 (1 + 2ρ)/4ρ, then

f(z) := ϕ(ρz) − ϕ(ρ) = k(z − 1) + O(kL−1|z − 1|2). (18)

Moreover, s1 = k and

sr = k
(

1 + O(L−1)
)

, r > 2. (19)

Proof. We will use the estimates 0 < bj 6 min{2, e/j} and 0 < bj − 1/j 6 2j−2 for
j > 1. It suffices to take sufficiently large m.

In the proof of Lemma 1, we observed that ρ 6 C1(ε)m
1−ε. If ρ > (2e)−1, then

ϕ(ρ) =

(

∑

2eρ<j6m

+
∑

j62eρ

)

log(1 + bjρ)

= ρ
∑

2eρ<j6m

bj + O

(

ρ2
∑

2eρ<j6m

1

j2

)

+ O

(

∑

j62eρ

log(3eρ/j)

)

= ρ log
m

ρ + 1
+ O(ρ)

= k + O(ρ) = k
(

1 + O(L−1)
)

.

In the last step we applied formula (14) and in the step before that we applied formula
(16). The derived expression for ϕ(ρ) also holds in the easier case ρ < (2e)−1. We omit
the details.

To prove formula (18), we observe that

bjρ|z − 1|
1 + bjρ

6
2ρ

1 + 2ρ
· 1 + 2ρ

4ρ
=

1

2

in the given region, therefore the function

f(z) =
∑

j6m

log

(

1 +
bjρ(z − 1)

1 + bjρ

)

the electronic journal of combinatorics 17 (2010), #R100 8



is analytic in it. Expanding the logarithm, we obtain

f(z) = (z − 1)
∑

j6m

bjρ

1 + bjρ
+ O

(

ρ2|z − 1|2
∑

j6m

1

j2 + ρ2

)

= k(z − 1) + O

(

ρ2|z − 1|2
ρ + 1

)

= k(z − 1) + O
(

kL−1|z − 1|2
)

.

To derive relations (19), it suffices to apply (18) and Cauchy’s formula on the circum-
ference |w| = c, where c > 0 is chosen so that |ew − 1| 6 cec 6 1/2 6 (1 + 2ρ)/(4ρ).

The lemma is proved.

Remark. The argument mentioned in the last step actually yields the Taylor expan-
sion of f(ew) in the region |w| 6 c.

Lemma 3. There exists an absolute positive constant c1 such that

|F (ρeiτ , m)| ≪ exp
{

− c1kτ 2}F (ρ, m)

uniformly in 1 6 k 6 m1−ε and |τ | 6 π.

Proof. We apply the identity

|1 + xeiτ |2
(1 + x)2

= 1 − 2x(1 − cos τ)

(1 + x)2

with x = bjρ 6 eρ/j 6 1/4 for j > 4eρ and obtain

|F (ρeiτ , m)|2
F (ρ, m)2

6
∏

4eρ6j6m

(

1 − 2bjρ(1 − cos τ)

(1 + bjρ)2

)

6 exp

{

∑

4eρ<j6m

log

(

1 − 2bjρ(1 − cos τ)

(1 + bjρ)2

)}

6 exp

{

−
∑

4eρ<j6m

bjρ(1 − cos τ)

(1 + bjρ)2

)}

6 exp

{

− 4

5
(1 − cos τ)

∑

4eρ<j6m

bjρ

1 + bjρ

}

.

Now, to involve k, using the definition of ρ we complete the sum in the exponent by the
quantity

∑

j64eρ

bjρ

1 + bjρ
= O(ρ) = O

( k

L

)

.

By virtue of the inequality 1 − cos τ > 2τ 2/π2, we now obtain

|F (ρeiτ , m)|2
F (ρ, m)2

6 exp

{

− 8τ 2

5π2
k
(

1 + O
( 1

L

))

}
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for 1 6 k 6 m1−ε. This implies the desired estimate if m > m(ε) is sufficiently large. For
3 6 m 6 m(ε), the claim of Lemma 3 is trivial.

The lemma is proved.

Proof of Proposition 2. For k = 0, its claim is evident therefore we assume that k > 1.
Firstly, we separate a special case. If ρ 6 1/6, then |z| = 1 implies |z−1| 6 2 6 (2ρ+1)/4ρ.
Thus estimate (18) is at our disposal. Moreover, as we have observed in the proof of
Lemma 1, k/ρ = log m + O(1) and L ≍ log m. So, using Lemma 2, we obtain

qk(m) =
F (ρ, m)

ρk2πi

∫

|w|=1

exp{f(w)}
wk+1

dw

=
F (ρ, m)

(eρ)k2πi

∫

|w|=1

ekw

wk+1

(

1 + O
(

kL−1|w − 1|2
))

dw

=
F (ρ, m)

(eρ)k

(

kk

k!
+ O

(

kek

L

∫ π

−π

e−k(1−cos τ)(1 − cos τ)dτ

))

.

