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Abstract

Given a bowtie decomposition of the complete graph Kv admitting an automor-
phism group G acting transitively on the vertices of the graph, we give necessary
conditions involving the rank of the group and the cycle types of the permutations
in G. These conditions yield non–existence results for instance when G is the di-
hedral group of order 2v, with v ≡ 1, 9 (mod 12), or a group acting transitively
on the vertices of K9 and K21. Furthermore, we have non–existence for K13 when
the group G is different from the cyclic group of order 13 or for K25 when the
group G is not an abelian group of order 25. Bowtie decompositions admitting
an automorphism group whose action on vertices is sharply transitive, primitive or
1–rotational, respectively, are also studied. It is shown that if the action of G on
the vertices of Kv is sharply transitive, then the existence of a G–invariant bowtie
decomposition is excluded when v ≡ 9 (mod 12) and is equivalent to the existence
of a G–invariant Steiner triple system of order v. We are always able to exclude
existence if the action of G on the vertices of Kv is assumed to be 1–rotational. If,
instead, G is assumed to act primitively then existence can be excluded when v is
a prime power satisfying some additional arithmetic constraint.

1 Introduction

A bowtie is a simple graph with 5 vertices and 6 edges consisting of a pair of edge–disjoint
cycles (called triples) sharing one vertex. A bowtie decomposition of the complete graph
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Kv = (V, E) is a partition Bv of the edge–set E into bowties. Such a decomposition Bv

exists if and only if v ≡ 1, 9 (mod 12), see [2]. Such values of v, with v > 1, will be called
admissible values.

For non–admissible values, some authors considered the problem of selecting a col-
lection of edge–disjoint bowties in Kv of maximum cardinality (the so called maximum
packing problem of Kv with bowties, see [3]). Bowtie decompositions with additional
properties have also been considered. For instance, 2–perfect bowtie decompositions have
been studied in [4], [1].

In the present paper we are interested in bowtie decompositions with some symmetry
properties. These are namely properties involving in the first place the existence of some
non–trivial automorphism group.

An automorphism group G of a bowtie decomposition Bv is a subgroup of the symmet-
ric group Sym(v) leaving the decomposition invariant: we shall express that for short by
saying that Bv is G–invariant. A group of automorphisms of a decomposition Bv acts on
four different sets: the vertices, the edges, the triples and the bowties. In this paper we
will focus our attention on the action of the group on vertices. More specifically, we study
bowtie decompositions admitting an automorphism group G whose action on vertices is
transitive, sharply transitive, primitive or 1–rotational, respectively. Here 1–rotational
means that G fixes one vertex of Kv and acts sharply transitively on the remaining ones.
We adopt the terminology used in [5].

By a result in [11], for every admissible value of v a Steiner triple system of order
v, briefly STS(v), can be decomposed into bowties. In fact, from [11] we know that the
block intersection graph of an STS(v) is Hamiltonian. Since v is an admissible value, the
block intersection graph has an even number of vertices: it is therefore possible to pair the
triples of an STS(v) so as to decompose the STS(v) into bowties, or equivalently, to obtain
a bowtie decomposition of Kv. For this reason one is tempted to believe that, in order to
find bowtie decompositions with a prescribed automorphism group, it suffices to pair the
triples of an STS(v) which is invariant with respect to the same group. Unfortunately, the
existence of an STS(v) which is invariant under a group G does not guarantee that we can
pair its triples and obtain a G–invariant bowtie decomposition. In fact, the STS(v) might
have one G–orbit O of triples in which |O| is odd and different from the lengths of all
other G–orbits of triples. Hence, if we pair a triple in O with a triple in a G–orbit different
from O we obtain a bowtie whose G–orbit contains at least two distinct bowties sharing a
triple. The same thing happens if we pair two distinct triples in O. In other words, every
conceivable pairing of the triples of the STS(v) yields a bowtie decomposition which is
never G–invariant.

The converse is true, that is a G–invariant bowtie decomposition Bv gives rise to an
STS(v) admitting G as an automorphism group.

In Section 2 transitive bowtie decompositions are studied. A bowtie decomposition
Bv is transitive if it admits an automorphism group G acting transitively on vertices. If
we need to mention the group G explicitly, we shall then say that Bv is transitive with
respect to G. The bowties of a transitive bowtie decomposition satisfy certain properties,
see Lemma 1 and 2 . These properties yield a necessary condition on the rank r of G:
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r ≡ 1 (mod 3) or r ≡ 1 (mod 12), according to whether |G| is even or odd. As a trivial
consequence, there is no bowtie decomposition which is invariant with respect to a group
acting 2–transitively on the vertex–set. We also exclude the existence of transitive bowtie
decompositions of K13 with respect to a group G of order > 13.

We shall show that a transitive bowtie decomposition of Kv exists only if the number s
of self–paired orbitals of G is less than (r−1)/3. In this way we can exclude the existence
of a transitive bowtie decomposition Bv which is invariant with respect to the dihedral
group of order 2v.

Many papers deal with STS(v)’s with a single automorphism of prescribed type. More
specifically, given a permutation π ∈ Sym(v), with a prescribed cycle type, an STS(v)
admitting π as an automorphism is constructed. See for instance [17], [8], [16], [6] and
[13].

In Section 3, given a decomposition Bv which is transitive with respect to a group
G, we study the cycle types of the permutations in G. The necessary conditions we give
exclude the existence of transitive bowtie decompositions of K9 and K21. We can also
say that there is no transitive bowtie decomposition of K25 with respect to a group G of
order > 25.

In Section 4 sharply transitive bowtie decompositions are studied. A decomposition
Bv is sharply transitive if it admits an automorphism group G acting sharply transitively
on vertices. If we need to mention the group G explicitly, we shall then say that Bv is
sharply transitive with respect to G. We adopt the same terminology for STS(v)’s.

An easy calculation shows that the existence of a sharply transitive decomposition Bv

with v ≡ 9 (mod 12) can be excluded. For the other admissible values of v, the existence
of a sharply transitive decomposition Bv turns out to be equivalent to the existence of a
sharply transitive STS(v) (see Proposition 14). In this way, a large class of examples for
sharply transitive bowtie decompositions of Kv, with v ≡ 1 (mod 12), can be obtained
from the abelian STS(v)’s constructed in [19].

Even though transitive STS(v)’s are widely studied, little is known when the auto-
morphism groups under consideration are non–abelian. In the framework of transitive
STS(v)’s ad hoc treatments for particular values of v have appeared. For instance, in
[15] the transitive STS(21) are determined. The authors showed that there are 10 non–
isomorphic transitive STS(21). Later, Tonchev, [20], proved that when v = 25 the number
of non–isomorphic transitive STS(v)’s is 15.

