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Abstract

We present and analyze some random procedures for the construction of small
dominating sets in graphs. Several upper bounds for the domination number of a
graph are derived from these procedures.
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1 Introduction

We consider finite, simple and undirected graphs G = (V, E) with vertex set V , edge
set E, order n = |V |, and size m = |E|. The neighbourhood of a vertex u ∈ V in the
graph G is the set NG(u) = {v ∈ V | uv ∈ E} and the closed neighbourhood of u in
G is NG[u] = NG(u) ∪ {u}. The degree of u in G is the number dG(u) = |NG(u)| of its
neighbours. For a set U ⊆ V let NG[U ] =

⋃

u∈U NG[u] and NG(U) = NG[U ] \ U .
A set of vertices D ⊆ V of G is dominating, if every vertex in V \ D has a neighbour

in D. The minimum cardinality of a dominating set is the domination number γ(G) of
G. A set of vertices I ⊆ V of G is independent, if no two vertices in I are adjacent. The
maximum cardinality of an independent set is the independence number α(G) of G.

Dominating and independent sets are among the most well-studied graph theoretical
objects. The literature on this subject has been surveyed and detailed in the two books by
Haynes, Hedetniemi, and Slater [7, 8]. Natural conditions used to obtain upper bounds
on the domination number involve the order of the considered graphs and the degrees
of their vertices or just their minimum degree. While there are several results for small
minimum degrees [9, 10, 12], asymptotically best-possible bounds in terms of the order
and the minimum degree can be obtained by very simple probabilistic arguments [1] (cf.
also [2, 11]).

In the present paper we analyze random procedures for the construction of dominating
sets in more detail. In Section 2 we generalize the argument from Alon and Spencer [1]
which works in two rounds to several rounds. As observed in Section 3 several random
procedures lead to bounds involving multilinear functions and the partial derivaties of
these functions can be used to improve the bounds. Finally, in Section 4 we propose a new
procedure for the construction of dominating sets which mimics a beautiful probabilistic
argument for Caro and Wei’s lower bound on the independence number [4, 13].

2 Constructing a Dominating Set in several Rounds

A very simple probabilistic argument due to Alon and Spencer [1] implies that for every
graph G of order n and minimum degree δ the domination number satisfies

γ(G) 6
ln(δ + 1) + 1

δ + 1
n (1)

which is asymptotically best-possible with respect to the dependence on δ. They construct
a dominating set in two steps. They first select a set X of vertices containing every vertex
of G independently at random with probability p and then they add the set R of vertices
of G which are not yet dominated, i.e. R = V \ NG[X]. The bound on the domination
number is obtained by estimating the expected cardinality of the dominating set X ∪ R

in terms of p and optimizing over p ∈ [0, 1].
Here we consider a generalization of this approach which works in several rounds.

A first natural idea would be to select a random set of vertices, a second random set
of vertices among those vertices which are still not dominated by the first set, a third
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random set of vertices among those vertices which are still not dominated by the first
two sets and so on. The problem with this approach is that the involved probabilities are
hard to analyze because of accumulating dependencies. Therefore, we modify this idea as
follows. We select k sets of vertices X1, . . . , Xk independently at random. Now for every
i = 1, . . . , k the set Yi will contain the vertices from Xi which are not yet dominated
by X1 ∪ · · · ∪ Xi−1, i.e. Yi will in fact be similar to the sets described above. To avoid
dependencies we add to Yi a set Zi ensuring that (Y1 ∪ Z1) ∪ · · · (Yi ∪ Zi) dominates all
vertices dominated by X1∪· · ·∪Xi. To make the analysis possible we still need to assume
that the graph has no cycles of length less than five, i.e. its girth is at least five.

Theorem 1 Let G = (V, E) be a graph of maximum degree ∆ and girth at least five. For

some k ∈ N let p1, . . . , pk ∈ [0, 1]. If p<1 = 0 and p<i = 1−
i−1
∏

j=1

(1−pj) for 2 6 i 6 k, then

γ(G) 6
∑

v∈V

(

k
∑

i=1

pi · (1 − p<i)
(dG(v)+1)

+
k−1
∑

i=1

(1 − p<i)
(dG(v)+1) · (1 − pi) ·

(

(

1 − pi(1 − p<i)
(∆−1)

)dG(v) − (1 − pi)
dG(v)

)

+(1 − p<k)
(dG(v)+1) · (1 − pk) ·

(

1 − pk(1 − p<k)
(∆−1)

)dG(v)
)

.

