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Abstract

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into nonempty subsets
called blocks. We will make use of the canonical representation of a partition as a
word over a finite alphabet, known as a restricted growth function. An element ai in
such a word π is a strong (weak) record if ai > aj (ai > aj) for all j = 1, 2, . . . , i−1.
Furthermore, the position of this record is i. We derive generating functions for the
total number of strong (weak) records in all words corresponding to partitions of
[n], as well as for the sum of the positions of the records. In addition we find the
asymptotic mean values and variances for the number, and for the sum of positions,
of strong (weak) records in all partitions of [n].
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1 Introduction

Let π = a1a2 · · ·an be any permutation of length n. An element ai in π is a record if
ai > aj for all j = 1, 2, . . . , i − 1. Furthermore, the position of this record is i. The
number of records in permutations was first studied by Rényi [11], see also [5]. A survey
of results on this topic can be found in [3]. Recently, Myers and Wilf [7] extended the
study of records to multiset permutations and words. In the literature records are also
referred to as left–to–right maxima or outstanding elements. In particular the study of
records has applications to observations of extreme weather problems, test of randomness,
determination of minimal failure, and stresses of electronic components. The recent paper
by Kortchemski [6] defines a new statistic srec, where srec(π) is the sum over the positions
of all records in π. For instance, the permutation π = 451632 has 3 records 4, 5, 6 and
srec(π) = 1 + 2 + 4 = 7.

A word over an alphabet A, a set of positive integers, is defined as any ordered se-
quence of possibly repeated elements of A. Recently, Prodinger [10] studied the statistic
srec for words over the alphabet N = {1, 2, 3, . . .}, equipped with geometric probabilities
p, pq, pq2, . . . with p + q = 1. In the case of words there are two versions: A strong record
in a word a = a1 · · ·an is an element ai such that ai > aj for all j = 1, 2, . . . , i − 1 (that
is, it must be strictly larger than elements to the left) and a weak record is an element ai

such that ai > aj for all j = 1, 2, . . . , i−1 (must be only larger or equal to elements to the
left). Furthermore, the position i is called the position of the strong record (weak record).
In [10], Prodinger found the expected value of the sum of the positions of strong records,
in random geometrically distributed words of length n. Previously, Prodinger [9] also
studied the number of strong and weak records in samples of geometrically distributed
random variables. Records have recently also been studied for compositions in [4], where
a composition σ = σ1σ2 . . . σm of n is an ordered collection of positive integers whose sum
is n.

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into nonempty subsets called
blocks. A partition with k blocks is called a k-partition and denoted by B1|B2| . . . |Bk

where the blocks are listed in standard order, that is, min(B1) < · · · < min(Bk). We
will also make use of the representation of a partition as a word over a finite alphabet.
That is, we represent the partition π = B1|B2| . . . |Bk in the canonical word form π =
π1, π2, . . . , πn such that j ∈ Bπj

, for 1 6 j 6 n. For example, 1231242 is the canonical word
corresponding to the partition {1, 4}, {2, 5, 7}, {3}, {6} of [7]. A word over the alphabet
[k] represents a partition of [n] with k blocks if and only if each number from the set [k]
appears at least once in π and for each i, j with 1 6 i < j 6 k the first occurrence of
i precedes the first occurrence of j. Words satisfying these properties are also known as
restricted growth functions.

It is natural with respect to such words to consider once again record values (left-to-
right maxima). In particular, strong records of a set partition π (in word form) correspond
to the well studied statistic number of blocks in the partition π; thus the number of set
partitions of n with k strong records is the Stirling partition number (Stirling number of
the second kind), henceforth denoted S(n, k).

the electronic journal of combinatorics 17 (2010), #R109 2



However weak records have not previously been considered. In addition we will con-
sider the statistic sum of positions of records in π. In this paper we find generating
functions for these parameters as well as mean values and variances and their asymptotic
behaviour as n → ∞.

The number of partitions of [n] is called the Bell number, with exponential generating
function

∑

n>0

Bn
xn

n!
= eex−1.

Asymptotically we have as n → ∞

Bn ∼ n!
eer−1

rn
√

2πr(r + 1)er
(1)

where r is the positive root of rer = n + 1, from which we get

r ≡ r(n) = log n − log log n + O

(

log log n

log n

)

.