Finding transitive bowtie decompositions is equivalent to finding transitive STS(v)’s
with additional properties. The determination of the spectrum for transitive bowtie de-
compositions is still an open question: our necessary conditions of Section 3 yield non–
existence results for all admissible values of v 6 30.

Section 5 is devoted to primitive bowtie decompositions of Kv. A decomposition Bv is
primitive if it admits an automorphism group acting primitively on vertices. The groups
we consider are of affine type and have order pn q, where p is a prime such that v = pn ≡ 1
(mod 12) and q is a p–primitive divisor of pn − 1. When (v − 1)/q 6≡ 0 (mod 12) we have
a non–existence result. When (v − 1)/q ≡ 0 (mod 12) we can exhibit some examples of
bowtie decompositions which are invariant with respect to a primitive group G of the type
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described above.
Finally, we consider 1-rotational bowtie decompositions of Kv. A decomposition Bv

is 1–rotational if it admits an automorphism group whose action on the vertices of Kv

is 1–rotational. We prove that 1–rotational bowtie decompositions of Kv exist for no
admissible value of v.

2 Transitive bowtie decompositions: a rank condi-

tion

Let Kv = (V, E) be the complete graph on v vertices. In this section, we shall denote
by v an admissible value and by G a subgroup of the symmetric group Sym(v) acting
transitively on the vertex–set of Kv.

The group G acts on V × V via (x, y)g = (xg, yg) and an orbit of G on V × V is an
orbital of G. The number of orbitals of G is the rank of G, which we shall denote by r.

Each orbital ∆ of G defines its paired orbital ∆∗ = {(β, α) : (α, β) ∈ ∆}. An orbital
∆ is self–paired if ∆ = ∆∗, [9]. Observe that, since G acts transitively on V , the set
∆1 = {(α, α) : α ∈ V } is an orbital, which is obviously self–paired and is called the
diagonal orbital.

By the previous remarks, we can write r = 2t + s + 1, where 2t is the number of
non–self–paired orbitals, s is the number of non-diagonal self–paired orbitals and 1 refers
to the diagonal orbital ∆1.

For any given bowtie B of Kv we consider the 5-tuple (x, y1, z1, y2, z2) of its vertices
and use it to identify B uniquely by agreeing that x is the unique 4–valent vertex of B
(i.e. vertex of degree 4) called the centre of B, while T1 = (x, y1, z1) and T2 = (x, y2, z2)
are the triples of B.

We shall use the exponential notation for edge–orbits and bowtie–orbits under the
action of G and its subgroups.

We shall denote by S the stabilizer of B in G. Every element of S fixes the centre x
of B, since x is the unique 4–valent vertex of B.

It is easy to see that two distinct edges, say [u1, w1], [u2, w2], belong to the same G–
orbit if and only if the ordered pair (u1, w1) belongs to the same orbital as either (u2, w2)
or (w2, u2).

An edge [u, w] ∈ E is said to be short if the pair (u, w) belongs to a self–paired orbital
of G.

An edge [u, w] ∈ E is said to be long if the pair (u, w) belongs to a non–self–paired
orbital of G.

Note that short edges exist if and only if the group G has even order. In fact, if G
has even order then there is at least one permutation g ∈ G of order 2; if (u w) is a
transposition appearing in the representation of g as a product of disjoint cycles then the
orbital containing the ordered pair (u, w) is self–paired and the edge [u, w] is short. It is
easy to see that also the converse is true.

the electronic journal of combinatorics 17 (2010), #R101 4



Lemma 1. Let Bv be a transitive decomposition with respect to G. Let B = (x, y1, z1, y2, z2)
be a bowtie of Bv. The following properties hold:

(a) the edges of B which are incident with the centre x are all long;

(b) the edge–orbit [yi, zi]
G, with i = 1, 2, does not contain edges which are incident with

the centre x of B.

Proof. We prove property (a). Suppose that [x, yi], with i ∈ {1, 2}, is short. Then there
exists g ∈ G such that xg = yi and yg

i = x. Whence g ∈ S, a contradiction, since we
have remarked that every element of S fixes x. Hence property (a) is true. Property (b)
is handled similarly.

As a consequence of the previous lemma, the following statement holds.

Lemma 2. Let Bv be a transitive decomposition with respect to G. Let B = (x, y1, z1, y2, z2)
be a bowtie of Bv. Then B satisfies one of the following properties:

(1) the edges [yi, zi], i = 1, 2, are short and have the same G–orbit; the edges [x, yi] and
[x, zi], i = 1, 2, are long and have the same G–orbit;

(2) the edges [yi, zi], i = 1, 2, are short and have distinct G–orbits; the edges [x, y1],
[x, z1], [x, y2], [x, z2] are long, belong to 2 distinct G–orbits and [x, yi]

G = [x, zi]
G,

for i = 1, 2;

(3) the edges [yi, zi], i = 1, 2, are long and have the same G–orbit; [x, y1], [x, y2], [x, z1],
[x, z2] are long, belong to 2 distinct G–orbits and [x, yi]

G 6= [x, zi]
G, for i = 1, 2;

(4) the edges [yi, zi], i = 1, 2 are long and have distinct G–orbits; the edges [x, y1], [x, z1],
[x, y2], [x, z2] are long and belong to 4 distinct G–orbits;

(5) the edge [y1, z1] is short; the edges [x, y1], [x, z1] are long and have the same G–orbit;
the edges [x, y2], [x, z2], [y2, z2] are long and belong to 3 distinct G–orbits.

We shall say that a bowtie B of Bv is of type (i), i ∈ {1, . . . , 5}, with respect to G
if B satisfies property (i) of Lemma 2. When the group G is clear from the context, we
simply say that a bowtie is of type (i).

Proposition 1. Let Bv be a transitive decomposition with respect to G. Let r be the rank
of G. If |G| is even, then r ≡ 1 (mod 3), otherwise r ≡ 1 (mod 12).

Proof. Let R = {B1, . . . , Bµ} be a complete system of distinct representatives for the
G–orbits of Bv.

For i = 1, . . . , 5, we denote by ai the number of elements of R of type (i). If |G| is
odd then there are no short edges, hence a1 = a2 = a5 = 0, but also a3 = 0. In fact,
suppose a3 6= 0 that is Bv possesses a bowtie B = (x, y1, z1, y2, z2) of type (3), then there
is a permutation g ∈ G such that [y1, z1]

g = [y2, z2]; whence Bg = B, as Bv is G–invariant,
that is [y2, z2]

g = [y1, z1]; it follows that g has even order, a contradiction.
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Since Bv is a partition of the edge–set of Kv, for every non–diagonal orbital ∆ of G
there exists a unique bowtie Bi ∈ R containing the edge [x, y] such that (x, y)G = ∆ or
(y, x)G = ∆. Moreover, ∪µ

j=1 ∪[x,y]∈Bj
((x, y)G ∪ (y, x)G) = (V × V ) \ ∆1. Hence we can

write the number s of self–paired orbitals of G as s = a1 + 2a2 + a5, since the bowties of
type (1), (2) and (5) are the only ones possessing short edges. For the same reason, we
have t = a1 + 2a2 + 3a3 + 6a4 + 4a5. Whence t− s = 3(a3 + 2a4 + a5), that is t− s = 3q,
with q > 0, if |G| is even, otherwise t = 6a4. Hence r = 2t + s + 1 = 3(2q + s) + 1, if |G|
is even, otherwise r = 12a4 + 1.

