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Abstract
Let G be a finite additively written abelian group, and let X be a subset of 7
elements in G. We show that if X contains no nonempty subset with sum zero, then
the number of the elements which can be expressed as the sum over a nonempty
subsequence of X is at least 24.

1 Introduction

Let G be an additive abelian group and X C G a subset of G. We denote by f(G, X) =
f(X) the number of nonzero group elements which can be expressed as a sum of a
nonempty subset of X. For a positive integer k € N, let f(k) denote the minimum of all
f(G, X), where the minimum is taken over all finite abelian groups G and all zero-sum
free subsets X C G with | X| = k. The invariant f(k) was first studied by R. B. Eggleton
and P. Erdés in 1972 [1]. For every k € N they obtained a subset X in a cyclic group G
with | X| = k such that

P < 6. X) = 02| 41 (1)

And J. E. Olson [2] proved that

12
f(k) = k"

Moreover, Eggleton and Erdds determined f (k) for all k£ < 5, and they stated the following
conjecture (which holds true for & < 5):
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Conjecture 1.1. For every k € N there is a cyclic group G and a zero-sum free subset
X C G with | X| =k such that f(k) = f(G,X).

Recently, Weidong Gao et al. [3] proved that f(6) = 19 and G.Bhowmik et al. [5]
showed that f(G, X) > 24 (the lower bound is sharp), where G is a cyclic group, | X| = 7.
Together with the conjecture above, we have that f(7) = 24. The main aim of the present
paper is to show the following theorem.

Theorem 1.1. f(7) = 24.

In Section 2, we fix the notation. Sections 3 and 4 are devoted to the tools and lemmas
needed in the proof of Theorem 1.1. In Section 5, we prove Theorem 1.1 with the help of
a C++ program.

Throughout this paper, let G denote an additive finite abelian group.

2 Notation

We follow the conventions of [6] and [3] for notation concerning sequences over an abelian
group.

We denote by N the set of positive integers, and Ng = N U {0}. For real numbers
a, b € R we set [a,b] = {z € Z|a <z < b}.

Let F(G) denote the multiplicative, free abelian monoid with basis G. The elements
of F(G) are called sequences over G. An element X € F(G) will be written in the form

geG
where v,(X) € Ny is the multiplicity of g in X. For a sequence X above we have:
[ X|=1= v,(X) €Ny the length of X,
geG

l

o(X)= Zgi = ng(X)g € G the sum of X,

=1 geG
Z(X) = {Zgﬂ@ #1 C[1,1} the set of subsums of X.
iel

We say that X is
o zero-sum free if 0 ¢ > (X),

o a zero-sum sequence if o(X) = 0,

o squarefree if vy(X) < 1 for all g € G, moreover, a squarefree sequence can be
considered as a subset of G.
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For a zero-sum free sequence X over G, we have:

(G X) = f(X) =13 _(X)
f(G, k) = min{ f(X)|X € F(G) zero-sum free, squarefree and | X| = k}
and set f(G, k) = oo when there are no sequences in G of the above form.

f(k) = min{f(G, k)|G run over all finite abelian groups}

e Let D(G) denote the Davenport’s constant of G and r(G) the rank of G.

e Let ol(G) denote the maximal length of a sequence X over G which is zero-sum free
and squarefree. The invariant ol(G) is called the Olson constant of G.

3 Preliminaries

Lemma 3.1. 1. Ifk e Nand X = X, -...- Xy € F(G) is a zero-sum free sequence, then

FX) 2 F(X0) + -+ f(Xe),
2. If X C G is zero-sum free, |X| =k and k € N, then

=1, if k=1
=3, if k=2
F) =5, if k=3
>6, if k=3 and2g9#0 forallge X
> %k, if k>4

Proof. 1. See [6] Theorem 5.3.1. O
2. See [6] Corollary 5.3.4.

Lemma 3.2. ([3]) f(5) = 13, £(6) = 19.

Lemma 3.3. ([5]) f(G,7) > 24, where G is a cyclic group. Furthermore, let G = Cas
and X = {5,10,1,6,11, 16,21}, then f(X) = 24.

Lemma 3.4. Let X C G be a zero-sum free subset of G and |X| = 7. If X contains an
element of order 2, then f(X) > 25.