For the number of strong records in set partitions we merely quote the known results
concerning the number of blocks, as found, for example in [2]. Thus the mean number of
strong reords over all partitions of [n] is Bn+1/Bn −1 and asymptotically we find that the
mean and variance are respectively

n

log n
and

n

log2 n
.

2 Weak records in set partitions

We want to determine the distribution of the number of weak records in words (restricted
growth functions) that correspond to set partitions of [n]. It turns out that the excess of
the number of weak records over strong records is comparatively small. Hence it is more
interesting to study additional weak records, that is, weak records that are not also strong
records.

Since such words can be decomposed as

π = 1(1)∗2(12)∗ · · · k(12 · · ·k)∗ (2)

for some k, where (Q)∗ denotes an arbitrary word over an alphabet Q including the empty
word, we have the generating function

∑

k>1

ukxk

∏k
j=1(1 − (j + v − 1)x)

,

where u marks the number of strong records and v marks additional weak records. We
expand it into partial fractions:

∑

k>1

ukxk

∏k
j=1(1 − (j + v − 1)x)

=
∑

k>1

uk

∏k
j=1(1/x − (j + v − 1))

=
∑

m>1

am

1/x − (m + v − 1)
.
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The coefficient am can be found by multiplying by 1
x
− (m+v−1) and setting x = 1

m+v−1
:

am =
∑

k>1

uk(1/x − (m + v − 1))
∏k

j=1(1/x − (j + v − 1))

∣

∣

∣

x=1/(m+v−1)

=
∑

k>m

uk

∏k
j=1
j 6=m

(1/x − (j + v − 1))

∣

∣

∣

x=1/(m+v−1)

=
∑

k>m

uk
m−1
∏

j=1

(m − j)−1
k
∏

j=m+1

(m − j)−1

=
1

(m − 1)!

∑

k>m

(−1)k−muk

(k − m)!
=

ume−u

(m − 1)!
.

Therefore,

∑

k>1

ukxk

∏k
j=1(1 − (j + v − 1)x)

=
∑

m>1

ume−ux

(m − 1)!(1 − (m + v − 1)x)
.

Now we expand x
1−(m+v−1)x

into a geometric series:

∑

k>1

ukxk

∏k
j=1(1 − (j + v − 1)x)

=
∑

m>1

ume−u

(m + v − 1)(m − 1)!

∑

n>1

((m + v − 1)x)n.

Since we would like to work with the exponential generating function rather than the
ordinary generating function, we introduce a factor 1

n!
:

∑

m>1

ume−u

(m + v − 1)(m − 1)!

∑

n>1

((m + v − 1)x)n

n!

=
∑

m>1

ume−u

(m + v − 1)(m − 1)!

(

e(m+v−1)x − 1
)

In order to obtain an elementary function, we differentiate with respect to x (since we
are dealing with exponential generating functions now, this merely means a shift of coef-
ficients) to obtain

∑

m>1

ume−ue(m+v−1)x

(m − 1)!
= ueuex+vx−u. (3)

Note that u = v = 1 yields eex+x−1, which is indeed the derivative of the generating
function of the Bell numbers. The equation (3) can also be interpreted in another way:
u marks the number of blocks in a set partition, while v marks the number of elements
(other than 1) in the first block. Indeed, uevx generates a single block (to which the
element 1 is added), while eu(ex−1) generates an arbitrary number of additional blocks.
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There is also a simple bijection that shows this identity: in a word that corresponds to
a set partition, replace every 1 between the first occurrence of p and the first occurrence
of p+1 (if any) by p and vice versa. Then the additional weak records are exactly mapped
to elements of the first block.

The generating function immediately leads to explicit formulae for the number of set
partitions with a prescribed number of strong and additional weak records:

Theorem 2.1. The number of partitions of [n] with exactly k strong and ℓ additional
weak records is

(

n − 1

ℓ

)

S(n − 1 − ℓ, k − 1).

The total number of partitions of [n] with ℓ additional weak records is

(

n − 1

ℓ

)

Bn−1−ℓ.