Proof: For 1 6 i 6 k let Xi be a subset of V which arises by choosing every vertex of G

independently at random with probability pi. Let Y1 = X1 and Z1 = ∅. For 2 6 i 6 k let

X<i =

i−1
⋃

j=1

Xj,

Yi = Xi \ NG [X<i]

and
Zi = NG[Xi] \ NG [X<i ∪ Yi] .

Let

R = V \ NG

[

k
⋃

j=1

Xj

]

.

Claim 1 NG[X1 ∪ · · · ∪ Xi] ⊆ NG[(Y1 ∪ Z1) ∪ · · · ∪ (Yi ∪ Zi)] for 1 6 i 6 k.

Proof of Claim 1: We prove the claim by induction. For i = 1 the statement is trivial,
since X1 = Y1∪Z1. Now let i > 2. By induction, NG[X<i] ⊆ NG[(Y1∪Z1)∪· · ·∪ (Yi∪Zi)]
and it suffices to show NG[Xi] ⊆ NG[(Y1 ∪ Z1) ∪ · · · ∪ (Yi ∪ Zi)]. Let v ∈ NG[Xi].

If v ∈ Xi, then either v ∈ Yi or v ∈ NG[X<i]. In both cases we are done. If v ∈ NG(Xi),
then either v ∈ NG[X<i] or v ∈ NG[Yi] or, by definition, v ∈ Zi. Again, in all cases we are
done and the proof of the claim is complete. 2
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Note that, by the claim and the definition of R, the set

D = R ∪
k
⋃

i=1

(Yi ∪ Zi)

is a dominating set of G.
The expected cardinality of Y1 is p1n. Now let 2 6 i 6 k. Since the sets X1, . . . , Xi−1

are chosen independently, the set X<i arises by choosing every vertex of G independently
at random with probability

p<i = 1 −
i−1
∏

j=1

(1 − pj).

Hence
P[v ∈ Yi] = pi · (1 − p<i)

(dG(v)+1)

for every vertex v ∈ V .
Furthermore, a vertex v ∈ V is in Zi if and only if v 6∈ NG[X<i] and v 6∈ Xi and there is

some non-empty set U ⊆ NG(v) with NG(v)∩(NG(X<i)∩Xi) = U and NG(v)∩(V \Xi) =
NG(v) \ U .

For some specific set U let

NG(v) \ U = {v1, v2, . . . , vdG(v)−l}

and
U = {vdG(v)−l+1, vdG(v)−l+2, . . . , vdG(v)}.

By the independence of the choice of the elements of the sets Xj and by the girth condition,
we obtain - in what follows we indicate the use of the independence by “(i)” and the use
of the girth condition by “(g)”

P [v ∈ Zi| (NG(v) ∩ (NG(X<i) ∩ Xi) = U) ∧ (NG(v) ∩ (V \ Xi) = NG(v) \ U)]

= P



(v 6∈ NG[X<i]) ∧ (v 6∈ Xi) ∧





dG(v)−l
∧

j=1

(vj 6∈ Xi)



 ∧





dG(v)
∧

j=dG(v)−l+1

(vj ∈ NG(X<i) ∩ Xi)









(i)
= (1 − p<i)

(dG(v)+1) · (1 − pi) · (1 − pi)
(dG(v)−l)

·P









dG(v)
∧

j=dG(v)−l+1

(vj ∈ NG(X<i) ∩ Xi)





∣

∣

∣

∣

∣

∣

(v 6∈ NG[X<i]) ∧ (v 6∈ Xi) ∧





dG(v)−l
∧

j=1

(vj 6∈ Xi)









(i)
= (1 − p<i)

(dG(v)+1) · (1 − pi)
(dG(v)−l+1)

·P









dG(v)
∧

j=dG(v)−l+1

(vj ∈ NG(X<i) ∩ Xi)





∣

∣

∣

∣

∣

∣

v 6∈ NG[X<i]




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= (1 − p<i)
(dG(v)+1) · (1 − pi)

(dG(v)−l+1)