Proof. See [3] Theorem 3.2. O
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4 Some bounds on subset S

The lemmas in this section follows mainly from A. Pixton [7].

Lemma 4.1. ([7] Lemma 4.3) Let G be a finite abelian group and let X C G\{0} be a
generating set for G. Suppose S is a nonempty proper subset of G, then

DS +a)\s| = |X].

zeX

Lemma 4.2. ([7] Lemma 4.4) Let G be a finite abelian group and let X C G\{0} be a
generating set for G. Suppose f: G — Z is a function on G. Then

Y maz{f(g+z) = f(9),0} > (max(f) — min(f)) | X|.

rzeX
geG

The proofs of the following two Lemmas are essential from A. Pixton ([7] Theorem
4.5). For the convenience of the reader, we present the proof here.

Lemma 4.3. Let G be a finite abelian group and let X C G\{0} be a generating set for G.
Suppose S C G satisfies |(S + x)\S| < m, form € N and all x € X, and for Y C X and
H =<Y >¢Z G, define a function [ : G/H — Z by f(a) =|(a+ H)NS| fora € G/H.
Then

max(f) — min(f) < m.

Proof. First, without loss of generality, we may replace Y by a minimal subset of Y that
still generates H, and we still denote it by Y. Then we may replace X by a minimal
subset X, of X that satisfies Y C Xy C X and (X;) = G. For the convenience, we still
label it by X. Also, if |H| < m, the result is trivial. Since

[(S+2)\S| = [(S—2)\S]|
= Z| S—z)\S)N(a+ H)|
a€G/H
= D> (S—2)n(a+H)|-|(S—2)nSN(a+H)
acG/H
= S ISn(ata+H)|-|(S-2)NSN(a+H)

aceG/H

Z max{ f(a+ x) — f(a), 0}

acG/H

\%

It follows that
mX\Y] > > [(S+x)\S|

zeX\Y

> 3 max{f(a+a) - f(a), 0}

zeX\Y acG/H
> (max(f) — min(f))|X\Y| (2)
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by Lemma 4.2. Since H € G, |X\Y| > 0, then the result follows immediately from
(2). O

Lemma 4.4. Let G be a finite abelian group, X C G\{0} a generating set for G, Y C X
and H =<Y >Z G. Suppose |H| > m and |G/H| > m, where m € N, and suppose
S C G satisfies |(S + x)\S| < m for all x € X. Then

min{|S],|G\S[} < m?.
Proof. Define a function f: G/H — Z by f(a) = |(a+ H) N S| for a € G/H.We have
max(f) — min(f) <m

by Lemma 4.3. Then by replacing S by G/S if necessary, we can assume that f(a) # |H|
for any a € G/H. The reason is that

[(G\S + 2)\(G\S)] = [(5 + 2)\S]

Thus we can apply Lemma 4.1 to obtain that

mlY| = > |(S+x)\S|

zeY

= Y Y lSn(a+H)+a)\(SN(a+ H))

a€G/H z€Y

> [supp(f)|[Y]

where supp(f) = {a € G/H |f(a) # 0} is the support of f. Since |G/H| > m, this implies
that f(a) = 0 for some a, and thus f(a) <mforalla € G/H. Then |S| =3 5 /py f(a) <
max (f)|supp(f)| < m?, as desired. O

Lemma 4.5. ([7] Theorem 5.3) Let G be a finite abelian group of rank greater than 2 and

let X € G\{0} be a generating set for G consisting only of elements of order greater than
2. Suppose S C G satisfies |(S + x)\S| < 3 for all z € X. Then min{|S|, |G\S|} < 5.

Lemma 4.6. Let G be a finite abelian group of rank greater than 2, and X C G a zero-sum
free generating set consisting of only elements of order greater than 2, and let S = > (X).
Suppose that | X| > 5 and |G| > 29, then |S| = 24, or |S| = 4|X| — 3, or there is some
x € X satisfies (X\{z}) =G and |S| — | > (X\{z})| > 4.

Proof. If there is an element z € X such that (X\{z}) # G, then
S=Y (X\{ehw{ztw) (X\{z})+z

is a disjoint union. It follows that |S| = 2| > (X\{z})|+1>2x2(|X|-1)+1=4|X|-3
by Lemma 3.1. Hence we may assume that (X\{z}) = G for all z € X.
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Now if [S| — | > (X\{z})| < 3 for all x € X, since > (X\{z}) C (S —x) NS, then we
have

(S—2)\S| = |S—2|-|(S—2)n8
< IS1= 12 (X
< 3.