From (3), we see that the generating function for the total number of additional weak
records is

d

dv
ueuex+vx−u

∣

∣

∣

v=1
= uxexeu(ex−1). (4)

This generating function also arises in another interesting context. Let v mark sin-
gleton blocks and u all blocks, then the appropriate bivariate generating function is
eu(ex−1−x+vx). Since the number of singleton blocks equal to {1} in partitions of [n] is
equal to the number of partitions of [n − 1] we see that the generating function for the
number of singleton blocks in all partitions of [n], excluding any singleton blocks equal to
{1} is

d

dv

d

dx
eu(ex−1−x+vx)

∣

∣

∣

v=1
− ueu(ex−1) = u2xexeu(ex−1). (5)

(Once again, differentiation with respect to x merely means a shift of coefficients.)
We now give a bijection between the number of elements (other than 1) in the first

block and the number of singleton blocks in all partitions of [n], excluding any singleton
blocks equal to {1}. Let B1|B2|B3|...|Bk be a partition with k blocks such that Bij

contains only one element for j = 1, 2, 3, . . . s. We construct a new partition of [n] by
doing the following: All the elements in Bi1 ∪ ...∪Bis together with 1 define a block (the
first block) and each element of B1 other than the element 1 defines a singleton block.
The rest of the blocks remain unchanged. This mapping is an involution on the set of
partitions of [n] and thus it is a bijection. For example, 1|234 → 1|234, 12|34 → 1|2|34
and 123|4 → 14|2|3.

Comparing the generating functions (4) and (5), we notice that actually a stronger
result holds: since they differ only by a factor of u, we can deduce that the total number
of elements that are in the same block as the element 1 in all partitions of [n] into k
blocks is exactly the total number of singletons, excluding those of the form {1}, in all
partitions of [n] into k + 1 blocks. Let us show this interesting relation by means of a
bijection as well. We consider set partitions in which one of the elements that are in
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the same block as 1 (excluding 1 itself) is marked. Clearly the number of such marked
partitions is exactly the total number of elements that are in the same block as 1. For
each such marked partition, remove the marked element from its block and make it form
a singleton block; for example, 124|3 → 12|3|4. The length clearly increases by 1, and the
result of the mapping (which can obviously be reversed) is a set partition in which one
of the singleton blocks (other than {1}) is marked. The total number of such marked set
partitions is clearly the total number of singleton blocks other than {1} over all partitions,
which completes the bijective proof of our assertion.

Let us finally turn to asymptotic results on the number of additional weak records:

Theorem 2.2. The distribution of the number of additional weak records in a random
partition of [n] is asymptotically Gaussian, with mean

(n − 1)Bn−1

Bn

= log n − log log n + O

(

log log n

log n

)

and variance

(n − 1)(n − 2)Bn−2 + (n − 1)Bn−1

Bn

− (n − 1)2B2
n−1

B2
n

= log n − log log n + O

(

log log n

log n

)

.

Proof. The explicit formulae for mean and variance follow easily by differentiating the
generating function with respect to v and extracting coefficients. For instance, the total
number of additional weak records over all partitions of [n] is

(n − 1)![xn−1]
d

dv
eex+vx−1

∣

∣

∣

v=1
= (n − 1)![xn−1]xeex+x−1 = (n − 1)Bn−1,

which yields the formula for the mean. The computation of the variance is similar. In
order to obtain asymptotic estimates for the moments as well as the limiting distribution,
we need an extension of (1):

Bn+h = Bn · (n + h)!

n!rh

(

1 + O

(

log n

n

))

, (6)

uniformly for h = O(log n), where r is the positive root of rer = n + 1 again. See [1] for
an even stronger form that includes further terms in the asymptotic expansion.

It is not difficult to derive from this formula that both mean and variance are asymp-

totically equal to r + O
(

log2 n
n

)

, from which the stated formulae follow. For the limiting

distribution, consider the probability that there are exactly ℓ additional weak records,
which equals, for ℓ = O(log n),

(

n − 1

ℓ

)

Bn−1−l

Bn

=

(

n − 1

ℓ

)

· (n − 1 − l)!rℓ+1

n!

(

1 + O

(

log n

n

))
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=
rℓ+1

nℓ!

(

1 + O

(

log n

n

))

.