·
dG(v)
∏

j=dG(v)−l+1

P



(vj ∈ NG(X<i) ∩ Xi)

∣

∣

∣

∣

∣

∣





j−1
∧

r=dG(v)−l+1

(vr ∈ NG(X<i) ∩ Xi)



 ∧ (v 6∈ NG[X<i])





(i)
= (1 − p<i)

(dG(v)+1) · (1 − pi)
(dG(v)−l+1)

·pl
i ·

dG(v)
∏

j=dG(v)−l+1

P



(vj ∈ NG(X<i))

∣

∣

∣

∣

∣

∣





j−1
∧

r=dG(v)−l+1

(vr ∈ NG(X<i))



 ∧ (v 6∈ NG[X<i])





(g)
= (1 − p<i)

(dG(v)+1) · (1 − pi)
(dG(v)−l+1) · pl

i ·
dG(v)
∏

j=dG(v)−l+1

P [(vj ∈ NG(X<i)) |v 6∈ NG[X<i]]

(g)
= (1 − p<i)

(dG(v)+1) · (1 − pi)
(dG(v)−l+1) · pl

i ·
dG(v)
∏

j=dG(v)−l+1

(

1 − (1 − p<i)
(dG(vj)−1)

)

.

6 (1 − p<i)
(dG(v)+1) · (1 − pi)

(dG(v)−l+1) · pl
i ·
(

1 − (1 − p<i)
(∆−1)

)l

.

This implies that

P[v ∈ Zi]

6 (1 − p<i)
(dG(v)+1) · (1 − pi) ·

dG(v)
∑

l=1

(

dG(v)

l

)

· (1 − pi)
(dG(v)−l) · pl

i ·
(

1 − (1 − p<i)
(∆−1)

)l

= (1 − p<i)
(dG(v)+1) · (1 − pi) ·

(

(

(1 − pi) + pi

(

1 − (1 − p<i)
(∆−1)

))dG(v)
− (1 − pi)

dG(v)

)

= (1 − p<i)
(dG(v)+1) · (1 − pi) ·

(

(

1 − pi(1 − p<i)
(∆−1)

)dG(v)
− (1 − pi)

dG(v)

)

for every vertex v ∈ V .
Finally,

P[v ∈ R] =

k
∏

i=1

(1 − pi)
(dG(v)+1)

for every vertex v ∈ V .
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By linearity of expectation, we obtain

γ(G) 6 E[|D|]

= E[|R|] +
k
∑

i=1

(E[|Yi|] + E[|Zi|])

6
∑

v∈V

(

k
∏

i=1

(1 − pi)
(dG(v)+1) +

k
∑

i=1

pi · (1 − p<i)
(dG(v)+1)

+
k
∑

i=1

(1 − p<i)
(dG(v)+1) · (1 − pi) ·

(

(

1 − pi(1 − p<i)
(∆−1)

)dG(v) − (1 − pi)
dG(v)

)

)

=
∑

v∈V

(

k
∑

i=1

pi · (1 − p<i)
(dG(v)+1)

+
k−1
∑

i=1

(1 − p<i)
(dG(v)+1) · (1 − pi) ·

(

(

1 − pi(1 − p<i)
(∆−1)

)dG(v) − (1 − pi)
dG(v)

)

+(1 − p<k)
(dG(v)+1) · (1 − pk) ·

(

1 − pk(1 − p<k)
(∆−1)

)dG(v)
)

and the proof is complete. 2

Theorem 1 still leaves the task to find good values for the probabilites p1, . . . , pk. In
order to compare it for instance to the bound (1) of Alon and Spencer, we present some
numerical results for d-regular graphs and different numbers of rounds. Table 1 gives the
numerically optimal value for the bound on γ(G)

|V |
in Theorem 1 for 3 6 d 6 10 and 1, 2, 3

and 11 rounds. For comparision we also list the value of (1).