It follows from Lemma 4.5 that min{|S|,|G\S|} < 5. Notice that |S| > 2|X| > 10, then
|G\S| <5 and |S| > |G| — 5 > 24, as desired. O

5 Other lemmas before the proof

In this section, we present some Lemmas that will be used in the proof of the main result.

Lemma 5.1. Let X C G be a zero-sum free generating set of G, |X| =4, and X has no
element of order 2. If r(G) = 3 and G 2 Cy ® Cy @ Cy, then f(X) > 12.

Proof. Let X = x1 - x9 - x3 - x4. If there are distinct indices 7,7,k C [1,4] such that
x; = x; + xp, without loss of generality, we may assume that z; = x5 + 3. Since
r(G) = 3, then x4 & (x1, %9, x3), and so

D (X)) = (wiwaws) H{wa} H s + D (wrwawy))

is a disjoint union. It follows from Lemma 3.1 that f(X) > 2f(x;xex3) +1 > 13.

Now we consider the case that z; # x; + = for all distinct indices ,j,k € [1,4]. If
there is no index i € [1,4] such that x; = Z#i xj, then x1, x9, T3, T4, T1 + T2, T1 + T3, 21 +
Ty, X1+ XTo + X3, 21 + To + Ty, X1 + T3 + X4, To + T3 + Ty, X1 + To + X3 + T4 are pairwise
distinct, so f(X) > 12.

Otherwise, we can assume x; = Ty + x3 + 24.

If 2;1) + Tr(2) = Tr(3) + Tr(a), Where 7 is an element of the symmetric group on [1,4],
then the two equations imply that there is some z; of order 2, a contradiction.

If there is an index i € [1,4] such that x; # Z#i xj, say, Ty # x1 + To + w3, then
X1,x9, X3, L4, L1 +To+T3,T1+ Lo, L1 +T3, L1+ Ty, T2+ T3, T+ Ty, T3 +Ty,T1+To+T3+ Ty
are pairwise distinct, so f(X) > 12.

If 2; = >, x; for all indices i € [1,4], then the 4 equations imply 4z, = 0, 2, =
Ty + g1, T3 = x4 + g2 and x3 = —x4 + g1 + go, Where g1, go is of order 2. It follows that
G =(X) = Cy®Cy® (4, again a contradiction. We are done. O

Lemma 5.2. Let C,, be a cyclic group of order n, S C C,, a subset of G. Suppose that d
is a generator of C,, and x € C,, is an element of order greater than 2. Then we have:
1. [(S+2)\S|=|(S —2)\S|.

2. If S is an arithmetic progression of difference d, then

(S + 2)\S| = min{|S|,n —|S], k,n — Kk},
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where k € [1,n — 1] is the integer with x = kd.

3. If S = S1W S, is a disjoint union, where Si, Sy are arithmetic progressions of
difference d and S is not an arithmetic progressions of difference d. Suppose that 2 <
|S| < n—2, then |(S + x)\S| > 1.

4. Let S be as in 3, and moreover 5 < |S| < n—5 and n = 2r,r is a positive integer,
then |(S + x)\S| = 2. Furthermore the equality holds only when z is one of the following
cases:

(a): = =+d.

(b): v =+£2d. In the case, S ={g,9+d,...,g+ (t—1)d, g+ td} W {g+ (t +2)d} or
S={gtw{g+2d,g+3d,....,9g+ (t—1)d,g+td}, g€ G and t € [3,n — 5].

(c): x =+ (r—1)d. In the case, ||S1| — |9:]|| < 2.

5. If S = 5,US,U S5 is a disjoint union of 3 arithmetic progressions of difference d,
x==13d, and 8 < |S| <n—7, then |(S + x)\S| > 2.

Proof. 1. It is obvious.

2. Obviously.

3. For a counterexample, we may assume that Sy = {g1,q1 +d,..., 91 + t1d}, Sy =
{92, 92+ d, ..., g2+ tad} and |(S + )\ S| = 0. The proof is divided into the following two
cases:

Case 3.1: If g; +x € S}, then there is an integer k € [0, ¢; — 1] such that g; + kd+x =
g1+ t1d, however g1 + (k+1)d € Sy and g1 + (k+ 1)d +x ¢ S yield a contradiction. The
proof of the case go + x € S5 is similar.