Corollary 1. Let G be a group of odd order and rank r < 13. There is no transitive
bowtie decomposition Bv with respect to G.

Proposition 2. For s > (r − 1)/3 there is no transitive bowtie decomposition of Kv.

Proof. From the proof of Proposition 1, we can see that if there exists a bowtie
decomposition which is invariant with respect to a transitive group G, then s 6 t. Hence
r − 1 = 2t + s > 3s, that is s 6 (r − 1)/3.

The next statement furnishes an example in which Proposition 2 applies.

Proposition 3. Let v be an admissible value. There is no decomposition Bv which is
transitive with respect to the dihedral group of order 2v.

Proof. We identify the vertex–set of Kv with Zv = {0, 1, . . . , v − 1}. We label con-
secutively by 0, 1, . . . , v − 1, clockwise, the vertices of the regular v–gon in the euclidian
plane. The edges of Kv are given by the chords and the sides of the polygon.

Let G denote the dihedral group of order 2v in its standard permutation representation,
that is G = 〈ρ, θ〉, where ρ and θ are the permutations on Zv defined by ρ : x 7→ x + 1
and θ : x 7→ −x + 1, respectively. The cyclic group 〈ρ〉 consists of the permutations on
Zv of the form ρi : x 7→ x + i, for every i = 0, . . . , v − 1. The coset G − 〈ρ〉 consists
of the permutations on Zv of the form x 7→ −x + i + 1. Each element of G − 〈ρ〉 is a
reflection about the axis passing through the centre of the polygon and the vertex j, for
every j = 0, . . . , v − 1.

It is easy to see that the set {[0, i+1] : i = 0, . . . , v−3
2
} is a complete system of distinct

representatives for the G–orbits of edges. Moreover, each edge [0, i + 1] is short, since
[0, i + 1]θρi

= [i + 1, 0]. Hence {(0, i + 1) : i = 0, . . . , v−3
2
} is a complete system of distinct

representatives for the non–diagonal orbitals of G. Whence s = (v − 1)/2 = r − 1. The
assertion follows from Proposition 2.

Using the AllTransitiveGroups library of GAP, [10], we can see that the groups
G acting transitively on 13 vertices, other than the cyclic group of order 13, have rank
r = 2, 3, 4, 5 or 7, respectively. The existence of a transitive bowtie decomposition is
excluded by Proposition 1 if G has rank r = 2, 3 or 5 and by Propositions 2 or 3 if G has
rank r = 4 or 7, respectively. It is known that for v = 13 there exists a sharply transitive
STS(v) under the cyclic group of order 13, [18]. We shall see in Proposition 14 that the
existence of a sharply transitive bowtie decomposition is equivalent to the existence of a
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sharply transitive STS(v). Hence there exists a sharply transitive bowtie decomposition
under the cyclic group of order 13. Therefore, the following statement holds.

Proposition 4. Let G be a transitive permutation group on 13 vertices. If |G| > 13 then
no G–invariant bowtie decomposition of K13 exists.

3 The cycle type of an automorphism of a Bv

In this section v will be an admissible value and G 6 Sym(v) will be a group acting
transitively on the vertex–set of Kv.

A permutation g ∈ G is said to be of type [g] = [f, p2, . . . , pv−1, pv] if g fixes f > 0
vertices and pk is the number of k–cycles in the representation of g as a product of disjoint
cycles.

Given a permutation g ∈ G, when we will speak of a “k–cycle of g” we will always
mean a k–cycle in the representation of g as a product of disjoint cycles.

It is easy to see that if Bv is a bowtie decomposition of Kv which is invariant with
respect to G, then Bv gives rise to a Steiner triple system S of order v which is invariant
with respect to G: it suffices to split every bowtie of Bv into its two triples.

One can see that if an automorphism g of S fixes f > 1 vertices, then f ≡ 1, 3 (mod 6).
In fact, if a triple T of S contains two vertices which are fixed by g, then all vertices of T
are fixed by g, since S is invariant under g. Hence the triples of S all of whose vertices are
fixed by g give an STS(f). Hence f ≡ 1, 3 (mod 6), [7], and the following result holds.

Lemma 3. Let g ∈ G be an automorphism of Bv fixing f > 0 vertices. Then f ≡ 1, 3
(mod 6).

Proof. It follows from the fact that an automorphism of Bv is an automorphism of
S.

We give necessary conditions for the existence of a transitive bowtie decomposition.

Proposition 5. Let g ∈ G be an automorphism of Bv of type [g] = [f, p2, . . . , pv], with
f > 1 and p2 = 0. Then f ≡ 1, 9 (mod 12).

Proof. Let F be the set of vertices of Kv which are fixed by g. We have |F | = f > 2.
Let z1, z2 be distinct elements of F and let B denote the unique bowtie of Bv containing

the edge [z1, z2]. Then Bg = B, since B and Bg share the edge [z1, z2] and Bv is invariant
under g. Whence all vertices of B are fixed by g, since p2 = 0. We have thus proved that
the bowties of Bv containing at least one edge with endpoints in F have all edges with
both endpoints in F . In other words, a bowtie of Bv has either no edge with endpoints in
F or all edges with endpoints in F . Hence Bv induces a bowtie decomposition Bf of KF .
Hence f ≡ 1, 9 (mod 12), [2].

Proposition 6. Let g ∈ G be an automorphism of Bv of type [g] = [f, p2, . . . , pv] with
p2 6= 0. Then f > 1 and p2 + f(f − 1)/6 is even.
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Proof. Let S be the STS(v) arising from Bv. Since p2 6= 0, there exist at least two
distinct vertices of Kv, say x, y, such that xg = y and yg = x. We have [x, y]g = [x, y]
and, if B is the unique bowtie of Bv containing [x, y], we also have Bg = B. The centre
of B is the unique 4–valent vertex of B and is thus fixed by g, yielding f > 1.

We denote by F the set of vertices of Kv which are fixed by g and by (x1 y1), . . . ,
(xp2

yp2
) the 2–cycles (transpositions) of g.