Rounds

d ln(d+1)+1
d+1 1 2 3 11

3 0.59657359028 0.52752960628 0.46398402832 0.45378488660 0.45258151834
4 0.52188758248 0.46500775601 0.40965805121 0.40614010876 0.40609337873
5 0.46529324487 0.41764406769 0.36881380436 0.36756994127 0.36756737023
6 0.42084430700 0.38026854880 0.33667455575 0.33620842585 0.33620824046
7 0.38493019271 0.34987749850 0.31055501904 0.31037371778 0.31037370239
8 0.35524717526 0.32459050164 0.28880727138 0.28873522218 0.28873522080
9 0.33025850929 0.30316268558 0.27035398149 0.27032500642 0.27032500629

10 0.30889957025 0.28473323436 0.25445619977 0.25444447470 0.25444447469

Table 1 Numerical results for Theorem 1

For the results using 11 rounds the numerically optimal pi’s are listed in Table 2.
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Degree of regularity d

i 3 4 5 10

1 0.15802495270865785 0.17961282083328788 0.17625843720156733 0.13613621200382378
2 0.26758130289201026 0.34475712015729920 0.36944988288580227 0.37255216737900287
3 0.37728274633574865 0.45530927158279288 0.47802072348063751 0.49999885780393971
4 0.43639455423559259 0.48557411477730633 0.49999501914405736 0.49999999999999550
5 0.45789313248767055 0.49996125731020485 0.49999999660914201 0.50000000000000000
6 0.46463706700970097 0.49999985782508249 0.49999999999677913 0.50000000000000000
7 0.49946145125621827 0.49999999944911738 0.49999999999999683 0.50000000000000000
8 0.49999169039055640 0.49999999999785022 0.50000000000000000 0.50000000000000000
9 0.49999987061638329 0.49999999999999161 0.50000000000000000 0.50000000000000000

10 0.49999999801110439 0.50000000000000000 0.50000000000000000 0.50000000000000000
11 0.49999999999999789 0.50000000000000000 0.50000000000000000 0.50000000000000000

Table 2 Optimal choices for the pi’s

3 Optimizing the Results of Random Procedures

Many random procedures constructing dominating sets essentially yield a bound on the
domination number in terms of a multilinear function depending on the involved proba-
bilities. For instance, if we use an individual probability pu for every vertex u ∈ V of the
graph G = (V, E) in the procedure of Alon and Spencer [1], then the expected cardinality

of the resulting dominating set equals
∑

u∈V

(

pu +
∏

v∈NG[u](1 − pv)
)

. This is in fact a

multilinear function, i.e. fixing all but one variable results in a linear function.
To obtain a compact expression as a bound one often sets all values of pu equal to

some p and solves the arising one-dimensional optimization problem over p ∈ [0, 1].
Here we propose a modification of this approach. Given values for the probabilities pu

the partial derivatives of the multilinear bound indicate changes of the pu which would
decrease the value of the bound. Depending on the partial derivatives we will reset the
pu to 0 or 1. To allow for some further flexibility we use a parameter b in order to decide
which values to modify in which way.

Given a multilinear function f(x1, . . . , xn), some x ∈ [0, 1], and some b > 0 consider the
following algorithm Ab(x).

Algorihm Ab(x)

1. For i from 1 to n do: xi := x.

2. For i from 1 to n do: if fxi
(x1, . . . , xn) > −b, then xi := 0, else xi := 1.

3. For i from 1 to n do: if fxi
(x1, . . . , xn) 6 −b, then xi := 1.

4. Output (x1, . . . , xn).
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Theorem 2 Let G = (V, E) be a graph with vertex set V = {v1, v2, . . . , vn} and minimum
degree δ. Let f(x1, . . . , xn) be a multilinear function such that

γ(G) 6 min
(x1,...,xn)∈[0,1]n

f(x1, . . . , xn). (2)

Furthermore, for some b > 0 and every x ∈ [0, 1] let the Algorithm Ab(x) produce a vector
(x1, x2, . . . , xn) with the property that xk = 0 for all 1 6 k 6 n with vk ∈ NG[vi] ∪ NG[vj ]
for some 1 6 i < j 6 n implies distG(vi, vj) > 3.

Then

γ(G) 6 min
x∈[0,1]

(

δ

δ(1 + b) + b
f(x, ..., x) +

b(δx + 1)

δ(1 + b) + b
n

)

.

Before we proceed to the proof of Theorem 2 we introduce some terminology. Given
the situation described in Theorem 2 we will call a vertex vi ∈ V critical, if xk = 0
for all 1 6 k 6 n with vk ∈ NG[vi]. The property described in Theorem 2 means that
Algorithm Ab(x) produces a vector (x1, x2, . . . , xn) for which the critical vertices have
pairwise distance at least three. If the function f — associated to the graph G — has
this property, then we say that f has property Pb.