Now set ℓ = r + t
√

r and apply Stirling’s formula to obtain, for t = o(r1/6),
(

n − 1

ℓ

)

Bn−1−l

Bn

=
r

n
· exp

(

ℓ + ℓ log r − ℓ log ℓ − 1

2
log(2πℓ)

)(

1 + O

(

log n

n

))

=
r

n
· exp

(

ℓ
(

1 − log(1 + tr−1/2)
)

− 1

2
log(2πr) + O(r−1/2)

)

=
r

n
· exp

(

(r + t
√

r)

(

1 − tr−1/2 +
t2

2
r−1

)

− 1

2
log(2πr) + O((t3 + 1)r−1/2)

)

=
r

n
· exp

(

r − t2

2
− 1

2
log(2πr) + O((t3 + 1)r−1/2)

)

=
1√
2πr

exp

(

−t2

2
+ o(1)

)

,

which completes the proof of the theorem.

3 Sum of positions of records in set partitions

We will first study this parameter from the point of view of restricted growth functions.
Let sumrec(π) be the sum of the positions of the strong records in π. For instance, if
π = 121231314321 then sumrec(π) = 1 + 2 + 5 + 9 = 17. Let fk(x, q) be the generating
function for the number of partitions of [n] with exactly k blocks according to the statistic
sumrec, that is,

fk(x, q) =
∑

n>k

∑

π∈P (n,k)

xnqsumrec(π)

where P (n, k) denotes the set of all partitions of [n] with exactly k blocks. Making use of
the decomposition (2) again, we obtain

fk(x, q) =
xq

1 − kx
fk−1(xq, q)

with the initial condition f1(x, q) = xq
1−x

. Applying this recurrence relation we have

fk(x, q) =

k
∏

j=1

xqk+1−j

1 − jqk−jx
. (7)

Thus the generating function for set partitions into k subsets is given by

fk(x, q) = xkqk(k+1)/2
k
∏

j=1

(1 − jqk−jx)−1, (8)
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In order to determine the mean of the sumrec parameter, we differentiate with respect to
q and set q = 1 to obtain

xk

k
∏

j=1

(1 − jx)−1

(

k(k + 1)

2
+

k
∑

j=1

j(k − j)x

1 − jx

)

. (9)

Substitute x−1 = y and rewrite this as

k
∏

j=1

(y − j)−1

(

k(k + 1)

2
+

k
∑

j=1

j(k − j)

y − j

)

. (10)

The partial fraction decomposition has the form

k
∑

m=1

(

ak,m

(y − m)2
+

bk,m

y − m

)

.

In order to determine the coefficients ak,m and bk,m, we consider the expansion of (10) at
y = m, which is given by

(y − m)−1·
k
∏

j=1
j 6=m

(y − m + m − j)−1 ·









k(k + 1)

2
+

m(k − m)

y − m
+

k
∑

j=1
j 6=m

j(k − j)

y − j









= (y − m)−1 ·
k
∏

j=1
j 6=m

(

(m − j)−1

(

1 +
y − m

m − j

)−1
)

·









k(k + 1)

2
+

m(k − m)

y − m
+

k
∑

j=1
j 6=m

j(k − j)

y − j









= (y − m)−1 · (−1)k−m

(m − 1)!(k − m)!
·

k
∏

j=1
j 6=m

(

1 − y − m

m − j
+ O

(

(y − m)2
)

)

·









k(k + 1)

2
+

m(k − m)

y − m
+

k
∑

j=1
j 6=m

j(k − j)

m − j
+ O (y − m)









= (y − m)−1 · (−1)k−m

(m − 1)!(k − m)!
·









1 −
k
∑

j=1
j 6=m

y − m

m − j
+ O

(

(y − m)2
)








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·









k(k + 1)

2
+

m(k − m)

y − m
+

k
∑

j=1
j 6=m

j(k − j)

m − j
+ O (y − m)









= (y − m)−1 · (−1)k−m

(m − 1)!(k − m)!

·









m(k − m)

y − m
+

k(k + 1)

2
+

k
∑

j=1
j 6=m

j(k − j) − m(k − m)

m − j
+ O (y − m)









= (y − m)−1 · (−1)k−m

(m − 1)!(k − m)!

·









m(k − m)

y − m
+

k(k + 1)

2
+

k
∑

j=1
j 6=m

(m + j − k) + O (y − m)









= (y − m)−1 · (−1)k−m

(m − 1)!(k − m)!