Case 3.2: If gy +x € Sy and g9 + x € S, then S; + 2 C S, and Sy + x C S;. Hence
|S1| = |S1 + x| < |S2| and similarly |Ss| < |Si|. It follows that |Si| = |Ss|, g1 + © = ¢2
and g2 + = g1, and hence ¢y = g2 + v = ¢1 +  + = and 2z = 0, again a contradiction.
We are done.

4. Without loss of generality, we may assume |S;| > [Sa|. Let r = 5, S1 = {g1,91 +
d,...,q1+td}, So = {g2, g2+d, ..., ga+tad}, Uy = {g1 +(t1+1)d, g1+ (t1+2)d, . .., go—d}
and Uy = {go + (t2 + 1)d, g2 + (to + 2)d,..., g1 — d}. If x = +d then |(S + x)\S| = 2.
Since [(S+2)\S| = |[(S —x)\S|, n = 2r and z is an element of order greater than 2, then
without loss of generality, we may assume that x = kd, k € [2,r — 1].

Case 4.1: k€ [3,r —2].

Subcase 4.1.1: If |S;| > k, then |Uy| + |Us| = n — |S| > 5 implies that |U;| > 3
or |Us| = 3. If |[Uy| = 3, then Uy = {¢g1 — 3d, g1 — 2d,91 — d} C Uy and Uy + = C Sy, so
|(S+2)\S|=|(S—2)\S|=|(S—x)NU|+ |(S — ) NUs| = |Uy| = 3. The proof of the
case |Uy| > 3 is similar.

Subcase 4.1.2: If |S| < k, let Hy = {g1,91 + kd, g1 + 2kd}, Hy, = H; + d and
H; = Hy + 2d. Obviously, each of the 3 disjoint subsets of (), has 3 elements. Now we
first prove that H; ¢ S, i =1,2,3. lf 4+ (i—1+k)d € S, then g1+ (i —1+k)d € S5 since
|S1] < k, and so g1 + (i — 1 + 2k)d € S,. Notice that g1 + (i — 1 4+ 2k)d & S, otherwise,
we would have gy + (i — 1 + 2k)d == g; + md for some integer m, m € [0, |S1| — 1], and
so 2k + 2 > n = 2r, which is impossible. It follows that ¢g; + (i — 1 + 2k)d ¢ S. Since
g1+ (i—1)d € S1,i =1,2,3,s0 each of H; ¢ S, i = 1,2, 3 contributes at least one element
to (S + 2)\S. Hence |(S + 2)\S| > 3.
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Case 4.2: k£ = 2. Since |S;| > |S:] and |S| > 5, we have|S;| > 3. Note that
|U| + |Us| =n —|S| =5, s0 |Uy| =3 or |Uy| > 3.
Subcase 4.2.1: If |Us| > 3, then (S1—x)\S = {g1—2d, g1—d}, and so |(S1—x)\S| =
2. If Sy —x ¢ S then |(S+ 2)\S| = |(S1 — x)\S| + [(S2 — 2)\S| = 3. So we may assume
Se —ax C S. If [Se| > 2, then go +d € Sy and go +d — 2d ¢ S, a contradiction. Hence
Sy = {92}, and go — 2d ¢ Sy implies that go — 2d € S;. Since S is not an arithmetic
progression of difference d, S must have the form of case (b).
Subcase 4.2.2: If |U;| > 3, it is similar to the Subcase 4.2.1.
Case 4.3: k=r—1.
Subcase 4.3.1: |S;| > k. By a similar argument as in Subcase 4.1.1 we have that
|(S+2)\S| >3
Subcase 4.3.2: |S;| < k. Obviously, both H; = {g1, 1+, 1+2x} and Hy = H1+d
have 3 elements. By the same argument as in Subcase 4.1.2, we derive H; ¢ S, 1 = 1,2 and
|(S4x)\S| > 2. To get the equality, we must have {g;+2d, g1 +3d, ..., g1 +t1d}+x C So,
then [S1] > | S| > |S1| — 2. It is just the case (c), which completes the proof of this case.
5. Let Sl = {gl,g1+d,...,gl+t1d}, Sg = {gg,gg+d,...,gg+t2d}, S3 = {g3,g3—i—
d,...,gg+t3d} and let U1 = {g1+t1d+d,gl+t1d+2d,...,gg—d}, U2 = {gg+t2d+
d,go+tod+2d,...,93—d}, Us ={gs + tsd + d, g3 + tsd + 2d, ..., g1 — d}. Without loss
of generality, we may assume that S; has the maximal length. Since 8 < |S| < n —7,
then |Sy| > 3. If |Uy| > 2 or |Us| > 2, then it is easy to verify that |(S; 4+ 3d)\S| > 2 or
|(S1—3d)\S| > 2, so both of them imply the result. Now we assume that |U;| = |Us| = 1,
then |Us| > 5, and so |(Sy + 3d)\S| > 1 and |(S; + 3d)\S| = 1, the result follows. This
completes the proof of Lemma 5.2. O