For every i = 1, . . . , p2, there exists a triple Ti ∈ S containing the edge [xi, yi], since S
is a partition of the edge–set of Kv. We set Ti = (xi, yi, zi). We have that zi ∈ F , since
[xi, yi]

g = [xi, yi] and S is invariant with respect to g. It might happen that zi = zj for
i, j ∈ {1, . . . , p2}, with i 6= j, that is Ti and Tj share one vertex. We set T = {Ti : i =
1, . . . , p2}.

As remarked at the beginning of this section, the triples of S with all vertices in F
give an STS(f), say S ′.

We show that if one of the triples of a bowtie in Bv lies in T ∪ S ′, then so does the
other triple.

Let T1 ∈ T ∪ S ′ and let B be the bowtie of Bv containing T1. We denote by T2 the
other triple of B. If T1 ∈ S ′, then the centre of B lies in F . The same occurs if T1 ∈ T ,
since g fixes B. Hence at least one vertex of T2 lies in F . Since T g

1 = T1, as T1 ∈ T ∪ S ′,
we have Bg = B, that is T g

2 = T2. Whence the remaining two vertices of T2 are either in
F or appear together in a 2–cycle of g, that is T2 ∈ T ∪ S ′.

We have thus proved that a bowtie of Bv contains 0 or 2 triples of T ∪ S ′. Whence
|T ∪ S ′| = p2 + f(f − 1)/6 is even.

Proposition 7. Let Bv be a transitive decomposition with respect to G. Let g ∈ G be a
permutation of even order o(g) and type [g] = [f, p2, . . . , pv]. Then f +

∑
k∈Q k pk > 1,

where Q = {k : 2 6 k 6 v, k| o(g)
2
} and it is empty if o(g) = 2.

Proof. Let S be the STS(v) which arises from Bv. We set α = o(g)/2.
Let k ∈ {2, . . . , v} be such that pk 6= 0. We can write o(g) = kq, where q is a positive

integer. We note that if k is odd, then q is even, as o(g) is even, whence α = k q

2
, that is

k|α. Hence, if k 6∈ Q then k is even.
We write v = f +

∑v

k=2 k pk = f +
∑

k∈Q k pk +
∑

k 6∈Q k pk and show firstly that
f +

∑
k∈Q k pk > 0, secondly that f +

∑
k∈Q k pk > 1.

Suppose f +
∑

k∈Q k pk = 0. Then v =
∑

k 6∈Q k pk. That yields a contradiction, since
v is odd and

∑
k 6∈Q k pk is even, as k 6∈ Q. Hence f +

∑
k∈Q k pk > 1.

We show that f +
∑

k∈Q k pk > 1. Suppose f +
∑

k∈Q k pk = 1. Let h = gα. We
have that h is an involution of G fixing exactly f +

∑
k∈Q k pk vertices of Kv. In fact, the

vertices which are fixed by h are given by the vertices which are fixed by g together with
the vertices lying in the k–cycles of g with k|α, that is k ∈ Q. Since we are supposing
f +

∑
k∈Q k pk = 1, the involution h fixes only one vertex of Kv, that is h is the product

of m = (v − 1)/2 disjoint 2–cycles.
We denote by z the unique vertex of Kv which is fixed by h and write h as the disjoint

product h = (x1 y1)(x2 y2) . . . (xm ym).
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For every i = 1, . . . , m, the edge [xi, yi] is short, since it is left invariant by h. Moreover,
for every i = 1, . . . , m, there is exactly one triple Ti ∈ S containing the edge [xi, yi]. Each
Ti is fixed by h, since S is invariant under h. Whence Ti = (xi, yi, z), for every i = 1, . . . , m.

Since G is transitive on V , there exists g1 ∈ G such that zg1 = x1. Then zg1hg−1

1 =

x
hg−1

1

1 = y
g−1

1

1 6= z, since x1 6= y1. Hence zg1hg−1

1 = xj or zg1hg−1

1 = yj, with j ∈ {1, . . . , m}.

It follows that the edge [z, zg1hg−1

1 ] is left invariant by g1hg−1
1 , since g1hg−1

1 is an involution

mapping z to zg1hg−1

1 . In other words, the edge [z, zg1hg−1

1 ] is short. Then the triple Tj =

(xj , yj, z) contains two short edges: [xj , yj] and [z, zg1hg−1

1 ]. That yields a contradiction,
since by property (a) in Lemma 1 a triple of a bowtie can contain at most one short edge.
Hence f +

∑
k∈Q k pk > 1.

Corollary 2. Let Bv be a transitive bowtie decomposition which is invariant with respect
to G. The number of fixed vertices of each involution in G is > 1 and ≡ 1, 3 (mod 6).

Proof. An involution g of G is a permutation of type [g] = [f, p2, 0, . . . , 0], with

p2 6= 0. The set Q = {k : 2 6 k 6 v, k| o(g)
2
} is empty, hence f = f +

∑
k∈Q kpk > 1, since

Proposition 7 holds. The statement follows from Lemma 3.

Proposition 8. Let Bv be a transitive decomposition with respect to G. Let g ∈ G be a
permutation of even order o(g) and type [g] = [f, p2, . . . , pv]. Let k ∈ {3, . . . , v} be such

that k ≡ 2 (mod 4), k ∤ o(g)
2

and pk 6= 0. Then

∑

(h,k2)∈Dk

gcd(h, k2)phpk2
+

1

4
p k

2

(kp k
2

− 2) + fp k
2

− 3pk ≡ 0, 3 (mod 6)

where Dk = {(k1, k2) : k1 < k2, ki 6= k/2, for i = 1, 2, k1k2

gcd(k1,k2)
= k

2
} ∪ {(k

2
, k2) : k2|

k
2
, k2 6=

1, k
2
}.

Proof. We set α = o(g)/2 and h = gα. Observe that h is an involution of G. Let
k ∈ {3, . . . , v} be such that pk 6= 0. As remarked in the proof of the previous proposition,
if k ∤ α then k is even and every k–cycle of g gives rise to k/2 disjoint 2–cycles of h. Every
2–cycle (x y) of h yields the short edge [x, y]. For the sake of brevity, we shall say that
an edge [x, y] is a k–short edge if (x y) is a 2–cycle of h which arises from a k–cycle of g.
Note that a k–short edge [x, y] has 〈g〉–orbit of length k/2, since x, y lie in a k–cycle of g
and [x, y]h = [x, y]. An edge [x, y] which is not k–short and has 〈g〉–orbit of length k/2
will be called k–long. We denote by γ the number of distinct 〈g〉–orbits of k–long edges.
Firstly, we prove that γ − 3pk ≡ 0, 3 (mod 6); secondly, we compute the number γ.

Let Ak be the subset of Bv consisting of all bowties containing at least one edge with
〈g〉–orbit of length k/2. Let R be a complete system of distinct representatives for the
〈g〉–orbits of Ak. We denote by ai the number of elements of R which are of type (i),
i ∈ {1, 2, . . . , 5}, with respect to 〈g〉. An easy calculation shows that a1 = 0 since k ≡ 2
(mod 4).