Proof of Theorem 2: Let G, b and f be as in the statement of Theorem 2.
Since f is multilinear, we have for all x1, . . . , xn, δxi ∈ R

f(x1, . . . , xi−1, xi + δxi, xi+1, . . . , xn)

= f(x1, . . . , xi−1, xi, xi+1, . . . , xn) +
∂

∂xi

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) · δxi. (3)

For some x ∈ [0, 1] let (x1, . . . , xn) denote the output of Algorithm Ab(x). Let

M = {vi ∈ V (G)|xi = 1}.

Note that a vertex vi is critical exactly if NG[vi] ∩ M = ∅.

Claim 1 γ(G) 6 f(x, . . . , x) − b|M | + bxn.

Proof of Claim 1: By (2), γ(G) 6 f(x, . . . , x). We consider the Algorithm Ab(x). After
Step 1, (x1, . . . , xn) = (x, . . . , x). If during Step 2 some xi = x is replaced by 1, then, by
(3), the value of f(x1, . . . , xn) decreases at least by b(1 − x). Similarly, if during Step 2
some xi = x is replaced by 0, then, by (3), the value of f(x1, . . . , xn) increases at most by
bx. Furthermore, if during Step 3 some xi = 0 is replaced by 1, then xi = x was replaced
by 0 in Step 2 and summing the effect of the changes in xi made by Step 2 and Step 3,
f(x1, . . . , xn) decreases at least by b(1 − x) in total. Altogether,

f(x1, . . . , xn) 6 f(x, . . . , x) − b(1 − x)|M | + bx(n − |M |) = f(x, . . . , x) − b|M | + bxn.

which completes the proof of the claim. 2

the electronic journal of combinatorics 17 (2010), #R102 8



Let k be the number of critical vertices and let D be obtained by adding all critical vertices
to M . Clearly, D is a dominating set of G, γ(G) 6 |D| = |M | + k, and, by Claim 1,

γ(G) =

(

1

1 + b
+

b

1 + b

)

γ(G)

6
1

1 + b
(f(x, . . . , x) − b|M | + bxn) +

b

1 + b
|D|

=
1

1 + b
(f(x, . . . , x) − b(|D| − k) + bxn) +

b

1 + b
|D|

=
1

1 + b
f(x, . . . , x) +

b

1 + b
(k + xn). (4)

Since f has property Pb,

γ(G) 6 n − δk. (5)

Since δ(1+b)
δ(1+b)+b

+ b
δ(1+b)+b

= 1, a convex combination of (4) and (5) yields

γ(G) 6
δ(1 + b)

δ(1 + b) + b

(

1

1 + b
f(x, ..., x) +

b

1 + b
(k + xn)

)

+
b

δ(1 + b) + b
(n − δk)

=
δ

δ(1 + b) + b
f(x, ..., x) +

b(δx + 1)

δ(1 + b) + b
n.

Since x was arbitrary in [0, 1], the theorem follows. 2

We will now show an application of Theorem 2. Our next lemma gives an upper bound
on the domination number in terms of a multilinear function as required for Theorem 2
(similar bounds are contained in [5]). Additionally we have to verify property Pb for some
b.

Proposition 3 If G = (V, E) is a graph with vertex set V = {v1, . . . , vn} and without
isolated vertices, then

γ(G) = min
(x1,...,xn)∈[0,1]n

f(x1, . . . , xn) (6)

where

f(x1, . . . , xn) =

n
∑

i=1



xi +
∏

vj∈NG[vi]

(1 − xj) −
1

1 + dG(vi)

∏

vj∈NG[vi]

xj



 . (7)

Furthermore, the function f in (7) has property P1.

Proof: Let (x1, ..., xn) ∈ [0, 1]n and let X ⊆ V be a set of vertices containing every vertex
vi independently at random with probability xi. Let

X ′ = {vi ∈ V | NG[vi] ⊆ X}
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and let I be a maximum independent set in the subgraph G[X ′] of G induced by X ′. If

Y = {v ∈ V |NG[v] ∩ X = ∅},

then (X \ I) ∪ Y is a dominating set of G and hence γ(G) 6 E[|X|] + E[|Y |] − E[|I|].
Clearly, E[|X|] =

n
∑

i=1

xi and E[|Y |] =
n
∑

i=1

∏

vj∈NG[vi]

(1 − xj).