·
(

m(k − m)

y − m
+ (m + 2)k − 2m + O (y − m)

)

.

This shows that

ak,m =
m(k − m)(−1)k−m

(m − 1)!(k − m)!
and bk,m =

((m + 2)k − 2m)(−1)k−m

(m − 1)!(k − m)!
.

Passing to the exponential generating function, we have to replace

1

y − m
=

x

1 − mx
=

∞
∑

ℓ=0

mℓxℓ+1

by
emx − 1

m
=

∞
∑

ℓ=0

mℓxℓ+1

(ℓ + 1)!

and similarly 1
(y−m)2

by emx(mx−1)+1
m2 . Furthermore, we sum over all k to obtain the bivariate

generating function

∞
∑

k=1

uk
k
∑

m=1

m(k − m)(−1)k−m

(m − 1)!(k − m)!
· emx(mx − 1) + 1

m2

+

∞
∑

k=1

uk
k
∑

m=1

((m + 2)k − 2m)(−1)k−m

(m − 1)!(k − m)!
· emx − 1

m
.
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Interchanging the order of summation, we can simplify this as follows:

∞
∑

m=1

emx(mx − 1) + 1

m!

∞
∑

k=m

(−1)k−m(k − m)uk

(k − m)!

+

∞
∑

m=1

emx − 1

m!

∞
∑

k=m

(−1)k−m(km + 2k − 2m)uk

(k − m)!

=

∞
∑

m=1

emx(mx − 1) + 1

m!

∞
∑

ℓ=0

(−1)ℓℓuℓ+m

ℓ!

+
∞
∑

m=1

emx − 1

m!

∞
∑

ℓ=0

(−1)ℓ(m2 + mℓ + 2ℓ)uℓ+m

ℓ!

= −
∞
∑

m=1

emx(mx − 1) + 1

m!
· um+1e−u

+

∞
∑

m=1

emx − 1

m!

(

m2ume−u − (m + 2)um+1e−u
)

= ueu(ex−1) (uex(ex − x − 1) + ex − 1) .

Note that this equals
d

dx
ueu(ex−1)(ex − x − 1),

and since differentiation of exponential generating functions only means a shift of coeffi-
cients, we find that the total of sumrec, summed over all set partitions of n into k subsets,
is also exactly the number of non-singletons in all set partitions of n + 1 into k subsets:
note that the exponential generating function for the latter is given by

d

dv
euv(ex−x−1)+ux

∣

∣

∣

v=1
= ueu(ex−1)(ex − x − 1). (11)

Let us also provide a purely combinatorial proof of this fact. Consider a set partition of
[n] with one marked block; assume that the record associated with this block (in other
words, the smallest number in the block) is ℓ. Increase all elements of this block by 1,
and add a new element r between 1 and ℓ to the block (which is possible, since all other
elements are now > ℓ+1). All elements in other blocks are increased by 1 if they are > r,
otherwise they remain the same. As a result, we obtain a set partition of [n + 1] with the
same number of blocks and a marked block that cannot be a singleton block (since we
added an element to a nonempty block).

This procedure maps a set partition of [n] with a marked block whose associated record
is ℓ to ℓ distinct set partitions of [n+1] with the same number of blocks and a marked non-
singleton block. For instance, 15|24|3 is mapped to 26|135|4 and 16|235|4. The process is
clearly reversible, and thus provides us with the desired combinatorial proof of the above
fact.
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4 Another approach to the sumrec parameter

We now give an alternative way to deal with the parameter sumrec. It turns out to be
simpler than that of the previous section, however, we believe that the preceding method
will be more widely applicable to other parameters of restricted growth functions. Let
s(n, k) be defined by

s(n, k) :=
∑

π∈P (n,k)

qsumrec(π).

A set partition of [n] is obtained by adding n to a set partition of [n− 1]; if n is added as
a singleton, then sumrec changes by n; otherwise, it remains unchanged. Therefore, one
has

s(n, k) = ks(n − 1, k) + qns(n − 1, k − 1).