By the very definition of Ak, we have that Ak covers all edges with 〈g〉–orbit of length
k/2, hence the following relations hold: 2a2 + a5 = pk and 3a3 + 6a4 + 3a5 = γ.
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The former equality arises from the fact that the number of distinct 〈g〉–orbits of k–
short edges is pk, that a bowtie of type (5) has a non–empty intersection with only one
〈g〉–orbit of k–short edges, while a bowtie of type (2) has a non–empty intersection with
exactly two distinct 〈g〉–orbits of k–short edges.

The latter equality arises from the fact that every bowtie of type (3) and (5) has a
non–empty intersection with exactly three distinct 〈g〉–orbits of k–long edges, while every
bowtie of type (4) has a non–empty intersection with six distinct 〈g〉–orbits of k–long
edges.

Substituting a5 = pk −2a2 in 3a3 +6a4 +3a5 = γ, we find that γ−3pk ≡ 0, 3 (mod 6).
We determine the number γ, that is the number of distinct 〈g〉–orbits of k–long edges.

Let [x, y] be a k–long edge. For the vertices x, y we distinguish three cases.
Case 1: x lies in a k1–cycle of g, y lies in a k2–cycle of g with k1, k2 6= k/2 and such

that k1k2

gcd(k1,k2)
= k/2.

We denote by γ1 the number of distinct 〈g〉–orbits of k–long edges whose vertices x, y
satisfy the property of Case 1.

We prove that γ1 =
∑

(k1,k2)∈J gcd(k1, k2)pk1
pk2

, where J = {(k1, k2) : k1 < k2, ki 6=

k/2, for i = 1, 2, k1k2

gcd(k1,k2)
= k

2
}.

Let [x, y] be an edge such that x is one of the vertices of the k1–cycle (x1 . . . xk1
) and

y is one of the vertices of the k2–cycle (y1 . . . yk2
). The edge [x, y] is of type [xa, yb] with

a ∈ {1, . . . , k1} and b ∈ {1, . . . , k2}. Every [xa, yb]
〈g〉 contains at least one edge which

is incident with x1. Hence to determine the representatives of the distinct 〈g〉–orbits of
edges [xa, yb], with a ∈ {1, . . . , k1} and b ∈ {1, . . . , k2}, we can consider the edges [x1, y1],
[x1, y2], . . . , [x1, yk2

].
We note that [x1, yb]

〈g〉, with b ∈ {1, . . . , k2}, contains k
2
/k1 = k2

gcd(k1,k2)
edges which

are incident with x1, since x1 lies in a k1–cycle of g and [xa, yb]
〈g〉 has length k/2. In

other words, [x1, yb]
〈g〉 contains the edges [x1, yb+jk1

], for every j = 0, . . . , k2

gcd(k1,k2)
− 1.

These edges are pairwise distinct. In fact, assume [x1, yb+jk1
] = [x1, yb+j′k1

], with j, j′ ∈
{0, . . . , k2

gcd(k1,k2)
− 1}, j 6= j′. Without loss of generality we can set j > j′. We have

yb+jk1
= yb+j′k1

, that is b + jk1 = b + j′k1, whence (j − j′)k1 = qk2, for some positive
integer q. Since k1 6= k/2, as (k1, k2) ∈ J , we have that (j − j′)k1 = qk2 if and only
if j − j′ >

k2

gcd(k1,k2)
. That yields a contradiction, since j − j′ 6

k2

gcd(k1,k2)
− 1. We

have thus proved that every [x1, yb]
〈g〉 contains k2

gcd(k1,k2)
distinct edges which are incident

with x1. Therefore, among [x1, y1], [x1, y2], . . . , [x1, yk2
] we have k2/

k2

gcd(k1,k2)
= gcd(k1, k2)

distinct representatives of 〈g〉–orbits of edges. In other words, every pair of cycles of g
of length k1, k2, with (k1, k2) ∈ J , gives gcd(k1, k2) distinct representatives. Since the
number of cycles of g of length k1, k2 is pk1

, pk2
, respectively, and (k1, k2) ∈ J we find∑

(k1,k2)∈J gcd(k1, k2)pk1
pk2

distinct representatives of 〈g〉–orbits of k–long edges. Note

that in J the condition k1 < k2 assures that in
∑

(k1,k2)∈J gcd(k1, k2)pk1
pk2

the edges are
counted one time.

Case 2: x lie in a k
2
–cycle of g, y lies in a k2–cycle of g with k2 6= k/2 and k2|

k
2
.

We denote by γ2 the number of distinct 〈g〉–orbits of k–long edges whose vertices x, y
satisfy the property of Case 2. This case can be treated as Case 1: it suffices to replace
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k1 by k
2

and pk2
by f if y is fixed by g. We find that γ2 = fp k

2

+
∑

k2∈J ′ k2p k
2

pk2
, where

J ′ = {k2 : k2|
k
2
, k2 6= 1, k

2
}.

Case 3: x, y lie in k
2
–cycles of g (distinct or not).

We denote by γ3 the number of distinct 〈g〉–orbits of k–long edges whose vertices x, y
satisfy the property of Case 3. We prove that γ3 = k

2
p k

2

(p k
2

− 1)/2 + p k
2

(k − 2)/4.

Let [x, y] be an edge such that x, y lie in distinct k
2
–cycles of g, say (x1 . . . xk

2

),

(y1 . . . y k
2

), respectively. Hence [x, y] is of type [xa, yb], with a, b ∈ {1, . . . , k
2
}. Every

[xa, yb]
〈g〉 contains exactly one edge which is incident with x1, since x1 lies in a k

2
–cycle

of g and [xa, yb]
〈g〉 has length k/2. Hence we can take [x1, y1], [x1, y2], . . . , [x1, y k

2

] as the

representatives of the distinct 〈g〉–orbits of edges [xa, yb], with a, b ∈ {1, . . . , k
2
}. In other

words, for every pair of distinct k
2
–cycles of g we find k/2 distinct representatives. Since

the number of pairs of distinct k
2
–cycles of g is p k

2

(p k
2

−1)/2, we find k
2
p k

2

(p k
2

−1)/2 distinct

representatives of 〈g〉–orbits of k–long edges.
Assume x, y to be in the same k

2
–cycle of g, say (x1 . . . xk

2

). Then [x, y] is of type

[xa, xb], with a, b ∈ {1, . . . , k
2
} and a 6= b. Every [xa, xb]

〈g〉 contains at least one edge which
is incident with x1. Hence to determine the representatives of the distinct 〈g〉–orbits
of edges [xa, xb], with a, b ∈ {1, . . . , k