By the Caro-Wei inequality [4, 13],

E[|I|] >
∑

v∈X′

1

1 + dG[X′](v)
>
∑

v∈V

1

1 + dG(v)
P[v ∈ X ′] =

n
∑

i=1

1

1 + dG(vi)

∏

vj∈NG[vi]

xj .

This implies that γ(G) is at most the expression given on the right hand side of (6). For
the converse, let D be a minimum dominating set. Note that for every vertex vi ∈ V we
have NG[vi]∩D 6= ∅, since D is dominating and NG[vi]∩D 6= NG[vi], since D is minimum.
Therefore, setting x∗

i = 1 for all vi ∈ D and x∗
i = 0 for all vi ∈ V \ D yields

γ(G) =
n
∑

i=1



x∗
i +

∏

vj∈NG[vi]

(1 − x∗
j ) −

1

1 + dG(vi)

∏

vj∈NG[vi]

x∗
j





=

n
∑

i=1

(x∗
i + 0 + 0) = |D| = γ(G)

and the proof of (6) is complete.
Now we proceed to the proof that f has property P1. Therefore, let x ∈ [0, 1], let

(x1, . . . , xn) be the output of Algorithm A1(x) and let vi and vj be two critical vertices.
For contradiction, we assume that NG[vi] ∩ NG[vj ] 6= ∅. Note that after the execution
of Step 2 the values xl for all vl ∈ NG[vi] ∪ NG[vj ] are 0 and remain 0 throughout the
execution of Step 3. For 1 6 k 6 n we have

∂

∂xk

f(x1, . . . , xn)

= 1 −
∑

vl∈NG[vk]





∏

vm∈NG[vl]\{vk}

(1 − vx) +
1

1 + dG(vl)

∏

vm∈NG[vl]\{vk}

xm



 .

If vj ∈ NG[vi], then during the execution of Step 3

∂

∂xi

f(x1, . . . , xn) 6 1 −
∏

vm∈NG[vi]\{vi}

(1 − xm) −
∏

vm∈NG[vj ]\{vi}

(1 − xm) = −1

and if vk ∈ NG(vi) ∩ NG(vj), then during the execution of Step 3

∂

∂xk

f(x1, . . . , xn) 6 1 −
∏

vm∈NG[vi]\{vk}

(1 − xm) −
∏

vm∈NG[vj ]\{vk}

(1 − xm) = −1.
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In both cases, we obtain the contradiction that either xi or xk would be set to 1 by Step
3 and the proof is complete. 2

Theorem 2 and Proposition 3 immediately imply the following result for b = 1.

Corollary 4 If G = (V, E) is a graph of order n and minimum degree δ, then

γ(G) 6
1

2δ + 1

(

(2δx + 1)n + δ
∑

v∈V

(

(1 − x)dG(v)+1 − 1

1 + dG(v)
xdG(v)+1

)

)

for every x ∈ [0, 1].

For δ > 3 we can derive the following bound.

Corollary 5 Let G be a graph of order n and minimum degree δ > 3. The equation
(δ + 1)(1 − x)δ + xδ = 2 has a unique solution x0 ∈

[

0, 1
2

]

for which

γ(G)

n
6

1

2δ + 1

(

(2δx0 + 1) + δ

(

(1 − x0)
δ+1 − 1

1 + δ
xδ+1

0

))

.

Proof: We will first show that the contribution of every vertex to the bound in Corollary
4 decreases monotonously with its degree provided that x is within a certain range.

Claim 1 If d > δ > 3 and x ∈
[

1
δ3 ,

1
3

]

, then

(1 − x)d+1 − 1

1 + d
xd+1

6 (1 − x)δ+1 − 1

1 + δ
xδ+1.