By virtue of 1 − cos τ ≍ τ 2 for |τ | 6 π, the last integral is of order k−3/2. This and
Stirling’s formula yield the desired asymptotic formula in the selected case.

If 1/6 6 ρ ≪ m1−ε, then we can start with

qk(m) =
F (ρ, m)

ρk2π

∫ π

−π

exp{f(eiτ ) − ikτ}dτ.

Using the expansion of f(eiτ ) mentioned in Remark after Lemma 2, for |τ | 6 c, we have

f(eiτ ) = ikτ − 1

2
s2τ

2 − i

6
s3τ

3 + O(kτ 4).

Hence

exp{f(eiτ ) − ikτ} = e−s2τ2/2
(

1 − is3τ
3

6
+ O(kτ 4 + k2τ 6)

)

for |τ | 6 ck−1/3. Exploiting the symmetry of the term with τ 3 we have

I1 : =
1

2π

∫

|τ |6ck−1/3

exp{f(eiτ ) − ikτ}dτ

=
1

2π

(
∫

R

−
∫

|τ |>ck−1/3

)

e−s2τ2/2dτ + O(k−3/2)

=
1√
2πs2

+ O(k−3/2) =
1√
2πk

(

1 + O(L−1)
)

.

In the last step we used (19) and the inequality k ≫ L following from ρ > 1/6.
Applying Lemma 3 we obtain

I2 : =

∫

ck−1/36|τ |6π

|F (ρeiτ , m)|
F (ρ, m)

dτ

≪
∫

|τ |>ck−1/3

e−c1kτ2

dτ ≪ k−3/2.
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Collecting the estimates of I1 and I2, we see that

qk(m) =
F (ρ, m)

ρk

(

I1 + O(I2)
)

=
F (ρ, m)

ρk
√

2πk

(

1 + O(L−1)
)

.

Again Stirling’s formula yields the desired result.
The proposition is proved.

3 Proofs of Theorems and Corollaries

The claim of Theorem 1 follows from Proposition 2. We will discuss only the remaining
statements.

Proof of Corollary. The case k = 0 is trivial. If k > 1, formula (7) follows from
Proposition 2, (14), and (17).

To prove (8), let us set ρ = ρ(k, m) and L = L(k, m). Applying Proposition 2 we
approximate F (ρ, m) by F (k/L, m). That is available because of the inequality |k/(ρL)−
1| 6 1/2 following from (14) provided that m is sufficiently large. By (18) and (14), we
have

ϕ(ρ) = ϕ
(

ρ
k

ρL

)

− k
( k

ρL
− 1

)

+ O
( k

L

∣

∣

∣

k

ρL
− 1

∣

∣

∣

2)

= ϕ
( k

L

)

− k log
( k

ρL

)

+ O
( k

L2

)

.

Inserting this into the equality in Proposition 2 we complete the proof of (8).

Proof of Theorem 2. Observe that, for 1 6 k−1 6 t 6 k 6 m1−ε, we have L(t, m−1) =
L(k, m− 1) + O(1/ logm) and L(k, m− 1) = L(k, m) + O(1/m) therefore afterwards, for
different arguments, we may use L = L(k, m). Denote r(t) := ρ(t, m − 1), r0 = r(k − 1),
and r1 = r(k). Then, by Proposition 2,

dk+1(m)

dk(m)
=

qm−1(k)

qm−1(k − 1)

=
F (r1, m − 1)

F (r0, m − 1)

rk−1
0

rk
1

1

e

( k

k − 1

)k−1(

1 + O
( 1

L

))

for k > 1. Set
K(t) = log F

(

r(t), m − 1
)

− t log r(t).

We have

dk+1(m)

dk(m)
= exp

{
∫ k

k−1

K ′(t)dt − 1 + (k − 1) log
( k

k − 1

)

+ O
( 1

L

)

}

.
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By the definitions,

K ′(t) = r′(t)

(

F ′(r(t), m − 1
)

F
(

r(t), m − 1
) − t

r(t)

)

− log r(t)

= − log r(t) = log L − log t + O(L−1).

Inserting this expression into the previous equality and integrating we obtain the desired
result (10).

To prove (11), we first restrict the region to 1 6 k 6
√

m where all obtained remainder
term estimates contain absolute constants. Hence, by virtue of (10), we can find absolute
positive constants C2 and C3 such that dk(m) is increasing for 1 6 k 6 log m − C2 and
decreasing for log m + C3 6 k 6

√
m. If k = log m + O(1), then

L(k, m) = log m + O(1), ρ = ρ(k, m) = 1 + O(log−1 m),

and, by (18) applied with z = 1/ρ,

ϕ(ρ) − k log ρ − ϕ(1) ≪ 1/ log m.

This and Proposition 2 imply

Pm(k) =
exp

{

ϕ(ρ) − k log ρ − ϕ(1)
}

W (k)

(

1 + O
( 1

log m

)

)

=
1√

2π log m

(

1 + O
( 1

log m

)

)

for k = log m + O(1). The same holds for Pm−1(k − 1). Recalling (9) we obtain

max
16k6

√
m

dk(m) =
1

m
√

2π log m

(

1 + O
( 1

log m

)

)

. (20)

It remains to estimate dk(m) for
√

m 6 k 6 m. Differentiating the function F (z, m)
we have the estimate

qk(m) 6
1

k!