2
} and a 6= b, we can consider the edges [x1, x2],

[x1, x3], . . . , [x1, xk
2

]. Note that for every b = 2, . . . , k
2
, the edge [x1, xb] is k–long, since

k ≡ 2 (mod 4). Moreover, xg
k
2
−b+1

b = xb+ k
2
−b+1 = x1, xg

k
2
−b+1

1 = x1+ k
2
−b+1 = xk

2
−b+2 and

xk
2
−b+2 6= xb, as k ≡ 2 (mod 4). Hence [x1, xk

2
−b+2] ∈ [x1, xb]

〈g〉 and [x1, xb], [x1, xk
2
−b+2]

are the only edges which are incident with x1 which are contained in [x1, xb]
〈g〉. Therefore,

among [x1, x2], [x1, x3], . . . , [x1, xk
2

] we find (k
2
− 1)/2 = k−2

4
distinct representatives. In

other words, for every k
2
–cycle of g the number of distinct representatives for the 〈g〉–

orbits of edges [xa, xb], with a, b ∈ {1, . . . , k
2
}, a 6= b, is k−2

4
. Since the number of distinct

k
2
–cycles is p k

2

, we have p k
2

(k − 2)/4 representatives of 〈g〉–orbits of k–long edges.

We have γ = γ1 + γ2 + γ3, that is

γ =
∑

(k1,k2)∈J

gcd(k1, k2)pk1
pk2

+ fp k
2

+
∑

k2∈J ′

k2p k
2

pk2
+

k

2
p k

2

(p k
2

− 1)/2 + p k
2

(k − 2)

4

whence

γ =
∑

(h,k2)∈Dk

gcd(h, k2)phpk2
+

1

4
p k

2

(kp k
2

− 2) + fp k
2

.

Proposition 9. Let Bv be a transitive decomposition with respect to G. Let g ∈ G be a
permutation of odd order o(g) and type [g] = [f, p2, . . . , pv]. Let k ∈ {3, . . . , v} be such
that pk 6= 0. Then
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∑

(h,k2)∈Dk

gcd(h, k2)phpk2
+

1

2
pk(kpk − 1) + fpk ≡ 0, 3 (mod 6)

where Dk = {(k1, k2) : k1 < k2, ki 6= k, for i = 1, 2, k1k2

gcd(k1,k2)
= k} ∪ {(k, k2) : k2|k, k2 6=

1, k}.

Proof. The proof is similar to the proof of the previous proposition, with the exception
that no k–short edge is defined, as g has odd order, and that a k–long edge is an edge
with 〈g〉–orbit of length k. Hence the set Ak can contain only elements of type (3) or (4)
with respect to 〈g〉.

Below we give a result concerning Steiner triple systems. We shall use it in the proof
of Proposition 10.

Lemma 4. Let S be an STS(v) which is invariant with respect to G. Let g ∈ G be of
type [g] = [f, p2, . . . , pv] with f > 1. Then for every odd k ∈ {3, . . . , v} we have that pk is
even.

Proof. Assume k ∈ {3, . . . , v} with k odd and pk 6= 0. Let z be a vertex of Kv which
is fixed by g and let x be a vertex of Kv lying in a k–cycle of g. Let T ∈ S be the unique
triple containing the edge [z, x]. We set T = (z, x, y). Observe that y is not fixed by
g, since g does not fix x and S is invariant with respect to g. We show that y lies in a
k–cycle of g not containing x.

Let y be one of the vertices in a d–cycle of g, with d 6= k. If d < k, then the triples
T and T gd

share the edge [z, y], but T 6= T gd

, since xgd

6= x, as d < k. That yields a
contradiction, since S is invariant with respect to 〈g〉. The same happens if d > k. Hence
y lies in a k–cycle of g.

Let y be one of the vertices in the k–cycle of g containing x, that is y = xga

for some
a ∈ {1, . . . , k − 1}. Then T and T ga

share the edge [z, y], but T 6= T ga

since k is odd.
That yields a contradiction, since S is invariant with respect to 〈g〉. Hence y lies in a
k–cycle of g not containing x.

By the property proved above, every triple of S containing z either contains no vertex
from a k–cycle of g or it contains two such vertices from distinct k–cycles of g.

Let Tk be the subset of S consisting of all triples containing z and two vertices of Kv

lying in (distinct) k–cycles of g.
Let T1, T2 be distinct triples of Tk. We set T1 = (z, x1, y1), T2 = (z, x2, y2). It is easy

to see that T1, T2 have the same 〈g〉–orbit if and only if x1 lies in the same k–cycle of x2

(or y2). Observe that x1 lies in the same k–cycle of x2 (or y2) if and only if y1 lies in the
same k–cycle of y2 (or x2), since S is invariant with respect to 〈g〉.

Let {T1, . . . , Tµ} be a complete system of distinct representatives for the 〈g〉–orbits of
Tk. By the very definition of Tk and by the remarks above, 2µ 6 pk. For every k–cycle c
of g there is a unique triple in {T1, . . . , Tµ} containing exactly one vertex lying in c, since
Tk is a partition of the edges having precisely one vertex in a k–cycle of g. Hence pk 6 2µ,
then pk = 2µ.
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Proposition 10. Let Bv be a transitive decomposition with respect to G. Let g ∈ G be of
type [g] = [f, p2, . . . , pv] with f > 1 and p3 6= 0. Then p3 > 4.

Proof. By Lemma 4 we have p3 > 2. Suppose p3 = 2. We denote by (x1 x2 x3) and
(y1 y2 y3) the 3–cycles of g.

Let S be the STS(v) arising from Bv. Let T = (x1, x2, x) be the unique triple of S
containing the edge [x1, x2].

Since x1 and x2 lie in the same 3–cycle of g and S is invariant with respect to g, we
have that x is not fixed by g.

Since the 〈g〉–orbit of the edge [x1, x2] has length 3 and S is invariant with respect
to 〈g〉, we have that x lies in a 3–cycle of g. But x 6= x3, since T is a triple of a bowtie
and by Lemma 2 such a triple can contain at most two edges in the same G–orbit. Hence
x = yi for some i ∈ {1, 2, 3}. Without loss of generality, we can set x = y1.

There exists a unique T1 ∈ S containing the edge [y1, y2]. We set T1 = (y1, y2, y). By
the previous remarks, we have y = xi for some i ∈ {1, 2, 3}. We have y = x3, since T, T1

are distinct, T contains the edges [x1, y1], [x2, y1] and S is a partition of the edge–set of
Kv. Whence T g and T1 are distinct triples of S sharing the edge [x3, y2]. That yields a
contradiction, since S is invariant with respect to 〈g〉. Hence p3 > 2. By Lemma 4 we
have p3 > 4.

The AllTransitiveGroups library of GAP, [10], contains representatives for all tran-
sitive permutation groups on at most 30 vertices.