Proof of Claim 1: We prove the inequality (1 − x)d+1 − 1
1+d

xd+1 6 (1 − x)d − 1
d
xd for

d > δ +1 > 4 and x ∈
[

1
δ3 ,

1
3

]

. Because of (1−x)d+1 = (1−x)d −x(1−x)d this inequality

is equivalent to 1
d
− x

1+d
6 x

(1−x)d

xd . Since x 6
1
3
, we have (1−x)d

xd > 2d and it is sufficient to

show that 1
d

6 x2d for d > δ + 1 > 4. Since x >
1
δ3 > 1

d3 >
1

d2d , the last condition holds
and the proof is complete. 2

By Claim 1, for x ∈
[

1
δ3 ,

1
3

]

Corollary 4 implies

γ(G) 6
n

2δ + 1

(

(2δx + 1) + δ

(

(1 − x)δ+1 − 1

1 + δ
xδ+1

))

and we consider the problem of minimizing this term with respect to x ∈
[

1
δ3 ,

1
3

]

.
Therefore, let

h(x) = (δ + 1)(1 − x)δ + xδ.
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Note that

∂

∂x

(

(2δx + 1) + δ

(

(1 − x)δ+1 − 1

1 + δ
xδ+1

))

= δ(2 − h(x)).

Claim 2 The function h(x) is strictly decreasing for x ∈
[

0, 1
2

]

, h
(

1
δ3

)

> 2 and h
(

1
3

)

6 2.

Proof of Claim 2: Since d
dx

h(x) < 0 is equivalent to
(

x
1−x

)δ−1
< δ + 1 and x

1−x
< 1 for

x 6
1
3
, the function h(x) is strictly decreasing for x ∈

[

0, 1
2

]

.

Clearly, h
(

1
δ3

)

> 2 if and only if (δ + 1)
(

1 − 1
δ3

)δ
+
(

1
δ3

)δ
> 2. This can easily

be checked for 3 6 δ 6 5. For the remaining values of δ it is sufficient to show that
(

1 − 1
δ

)δ
>

2
δ+1

. Since (1 − 1
δ
)δ >

8
27

for δ > 3 this last inequality is true for δ > 6.

For δ = 3 one easily checks that h
(

1
3

)

6 2 and for δ > 4, we have

h

(

1

3

)

= (δ + 1)

(

2

3

)δ

+

(

1

3

)δ

< 2(δ + 1)

(

2

3

)δ

6 2

which completes the proof of the claim. 2

By Claim 2, there is a unique x ∈
[

0, 1
2

]

with h(x) = 2 which lies in
[

1
δ3 ,

1
3

]

and the proof
is complete. 2

The following table contains some numerical results concerning the bound in Corollary 5
and the point x0.

δ bound x0

3 0.4895676537 0.2074827860
4 0.4344421097 0.2049045685
5 0.3918579884 0.1972824290
6 0.3578840276 0.1884404884
7 0.3300593960 0.1796649981
8 0.3067865527 0.1713933478
9 0.2869859624 0.1637489730

10 0.2699010113 0.1567356685

Table 3 Numerical results for Corollary 5

4 Working along a Random Permutation

The following very simple probabilistic argument yields a proof of the well-known lower
bound for the independence number of a graph due to Caro [4] and Wei [13]. Let G =
(V, E) be a graph. For a random linear ordering v1, . . . , vn of its vertices let

I = {vi | NG(vi) ∩ {v1, . . . , vi−1} = ∅}.
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Let vi ∈ V . Since every vertex vj ∈ NG[vi] appears with equal probability as the first
vertex among the 1 + dG(vi) vertices in NG[vi] within the linear ordering, we have P[vi ∈
I] = 1

1+dG(vi)
and hence, by linearity of expectation,

α(G) >
∑

v∈V

1

1 + dG(v)
.

Our aim is to mimic this approach in order to construct dominating sets. A first attempt
to do so would be to start with an empty set D and then — following some random
linear ordering — to add the vertices of a graph G one by one to D exactly if they have
no neighbour in D. As in Section 2 the analysis of this approach is difficult, because of
accumulating dependencies. We modify the described procedure in such a way that every
vertex which still might be useful for dominating a neighbour following later in the linear
ordering belongs to the constructed dominating set at least with some small probability.
While the mentioned dependencies are still there, this modifications allows an analysis
leading to an upper bound.

Theorem 6 If G = (V, E) is a graph of order n and

ρ =
1

n

∑

v∈V

1

1 + dG(v)
,

then

γ(G) 6











p∗n + 1−p∗−(p∗)2

p∗

∑

v∈V

1
1+dG(v)

, for p∗ =
√

ρ

1−ρ
and ρ 6

1
5

p∗∗n + 1−p∗∗

p∗∗

∑

v∈V

1
1+dG(v)

, for p∗∗ =
√

ρ and ρ 6
1
4
.