(

∑

j6m

(e−1/j − 1)

)k

6 exp
{

k log(2 log m + C4) − k log k + O(k)
}

≪ exp{−(1/3)
√

m log m}

which shows that the maximum of dk(m) = qk−1(m − 1)/F (1, m − 1) over 1 6 k 6 m is
given by (20).

The theorem is proved.

Proof of Theorem 3. Let

g(z) =
∑

j>1

(

log(1 + bjz) − bjz

1 + bj

)

+ Cz, G(z) = eg(z).
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The function g(z) has an analytic continuation to the region C\[−(e−1)−1,−∞), however,
we prefer to use it as a function of real variable. Observe that

G(u) = eγ
(

1 + C(u − 1) + O
(

(1 − u)2
)

)

. (21)

for u ∈ [0, T ], where T > 0 is an arbitrary fixed number and the constant in O(·) depends
on T . For such u, using elementary inequalities we can rewrite

F (u, y) = exp

{

∑

j6y

(

log(1 + bju) − bju

1 + bj

)

+ u
∑

j6y

(

bj

1 + bj
− 1

j

)

+ u
∑

j6y

1

j

}

= G(u)yu
(

1 + O(1/y)
)

, (22)

where the remainder depends on T only.
Let k > 1 be arbitrary, 0 6 l 6 k, and let y > 3 be such that k/10 6 log y 6 10k.

Then |L(l, y) − log y| 6 log 11 and

l

L(l, y)
=

l

log y

(

1 + O
( 1

log y

)

)

,

where the constant in O(·) is absolute. From formula (8) with y instead of m and (22)
with u = l/L(l, y), we obtain

ql(y) = F (1, y)Py(l)

= F
( l

L(l, y)
, y

)(L(l, y)

e

)l 1

l!

(

1 + O
(1

k

)

)

= G
( l

L(l, y)

)

exp
{ l log y

L(l, y)
+ l log L(l, y) − l

} 1

l!

(

1 + O
(1

k

)

)

= G
( l

log y

)(log y)l

l!

(

1 + O
(1

k

)

)

for 0 6 l 6 k with an absolute constant in the remainder term. In the exponent, we have
used the second order approximation of the logarithmic function.

If k/10 6 log y 6 10k, then recalling (21) and (22), we arrive at

d
(

jk(σ) > y
)

=
1

F (1, y)

∑

06l<k

ql(y)

=
∑

06l<k

(log y)l

l!y

{

1 + C
( l

log y
− 1

)

+ O

(

1

k
+

( l

log y
− 1

)2
)}

=
∑

06l<k

(log y)le− log y

l!
− C

(log y)k−1

(k − 1)!y
+ O

(1

k

)

.

Consequently, if |x| 6 k1/6 and k > 3, the last equality for y = ek+x
√

k implies

d
(

log jk(σ) > k + x
√

k
)

= Sk(log y) − (k + x
√

k)ke−k−x
√

k

k!

−C
(k + x

√
k)k−1

(k − 1)!
e−k−x

√
k + O

(1

k

)

, (23)

the electronic journal of combinatorics 17 (2010), #R100 13



where, by Lemma 2.1 from [5],

Sk(log y) :=
∑

06l6k

(k + x
√

k)le−k−x
√

k

l!
= 1 − Φ(x) +

(2 + x2)e−x2/2

3
√

2πk
+ O

(1

k

)

.

For the other terms in (23), Stirling’s formula yields

(k + x
√

k)ke−k−x
√

k

k!
=

e−x2/2

√
2πk

(

1 + O
( |x|3√

k

)

)(

1 + O
(1

k

)

)

=
e−x2/2

√
2πk

+ O
(1

k

)

provided that |x| 6 k1/6. The last quantity on the right-hand side is also equal to the
factor of −C in (23). Inserting these estimates into (23) we obtain the desired result (12)
for |x| 6 k1/6 and k > 3.

If x > k1/6, by monotonicity of x 7→ d
(

log jk(σ) > k + x
√

k
)

and the just proved
relation,

d
(

log jk(σ) > k + x
√

k
)

6 d
(

log jk(σ) > k + k2/3
)

≪ k−1.

Consequently, formula (12) trivially holds in this region. Similarly, if x 6 −k1/6, to verify
equality (12), we can use the estimate

d
(

log jk(σ) > k + x
√

k
)

6 d
(

log jk(σ) > k − k2/3
)

≪ k−1.

The theorem is proved.
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[1] R. Arratia and S. Tavaré, The cycle structure of random permutations, Ann. Probab.,
1992, 20, 3, 1567–1591.

[2] R. Arratia, A.D. Barbour and S. Tavaré, Logarithmic Combinatorial Structures: a
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