Using this library we tested the necessary conditions in Section 2 and 3 on the groups
acting transitively on v vertices, where v is an admissible value, with v 6 30. We remarked
in Section 1 that doubly transitive bowtie decompositions do not exist, so we discarded
2–transitive groups.

For v = 25, the CycleStructurePerm command allows us to see that if G is not an
abelian group of order 25 then G possesses at least one permutation g satisfying one of
the following properties:

1) g is of type [g] = [25 − 5j, 0, 0, 0, j, 0, . . . , 0], with j ∈ {2, 3, 4};

2) g is of type [g] = [1, 12, 0, . . . , 0];

3) g is of type [g] = [5, 10, 0, . . . , 0];

4) g is of type [g] = [1, 0, 8, 0, . . . , 0];

5) g is of type [g] = [f, p2, . . . , p25], with f = 0, p5 = 1, p10 = 2, pi = 0 for i = 2, . . . , 25,
i 6= 5, 10.

If G possesses one permutation satisfying property 1), then there is no transitive bowtie
decomposition with respect to G, since 25−5j 6≡ 1, 9 (mod 12), for every j = 2, . . . , 4, and
Proposition 5 holds. The same thing happens if G possesses one permutation satisfying
property 2), 3), 4) or 5), since one of Corollary 2, Proposition 9, Proposition 8 holds in
each case, respectively.
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It is known that for v = 25 there is a sharply transitive STS(25) with respect to G,
when G is an abelian group of order 25, [19]. By Proposition 14 an STS(25) which is
invariant under a sharply transitive abelian group G of order 25 yields a bowtie decompo-
sition which is sharply transitive with respect to G. Hence, for v = 25 the only examples
of transitive bowtie decompositions are the sharply transitive decompositions under one
of the abelian groups of order 25 (cyclic or elementary abelian).

We carried out a similar inspection for the groups G acting transitively on v vertices,
with v = 21 and v = 9. In particular, for v = 9 we use the necessary conditions of Section
3 to exclude the existence of a transitive bowtie decomposition with respect to G, when G
satisfies Proposition 1. More specifically, a group G on 9 vertices has rank r = 2, 3, 4, 5, 6
or 9. If G has rank r = 2, 3, 5, 6 or 9, then there is no transitive bowtie decomposition
with respect G, since Proposition 1 holds. The groups of rank r = 4 have even order and
satisfy Proposition 1. Nevertheless, if G is a group of rank r = 4 we find at least one
element g ∈ G which is of type [g] = [3, 0, 2, 0, . . . , 0] or of type [g] = [6, 0, 1, 0, . . . , 0]. In
both cases Proposition 5 is not verified. Hence we can state the following results.

Proposition 11. Let G be a transitive permutation group on 25 vertices. If |G| > 25
then no G–invariant bowtie decomposition of K25 exists.

Proposition 12. There is no transitive bowtie decomposition of K9 and K21.

4 Sharply transitive bowtie decompositons

In this section we shall denote by v an admissible value and by G a subgroup of Sym(v)
acting sharply transitively on the vertices of Kv.

Observe that the stabilizer S in G of a bowtie B consists only of the identity permuta-
tion on V , since every permutation in S fixes the centre of B and G is sharply transitive
on vertices.

Proposition 13. If Bv is a sharply transitive bowtie decomposition of Kv then v ≡ 1
(mod 12).

Proof. Let Bv be a sharply transitive bowtie decomposition of Kv with respect to G.
Let R = {B1, . . . , Bµ} be a complete system of distinct representatives for the G–orbits
of Bv.

As already remarked, for every i = 1, . . . , µ we have that Bi has trivial stabilizer in
G, hence BG

i has length v. Each BG
i contains exactly 6v edges of Kv. Hence µ = |E|/6v,

that is v ≡ 1 (mod 12).

We give a result concerning Steiner triple systems. We shall use it in the proof of
Proposition 14.

Lemma 5. Assume v ≡ 1 (mod 6) and let S be a sharply transitive STS(v) with respect
to a group G. Then the number of G–orbits of triples of S is (v − 1)/6.
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Proof. Let L denote the stabilizer in G of a triple T = (x, y, z) of S and assume h ∈ L
with h 6= idV . Since G is sharply transitive on V , we have that h fixes no vertex of T .
Consequently, the representation of h as a product of disjoint cycles contains one of the
3–cycles (x y z) or (x z y), showing that 3 divides o(h), which in turns divides |G| = v.
Hence 3|v, contradicting v ≡ 1 (mod 6). We conclude L = 〈idV 〉, each G–orbit of triples
of S has length v and the total number of such orbits is (v(v − 1)/6)/v = (v − 1)/6.

Proposition 14. Let v ≡ 1 (mod 12). The existence of a sharply transitive STS(v), with
respect to a group G, is equivalent to the existence of a sharply transitive decomposition
Bv with respect to G.

Proof. As remarked at the beginning of Section 3, every Bv which is invariant with
respect to a group G gives rise to an STS(v) which is invariant with respect to G.

We show that a sharply transitive STS(v) gives rise to a sharply transitive Bv. We
identify the vertex–set V of Kv with the set {0, 1, . . . , v − 1}. Let S be an STS(v) on V
which is sharply transitive with respect to G.

Let T be a complete system of distinct representatives for the G–orbits of S. By
Lemma 5, we have |T | = (v − 1)/6.

Because G is transitive on the vertex–set of Kv, we can assume that each Ti ∈ T
contains the vertex labeled with 0, that is we can set Ti = (0, xi, yi), for every Ti ∈ T .

Since |T | = (v − 1)/6 is an even, as v ≡ 1 (mod 12), and each pair of distinct triples
of T share the vertex 0, we can pair the elements of T to form (v−1)/12 distinct bowties
with centre 0. We denote by R the set of (v − 1)/12 distinct bowties of Kv which we can
construct by pairing the elements of T .

Each B ∈ R has G–orbit of length v, since the two triples constituting it have distinct
G–orbits of length v.

It is easy to see that Bv = ∪B∈RBG is a sharply transitive bowtie decomposition with
respect to G.

As already mentioned, for every v ≡ 1 (mod 12), a large class of sharply transitive
bowtie decompositions of Kv can be obtained from the abelian STS(v)’s which have been
constructed in [19]. In particular, for every admissible value of v there exists a sharply
transitive bowtie decomposition of Kv with respect to the cyclic group of order v.

5 Primitive bowtie decompositions

Let G be a primitive permutation group of affine type acting transitively on v vertices,
where v is an admissible value. The group G possesses a sharply transitive subgroup H
of order v, [9]. Therefore, if Bv is a bowtie decomposition which is invariant with respect
to G, then Bv is sharply transitive with respect to H . Hence v ≡ 1 (mod 12), since
Proposition 13 holds.