For q = 1, one obtains the recursion for the Stirling numbers of the second kind, as it
should be. It is now easy to prove— one possible way is induction—the formula

sr(n, k) =
d

dq
s(n, k)

∣

∣

∣

q=1

=
∑

π∈P (n,k)

sumrec(π)

= kS(n + 1, k) − (n + 1)S(n, k − 1).

This result can also be derived from the generating function (11) of the previous section.
Let S(q, u, x) be the trivariate generating function

S(q, u, x) =
∑

n>0

∑

k>0

ukxn

n!
s(n, k).

Then the recursion for s(n, k) translates to the equation

∂

∂x
S(q, u, x) = u

∂

∂u
S(q, u, x) + quS(q, u, qx),

which can probably not be solved explicitly. However, one can determine explicit expres-
sions (albeit complicated) for the derivatives with respect to q at q = 1, since this amounts
to solving linear partial differential equations of the form

Sx(u, x) = uSu(u, x) + uS(u, x) + f(u, x),

which can be done by standard techniques (see [8]). Making use of computer algebra, one
obtains

∂

∂q
S(q, u, x)

∣

∣

∣

q=1
= ueu(ex−1) (uex(ex − x − 1) + ex − 1)

and

∂2

∂q2
S(q, u, x)

∣

∣

∣

q=1
+

∂

∂q
S(q, u, x)

∣

∣

∣

q=1
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=
u

2
eu(ex−1)

(

2u3e4x − u2e3x
(

4u(x + 1) − 13
)

+ 2ue2x
(

u2(x + 1)2 − u(x2 + 8x + 10) + 8
)

+ ex
(

u2(2x2 + 10x + 7) − 2u(x2 + 7x + 9) + 2
)

+ 2(u − 1)
)

.

Setting u = 1 as well, one finds the mean and variance of sumrec in terms of the Bell
numbers Bn:

Theorem 4.1. The mean and variance of sumrec, taken over all partitions of [n], are
given by

mean =
Bn+2 − Bn+1 − (n + 1)Bn

Bn
,

variance =
Bn+4 − 3

2
Bn+3 − (2n + 7

2
)Bn+2 − 1

2
Bn+1

Bn
− mean

2.

Another application of (6) now shows that the mean is asymptotically ∼ n2

log2 n
, while

the variance is ∼ n3

2 log3 n
. It follows that the parameter sumrec is concentrated around its

mean.

5 Sum of positions of additional weak records in set

partitions

Let us finally discuss the parameter sumwrec, defined as the sum of positions of all addi-
tional weak records. While it would be possible to follow the approach used in Section 3,
we restrict ourselves to a discussion analogous to the preceding section. As n is added to
a set partition of [n − 1], it becomes a new weak record if and only if it is added to the
last block. If we define

w(n, k) :=
∑

π∈P (n,k)

qsumwrec(π)

in analogy to s(n, k), then this yields

w(n, k) = (k − 1 + qn)w(n − 1, k) + w(n − 1, k − 1),

from which one can prove easily by induction that

swr(n, k) =
d

dq
w(n, k)

∣

∣

∣

q=1

=
∑

π set partition of
[n] into k blocks

sumwrec(π)

=
(n − 1)(n + 2)

2
S(n − 1, k).
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This also implies that the mean of sumwrec over all partitions of [n] is

(n − 1)(n + 2)Bn−1

2Bn
.

Again, we can introduce a trivariate generating function:

W (q, u, x) =
∑

n>0

∑

k>0

ukxn

n!
w(n, k).

Then the recursion for w(n, k) translates to the equation

∂

∂x
W (q, u, x) = u

∂

∂u
W (q, u, x) + qW (q, u, qx) + (u − 1)W (q, u, x).

Applying the same ideas as in the previous section, we can derive explicit expressions for
derivatives with respect to q at q = 1, so that we also find the variance:

Theorem 5.1. The mean and variance of sumwrec, taken over all partitions of [n], are
given by

mean =
(n + 2)(n − 1)Bn−1

2Bn

,

variance =
(n − 1)(2n2 + 5n + 6)Bn−1

6Bn

+
(n − 1)(3n3 + 5n2 − 10n − 24)Bn−2

12Bn

− mean
2.

Asymptotically, mean and variance are ∼ n
2

log n and ∼ n2

3
log n, so that the distribu-

tion of sumwrec is also concentrated around its mean.
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