Proof: Let v1, . . . , vn be a random linear ordering of the vertices of G. For 1 6 i 6 n

let N−
i = NG(vi) ∩ {v1, . . . , vi−1} be the set of neighbour of vi preceeding vi within this

ordering. For some p ∈
[

0, 1
2

]

we consider the following algorithm

Algorithm Bp

1. D := ∅.

2. For i from 1 to n do:

If N−
i ∩ D = ∅, then D := D ∪ {vi},

If N−
i ∩ D 6= ∅ and |N−

i | < dG(vi), then D := D ∪ {vi} with probability p.

3. Output D.

Clearly, D is a dominating set. Note that for every 0 6 k 6 dG(vi) we have

P
[

|N−
i | = k

]

=

(

dG(vi)

k

)

k!(dG(vi) − k)!

(1 + dG(vi))!
=

1

1 + dG(vi)
. (8)
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Furthermore, since every vertex vj for which N−
j does not contain all its neighbour belongs

to D with probability at least p, we have

P
[

N−
i ∩ D = ∅ | |N−

i | = k
]

6 (1 − p)k
. (9)

Therefore, we obtain

P[vi ∈ D] =

dG(vi)
∑

k=0

P
[

|N−
i | = k

]

· P
[

N−
i ∩ D = ∅ | |N−

i | = k
]

+

dG(vi)−1
∑

k=0

P
[

|N−
i | = k

]

· P
[

N−
i ∩ D 6= ∅ | |N−

i | = k
]

· p

=

dG(vi)
∑

k=0

P
[

|N−
i | = k

]

· P
[

N−
i ∩ D = ∅ | |N−

i | = k
]

+

dG(vi)−1
∑

k=0

P
[

|N−
i | = k

]

·
(

1 − P
[

N−
i ∩ D = ∅ | |N−

i | = k
])

· p

= P
[

|N−
i | = dG(vi)

]

· P
[

N−
i ∩ D = ∅ | |N−

i | = dG(vi)
]

+

dG(vi)−1
∑

k=0

P
[

|N−
i | = k

]

·
(

p + (1 − p) · P
[

N−
i ∩ D = ∅ | |N−

i | = k
])

(8)
=

1

1 + dG(vi)
·P
[

N−
i ∩ D = ∅ | |N−

i | = dG(vi)
]

+

dG(vi)−1
∑

k=0

1

1 + dG(vi)
·
(

p + (1 − p) · P
[

N−
i ∩ D = ∅ | |N−

i | = k
])

(9)

6
1

1 + dG(vi)
·



(1 − p)dG(vi) +

dG(vi)−1
∑

k=0

(

p + (1 − p) · (1 − p)k
)





=
1

1 + dG(vi)
·
(

pdG(vi) +
2p − 1

p
(1 − p)dG(vi) +

1 − p

p

)

2p61

6
1

1 + dG(vi)
·
(

pdG(vi) +
1 − p

p

)

= p +
1 − p − p2

p(1 + dG(vi))
.

By linearity of expectation,

γ(G) 6 pn +
1 − p − p2

p

∑

v∈V

1

1 + dG(v)
(10)

6 pn +
1 − p

p

∑

v∈V

1

1 + dG(v)
. (11)
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Let ρ = 1
n

∑

v∈V
1

1+dG(v)
. For the bound in (10) the optimal value for p equals

√

ρ

1−ρ
which

is at most 1
2

for ρ 6
1
5
. Similarly, for the bound in (11) the optimal value for p equals

√
ρ

which is at most 1
2

for ρ 6
1
4
. This completes the proof. 2

References

[1] N. Alon and J. Spencer, The Probabilistic Method, John Wiley and Sons, Inc., 1992.

[2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of
the minimal degree of the vertices, (Russian), Prikl. Mat. Programm. 11 (1974), 3-8.

[3] M. Blank, An estimate of the external stability number of a graph without suspended
vertices, Prikl. Math. Programm. Vyp 10 (1973), 3-11.

[4] Y. Caro, New results on the independence number, Technical Report. Tel-Aviv Uni-
versity (1979).
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