Now, we give some remarks about Lemma 5.2:
1. The equality of part 1 holds for all abelian groups G and any element x € G.

2. In part 2 of the Lemma, if 2 < |S| < n — 2, then |(S + z)\S| = 1 if and only if
x = =£d.

3. In part 4 of the Lemma, case (b) and case (c¢) do not hold simultaneously.

6 Proof of the Theorem 1.1

Proof. Let X C G be a zero-sum free subset with |X| =7, and let S = > (X). Without
loss of generality, we may assume G = (X) and |S| < 23 for the contrary. By Lemmas
3.3 and 3.4, we may assume 7(G) > 2 and all elements of X have order greater than 2.
By Lemmas 3.1 and 3.2, f(X) > f(X\{z}) + f(z) > 19+ 1 = 20 where z € X, then we
have |G| > f(X)+ 1 > 21. If there is an element x € X such that |(S —z)\S| = 5, since
Y (X\{z}) C (S—2)NS, we have that |S| > f(X\{z})+|(S—2)\S| = f(X\{z})+5 > 24
by Lemma 3.2. Hence we may assume that |(S — z)\S| < 4 for all z € X. So, to
sum up, we may assume that 20 < [S| < 23, |G| > 21, < X >= G, r(G) > 2 and
ord(z) > 2, |(S—x)\S| < 4 for all z € X. The proof is divided to the following six cases.
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Case 1: 7(G) > 3 and |G| > 29.

Since |S| < 23, by Lemma 4.6, there is an element x; € X such that (X\{z1}) =G
and | Y (X\{z1})] < |S] —4 < 19. Now we apply Lemma 4.6 repeatedly, we will obtain
g € X\{z1}, 3 € X\{z1, 22} such that (X\{z1,22}) = G, (X\{z1,22,23}) = G and
FXN @, z2}) < f(X\{21}) —4 <15, f(X\{21, 22, 23}) < f(X\{21,22}) —4 < 11. But
we have that | > (X \{x1, 22, 23})| = 12 by Lemma 5.1, a contradiction.

Case 2: G=C,®dCy,n>=5and |G| > 40

Subcase 2.1: There is an element zg € X such that ord(xg) > 5. Let H = (xy),
then |H| > 5 and |G/H| > 5. Since |[(S — z)\S| < 4 for all z € X, it follows from
Lemma 4.4 that min{|S],|G\S|} < 4%. Notice that |S| > 20, then |G\S| < 16 and
|S| > |G| — 16 > 24, a contradiction.

Subcase 2.2: If ord(z) < 5 for all z € X, then ord(z) € {3,4} for all z € X.

We can choose 2 elements zg, 21 € X such that ord(zy) = 3 and ord(z;) = 4. The
choice is possible since otherwise we would have ord(z) = 3 for all z € X or ord(z) = 4
for all x € X. Note that r(G) =2,80 G = C3HC3, G = C,® Cy or G = Cy @ Cy, which
contradicts |G| > 40. Let H = (xo, 1), then a similar discussion as in Subcase 2.1 will
lead to a contradiction again.

Case 3: G =, Cy, and |G| = 40.

Subcase 3.1:  There is an element xy € X such that 5 < ord(zy) < 4r. Let
H = (x¢), then the remaining discussion is similar to Subcase 2.1.

Subcase 3.2: ord(z) € {3,4,4r} for all x € X.