In this section we will focus our attention on a subclass of primitive permutation
groups of affine type. Hence, by the previous remarks, we shall consider the admissible
values of v which are congruent to 1 (mod 12).
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Let p be an odd prime and let q be a p–primitive divisor of pn − 1, n > 2, that is
q|(pn − 1) but q ∤ (pm − 1), for every m < n. Zsigmondy’s Lemma, [14, Theorem 6.2],
assures the existence of such a divisor except when p + 1 is a 2–power and n = 2. Hence
we shall consider those primes p such that if n = 2 then p + 1 6= 2i, for every positive
integer i.

Let V be the n–dimensional vector space over GF (p) and let A denote the subgroup
of size q of the multiplicative group GF (pn)∗.

The group G, consisting of all permutations g : V → V such that g(x) = ax+b, with
a ∈ A and b ∈ V, is a primitive permutation group on V.

The group G acts transitively on V, since it contains the translations group T = {tb :
tb(x) = x + b,b ∈ V}. Hence, to prove that G acts primitively on V, it suffices to show
that the stabilizer G0 is a maximal subgroup of G.

Suppose G0 is not a maximal subgroup of G, that is there exists a proper subgroup
H of G such that G0 < H . The subgroup H consists of the permutations g : V → V

such that g(x) = ax + b, where a ∈ A and b belongs to a proper additive subgroup of
GF (pn). Hence |H| = |A| pl = q pl with l < n. From [12, II.8.7], it follows that q|(pl − 1),
a contradiction. Hence G0 is a maximal subgroup of G and G is a primitive permutation
group on V of affine type.

The next arguments will be useful to prove Proposition 15. We show that each non–
diagonal orbital ∆ of G on V ×V has size |V|q.

We note that q 6= 2, since q is a p–primitive divisor of pn − 1. Hence |G| = pn q is odd,
whence no non–diagonal orbital of G is self–paired.

The map φ which associates each orbital ∆ of G to the set {b : (0,b) ∈ ∆} is a
bijection between the set of orbitals of G and the set of G0–orbits on V. For b ∈ V,
b 6= 0, we shall denote by Ob the G0–orbit of b. Note that Ob = {ab : a ∈ A}, since
G0 = {ga : ga(x) = ax, a ∈ A}.

Let ∆ be a non–diagonal orbital of G corresponding to Ob. Because G contains the
group T of translations on V, it is easy to see that (u,w) ∈ ∆ if and only if w−u ∈ Ob.
Then |∆| is the number of pairs (u,w) such that w − u ∈ Ob.

For every c ∈ Ob and for every w ∈ V, there exists a unique u ∈ V such that
w − u = c. In other words, since G is transitive on V, for every c ∈ Ob there exist |V|
distinct pairs of distinct elements of V belonging to ∆. We have |∆| = |V| · |Ob| = |V|q.

We set v = |V| = pn. Since every non–diagonal orbital of G has size vq, we have that
the rank r = (|V|2 − |V|)/(|V|q) + 1 = (v − 1)/q + 1.

Proposition 15. Let p be a prime and let v = pn, n > 2, such that v ≡ 1 (mod 12) and
p + 1 is not a 2–power if n = 2. Let q be a p–primitive divisor of pn − 1. If (v − 1)/q 6≡ 0
(mod 12), then there is no bowtie decomposition of Kv which is invariant with respect to
G.

Proof. We identify the vertices of the complete graph with the elements of the vector
space GF (pn).

As already remarked, no non–diagonal orbital of G is self–paired, hence the rank r
can be written as r = 2t + 1 and t corresponds to the number of G–orbits of edges. By
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the previous remarks, r = (v − 1)/q + 1, hence t = (v − 1)/2q.
Suppose there exists a bowtie decomposition Bv of Kv which is invariant with respect

to G. Each bowtie of Bv is of type (4), since |G| is odd. A bowtie of type (4) contains
exactly 6 edges from distinct edge–orbits. Whence the number of G–orbits of edges is
divisible by 6, that is 6|(v − 1)/2q, a contradiction.

Using the AllPrimitiveGroups library of GAP, [10], we found primitive permu-
tation groups acting transitively on v ≡ 1 (mod 12) vertices and of order vq, where
v ∈ {37, 61, 73, 109, 157, 181, 229} and q is an odd prime divisor of (v − 1) such that
(v − 1)/q ≡ 0 (mod 12). For each group G we constructed a set of (v − 1)/(12q) distinct
representatives of G–orbits of bowties yielding a G–invariant bowtie decomposition Bv.
Each G–orbit has length vq. Unfortunately, we were not able to find a general construc-
tion.

6 1–rotational bowtie decompositions

Let Kv = (V, E) be the complete graph on v vertices. Let G be a subgroup of the
symmetric group Sym(v) which fixes one vertex of V and acts sharply transitively on the
remaining vertices, that is G is 1–rotational on V .

Because of the action of G on V , we can identify V with G ∪ {∞}, where ∞ is an
element not lying in G. Observe that |G| = v − 1.

We will understand the group G in additive form and 0G will denote the identity
element of G. The action of G on the vertices of Kv is given by the regular right repre-
sentation of G, that is g(x) = x + g for every x, g ∈ G, with the rule ∞ + g = ∞.

Proposition 16. Let v be an admissible value. There is no 1–rotational bowtie decompo-
sition of order v.

Proof. Suppose there exists a bowtie decomposition Bv which is invariant with respect
to G.

Let {B1, . . . , Bµ} be a complete system of distinct representatives for the G–orbits
of Bv. Because of the action of G on the vertices of Kv, there exists a unique Bi ∈
{B1, . . . , Bµ} whose G–orbit contains all edges which are incident with ∞. Observe that
the edges which are incident with ∞ all lie in the same G–orbit, since G acts transitively
on V \ {∞}.

Without loss of generality we can set Bi = B1 and B1 = (x, y1, z1, y2, z2). Observe
that B1 contains 4 or 2 edges which are incident with ∞, according to whether x = ∞ or
x 6= ∞.

Suppose x 6= ∞. Let S be the stabilizer in G of B1. Every element of S fixes x, since
x is the unique 4–valent vertex of B1. Hence S = 〈idV 〉, since x 6= ∞ and G acts sharply
transitively on V \ {∞}. It follows that |BG

1 | = v − 1, that is BG
1 contains 2(v − 1) edges

which are incident with ∞, a contradiction. Hence x = ∞ and |BG
1 | = (v − 1)/4, as B1

contains 4 edges which are incident with ∞.
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Each representative in {B2, . . . , Bµ} has trivial stabilizer in G, as its centre lies in
V r {∞} and G acts sharply transitively on V r {∞}. Hence µ = |Bv r BG

1 |/(v − 1) =
[(v(v−1))/12−(v−1)/4]/(v−1) = (v−3)/12. That yields a contradiction, since v ≡ 1, 9
(mod 12). Hence there is no bowtie decomposition Bv which is invariant with respect to
G.
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