We first prove the following 2 claims.

Claim 1: There is an element 2y € X such that ord(zg) = 4r.

Proof of Claim 1: Since f(6) > 19 > |Cy & C4|, then there is at most 5 elements of
order 4 in X. Notice that there is at most 1 element of order 3 in X and |X| = 7, then
Claim 1 follows.

Claim 2: Let H = (x¢), xo € X and ord(xg) = 4r, then H N X = {x¢}.

Proof of Claim 2: Let a; + H, a; € G/H, i = 0,1,2,3 denote the 4 cosets of H in
G. Let S; = (H + a;) NS and define a function f : G/H — N by f(a;) = |S;|, then
max(f) — min(f) < 4 by Lemma 4.3.

Notice that 20 < |S] < 23, so 2 < f(a;) < |H| —2 for all i € [0,3], and hence
|(S; — 20)\S;| = 1 for all i € [0,3]. Since |[(S — x9)\S| < 4, it follows that each S; is
an arithmetic progression of difference xy. If there is another x1 € X N H, say, ©; =
kxo,2 < k < 4r — 2, since S;,1 € [0, 3] are arithmetic progressions of difference zy and
and each S;,i € [0, 3] is an arithmetic progression of difference x;. Hence x; = x4 by
Lemma 5.2, a contradiction. So Claim 2 holds.

Since each element of order 3 is contained in a cyclic subgroup of order 4r, by Claim
2, we have ord(z) # 3 for any x € X. Let X = Y U Z, where Y consists of elements
of order 4 and Z consists of elements of order 4r, then |Y| < 5 by the proof of Claim 1.
Let b € X be an element with ord(b) = 4r, choose a € G such that G = (a) @ (b) and
ord(a) = 4. Let Gy = {a,rb). Obviously, Y C Gy and Z N Gy = 0.

Subcase 3.2.1: If 2|r, then there are only 4 cyclic subgroups of order 4r: (b),
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(a4 by, (—a +b) and (2a + b). By Claim 2, a subgroup of order 4r contributes at most
1 element of order 4r to X, so |Z| < 4. It is easy to see that every element of order 4r is
of the form ka + tb, ged(t,r) = 1.

If Y| =5, then S O > (YV)w{b}w(b+> (Y)) is a disjoint union and |S| > 2| Y (V)| +
1>2x1341=27by Lemma 3.2.

If |Y| = 4, we let Z = {k1a+tlb, k2a+t2b, k‘g&—i—tgb}, ng(tltgtg, 7’) =1.1If | Z(tl, tg, tg)
(mod r)\{0}| > 2, say, l1,la € > (t1,t2,t3) (mod 2r), 0 # Ily,lo (mod r),l; # o
(mod 7), then S D Y (Y)W (mya + 110 + > (YV)) W (maa + b + > (Y)) and hence
S| = 3|2(Y)| = 3 x8 = 24 by Lemma 3.1. If | S (t1,t0,t5) (mod r)\{0}| < 2,
then t; =ty =t3 (mod r) and r = 2 since ged(t1tats, ) = 1 and 2|r, which contradicts
|G| > 40.

If |Y| = 3, we let Z = {k1a+tlb, Cey k4a+t4b}, ng(t1t2t3t4, ’f’) =1.1If | Z(tl, t2, tg, t4)
(mod r)\{0}| > 3, then similarly, we have |S| > 4|> (Y)| > 4 x 6 = 24 by Lemma 3.1.
If | > (t1,t2,t3,t4) (mod r)\{0}| < 2, then a similar discussion as in the case |Y| = 4
shows that r = 2 since ged(t1tatsts, 7) = 1 and 2|r, which also contradicts |G| > 40.

Subcase 3.2.2: If 2 Jfr, then there are precisely 6 cyclic subgroups of order 4r:
(b), (a+0), (a+2b), (—a+10), (a+4b) and (2a+b). Notice that any element of order 4 is
contained in one of the 6 subgroups. By the Pigeonhole Principle, there is some subgroup
H which contributes at least 2 elements to X. By Claim 2, this subgroup H contributes
only elements of order 4. However, 2 elements of order 4 in H leads to a contradiction
since H has precisely two elements of order four: rx, —rx, where x is a generator of H.

Case 4: G = (56 C5, and |G| > 40.

Subcase 4.1:  There is an element zy € X such that 5 < ord(zg) < 3r, or
two elements x1, o € X with ord(x;) € {3,4},i = 1,2. Let H = (xy) or < x1,x9 >,
G1 = G/H. Then both H and G/H have at least 5 elements. The remaining discussion
is similar to Subcase 2.1.

Claim 3: Let H = (), xo € X and ord(zg) = 3r, then H N X = {x}.

Proof of Claim 3: Let H + a;, a; € G/H, 1 = 0,1,2 denote the 3 cosets of H in
G. Let S; = (H + a;) NS and define a function f : G/H — N by f(a;) = |S;|, then
max(f) — min(f) < 4 by Lemma 4.3.

Notice that 20 < |S| < 23, so 4 < f(a;) < |H| — 3 for any ¢ € [0,2]. Since |(S; —
20)\Si| = 1 and |(S — 20)\S| < 4, without loss of generality, we may assume that Sy and
S1 are arithmetic progressions of difference . If there is another z; € X N H, then by
Lemma 5.2 |(Sy + x1)\So| = 2, |(S1 + x1)\S1] = 2 and |(S2 + 1)\ S2| = 1 imply that
|(S + 1)\ S| = 5, a contradiction, so the claim holds.

Since all the elements of order 4 are included in the cyclic subgroup of order 3r, by
Claim 3 above, we have ord(x) # 4 for any x € X. Let X =Y U Z, where Y consists of
elements of order 3 and Z consists of elements of order 3r, then |Y| < 1 by Subcase 4.1.
Choose a,b € G such that G = (a) & (b), and ord(b) = 3r.

If 3|r, then there are only 3 cyclic subgroups of order 3r: (b), (a + b) and (—a + b).
If 3 /r, then there are precisely 5 cyclic subgroups of order 3r: (b), (a + b), (—a + b),
(a — 3b) and (a + 3b). By Claim 4, every subgroup of order 3r will contribute at most 1
element of order 3r to X, so |Z| < 5. It follows that |Y| + |Z] < 6, a contradiction.
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Case 5: G = (y @ Oy, and |G| > 40.

Subcase 5.1:  There is an element xy € X such that 5 < ord(zg) < r. Let
H = (x0), then the discussion is similar to Subcase 2.1.

Subcase 5.2: For any = € X, ord(x) € {3,4,r,2r}.

Choose a,b € G such that G = (a) @ (b), ord(a) = 2 and ord(b) = 2r. Let X =
X3 U Xy U X, U Xy, where X;, 7 € {3,4,7,2r} consists of elements of order 7. Let
Gy =< a,2b >¢Z @, it is easy to verify that z € Gy for any x € G with ord(x) € {3,7}.
There are at most 2 cyclic subgroups of order 4 in G: <§b> and <a + §b>, each contributes
at most 1 element of order 4 to X, so | Xy| < 2. If | Xy| = 2, let H =< x4 >, then a similar
discussion as in Subcase 2.1 leads to a contradiction. Now again we need 3 claims.

Claim 4: X,, # ()

Proof of Claim 4: Suppose that X5, = (). If there is an element x4 € X, such that
x4 & Go, then S DY (XzUX,)W{zs} W (24 + > (X3UX,)) is a disjoint union and hence
|S] = 2| >2(X3UX,)|+1>2x13+1 =27, a contradiction. It follows that either X, = ()
or Xy C Gy, which implies G =< X >C Gy € G, a contradiction again. So the Claim 4
holds.

Claim 5: Let x5, € X5, and H =< x9, >, if there is another y € H N X, then
y = £2x9, or y = £(r — 1)x,. Furthermore, |H N X| < 2.

Proof of Claim 5: Let H + a;, a; € G/H,i = 0,1 denote the 2 cosets of H in
G. Let S; = (H + a;) NS and define a function f : G/H — N by f(a;) = |S;|, then
max(f) — min(f) < 4 by Lemma 4.3

Notice that 20 < [S| < 23, so 8 < f(a;) < |H| — 7 for any ¢ € [0,1]. Since |(S; —
29 )\Si| = 1 and [(S — x2,)\ S| < 4, then we have that S;, i = 0,1 is the union of at most
3 arithmetic progressions of difference xs,..

If there is some S; which is an arithmetic progression of difference xs,., without loss of
generality, we may assume that is Sy. If y # £2x,,, since y # £x4,, we have y = +3xy, or
Yy €< Ty, > \{Ewa,, +229,, £323,}. If y = +314,, then |(Sp+y)\S| = 3 and |(S1+y)\S| >
2 by Lemma 5.2.5. . If y = £4xy,, then [(Sy+y)\S| = 4 and |(S1 +y)\S| > 1. Otherwise,
|(So + y)\S| = 5. It follows that [(S + y)\S| = 5, a contradiction.

If there is no S; which is an arithmetic progression, then we have that S;, ¢ = 0, 1 both
are the unions of 2 arithmetic progressions of difference x,,.. Since y # +xs,., we have
|(Si +y)\Si| = 3, or y = 29, or y = £(r — 1)z, by Lemma 5.2.4, and the claim holds.

By the hypothesis, we have that £2x5, has order r and £(r — 1)xo, has order 2r if 2|r
and order r if 2 fr.

Claim 6: Let z, € X, and K =< z,, >, then X, N K = {z,}.

Proof of Claim 6: By a similar argument as in the proof of Claim 2, we obtain
Claim 6.

Since all elements of order 3 are contained in cyclic subgroups of order 2r, by Claim
5 and r # 3, we have X3 = ().

Subcase 5.2.1: If 2 Jfr, then there are precisely 3 cyclic subgroups of order 2r:
<b>,<a+b>and < a+2b>. In this subcase, X; = (). Claim 5 and the discussion
after imply that each subgroup of order 2r contributes at most 1 element of order 2r, so
| X2, | < 3 and |X,| = |X]| — |Xs| = 4. Notice that X,, C Gy and < a + 2b >C Gy, then
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| X2 \Go| < 2. If | X5,\Go| =0, then X C Gy, a contradiction. Therefore we can choose
Tar € X9, \Go. Now S D Y (GoNX) B{xe } B (e, + > (GoNX)) and |GoNX| = 5 imply
that |S| > 2 x 13+ 1 = 27, a contradiction.

Subcase 5.2.2: If 2|r, then there are only 2 cyclic subgroups of order 2r: H; =<
b > and Hy = (a+b). Let H be a cyclic subgroup of order 2r, if Xy, N H # (), then
| XNH| <2 by Claim 5; if X5,NH = ), then |X,,NH| < 1 by Claim 6, and so |[XNH| < 2
since | X, N H| < 1. It follows that H contributes at most 2 elements to X.

If 4 fr, then all the elements of order 4 are contained in the subset H;U H,. Note that
G has precisely 3 cyclic subgroups of order r: < 2b >C< b >, <a+2b > and < a+4b >.
A cyclic subgroups of order r contributes at most 1 element to X by Claim 6. It follows
that | X| <2x2+4+14+1=6 <7, a contradiction.

If 4]r, let 7o = r/2. Then G has precisely 2 cyclic subgroups of order 4: < rob >C< b >
and < a + rob >, and 2 cyclic subgroups of order r: < 2b >C<b > and < a+2b>. A
cyclic subgroups of order 4 or r contributes at most 1 element to X by Claim 6. It follows
that | X| <2x2+4141=6<7, a contradiction again.

Case 6: G with small order.

Since |G| > 21 and 7(G) > 2, the left cases of G are of the following forms: C3®C3DC s,
02 S CQ S Oﬁ, Oﬁ S¥) C@, 05 S¥) C5, C4 S Cg, Cg S Og, Cg S 012, CQ S 012, 02 S¥) 014, 02 S¥) Clﬁ
and Cg D 018-

To begin with, since D(C3 ® C3 @ C3) =7, we have f(C3® C3® C3,7) = 26.

The remaining cases are computed with a C4++ program. With the help of a computer,
we obtain the following values:

Result Running Time(sec)
OZ(OQ ©® Cg ©® OG) =6 7.6
f(Cs ® Cq,7) =29 98
f(Cy® Cs,7) =27 26
OZ(Og D Cg) =6 3.9
f(C3® Ca,7) =27 190
OZ(CQ D 012) =6 1.2
f(Cy @ Chy,7) =25 8.7
f(Cy® Chg,7) =25 51
f(Cy® Cis,7) =25 285
This completes the proof. O
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