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Abstract

In this paper, a colouring game and two versions of marking games (the weak
and the strong) on digraphs are studied. We introduce the weak game chromatic
number χwg(D) and the weak game colouring number wgcol(D) of digraphs D. It is
proved that if D is an oriented planar graph, then χwg(D) 6 wgcol(D) 6 9, and if D

is an oriented outerplanar graph, then χwg(D) 6 wgcol(D) 6 4. Then we study the
strong game colouring number sgcol (D) (which was first introduced by Andres as
game colouring number) of digraphs D. It is proved that if D is an oriented planar
graph, then sgcol (D) 6 16. The asymmetric versions of the colouring and marking
games of digraphs are also studied. Upper and lower bounds of related parameters
for various classes of digraphs are obtained.

1 Introduction

The game chromatic number of graphs was first introduced by Brams for planar graphs
(published by Gardner [9]), and then reinvented for arbitrary graphs by Bodlaender in [4].
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Given an (undirected) graph G and a set X of colours. Two players, Alice and Bob, take
turns (with Alice having the first move) to colour the vertices of G with colours from X.
At the start of the game all vertices are uncoloured. A play by either player colours
an uncoloured vertex with a colour from X so that no two adjacent vertices receive the
same colour. Alice wins if eventually the whole graph is properly coloured. Bob wins if
there comes a time when all the colours have been used on the neighbourhood of some
uncoloured vertex u. The game chromatic number of G, denoted by χg (G), is the least
k such that Alice has a winning strategy in the colouring game on G using a set of k
colours.

The game chromatic number of graphs has been studied in many papers. Upper and
lower bounds for the maximum game chromatic number of classes of graphs have been
obtained in the literature [3-5,7-8,10,12-15,18-19,22-28]. One of the benchmark problems
is the maximum game chromatic number of planar graphs. It was conjectured by Bod-
laender [4] that the game chromatic number of planar graphs is bounded by a constant.
Kierstead and Trotter [15] proved that the conjecture is true and the maximum game
chromatic number of planar graphs is at most 33 and at least 8. The upper bound is
improved in a sequence of papers [7, 25, 12], and the currently known upper bound for
the maximum game chromatic number of planar graphs is 17 [27].

To extend game colouring of graphs to digraphs, we need to define what is a legal
partial colouring. Nešetřil and Sopena [20] considered an extension of game colouring to
oriented graphs, i.e., digraphs without opposite directed edges. In the non-game version,
colouring of oriented graphs is defined as follows: A colouring of an oriented graph D is a
homomorphism from D to a tournament T . The oriented chromatic number of the oriented
graph D is the minimum order of a tournament T such that D admits a homomorphism
to T . In other words, the oriented chromatic number of an oriented graph D is the
minimum number of colours needed to colour the vertices of D so that no two adjacent
vertices receive the same colour, and moreover if (u, v) and (u′, v′) are directed edges
and c(u) = c(v′), then c(v) 6= c(u′).

Analogue to this definition, Nešetřil and Sopena [20] defined the colouring game of
oriented graphs, which is the same as the colouring game of undirected graphs, except
that a partial colouring c of an oriented graph D is legal if no two adjacent vertices receive
the same colour, and moreover the following hold: (1) if (u, v) and (u′, v′) are directed
edges of D with all the four (not necessarily distinct) vertices u, v, u′, v′ coloured, and
c(u) = c(v′), then c(v) 6= c(u′). (2) If (u, v, w) is a directed path of length 2 in D, then
c(u) 6= c(w). The oriented game chromatic number of an oriented graph D is the least
number of colours needed so that Alice has a winning strategy in the colouring game.
Nešetřil and Sopena [20] showed that the oriented game chromatic number of a graph G
is at most ∆2(G). It is now known that there exist constant upper bounds on the oriented
game chromatic number of oriented outerplanar graphs [20], oriented planar graphs [16],
and oriented partial k-trees [17].

The definition above does not apply to digraphs that contain opposite directed edges.
In particular, we view an undirected graph G as a symmetric digraph D in which each
undirected edge xy of G is replaced by two opposite directed edges (x, y) and (y, x). In
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this sense, the oriented game chromatic number of oriented graphs is quite different from
the game chromatic number of undirected graphs.

This paper introduces another game chromatic number of digraphs. We view an
undirected graph as a symmetric digraph. If restricted to symmetric digraphs, the game
chromatic number of digraphs introduced here coincides with the original game chromatic
number of graphs.

A natural generalization of chromatic number to digraphs was introduced by Neumann
-Lara in [21]. A (proper) colouring of a digraph D is a colouring of the vertices of D so
that each colour class induces an acyclic digraph. If this definition is applied to symmetric
digraphs (i.e., undirected graphs) G, then this is the same as a (proper) colouring of the
undirected graph G, because when G is a symmetric digraph, then a colour class is acyclic
if and only if it is an independent set.

Suppose D is a digraph and X is a set of colours. Alice and Bob take turns colour
the vertices of D, with Alice having the first move (the case that Bob has the first move
is similar, and the results in this paper apply to that case as well). A play by either
player colours an uncoloured vertex with a colour from X so that no directed cycle is
monochromatic. Alice wins if eventually the whole graph is properly coloured. Bob wins
if for some uncoloured vertex u, the use of any colour on u will produce a monochromatic
directed cycle. The weak game chromatic number of D, denoted χwg (D), is the least k
such that Alice has a winning strategy in this weak colouring game on D using a set of k
colours.

In the definition above, the digraph D is allowed to have opposite edges. If G is a
symmetric digraph, i.e., each directed edge has an opposite directed edge, then the weak
colouring game on G and the weak game chromatic number of G defined coincide with
the definition of the colouring game and the game chromatic number of undirected graph
G (by viewing each pair of opposite directed edges as an undirected edge).

For a digraph D, the underlying graph of D is an undirected graph D with the same
vertex set and in which xy is an edge of D if and only if at least one of (x, y) and (y, x)
is a directed edge of D.

By viewing an undirected graph as a symmetric digraph, we can view a digraph D
as a sub-digraph of its underlying graph D. One might expect the weak game chromatic
number of D to be bounded from above by the game chromatic number of D. However,
as has been already observed in the case of symmetric digraphs, the weak game chromatic
number of digraphs is not monotone, i.e., a sub-digraph may have larger weak game
chromatic number. For example, consider the complete bipartite graph Kn,n. Let M be
a perfect matching of Kn,n. Let D be the digraph obtained from Kn,n by assigning a
direction to each edge of M , and replace each other edge by two opposite directed edges.
So D = Kn,n. It is known and easy to see that χwg(Kn,n) = 3 for n > 2. However, we can
show that χwg(D) = n. It is easy to verify that χwg(D) 6 n. To see that χwg(D) > n− 1,
we observe that the following strategy of Bob is a winning strategy when there are at
most n− 1 colours: Whenever Alice colours a vertex v, Bob colours the ‘partner’ v′ of v
with the same colour, where two vertices v, v′ are partners if vv′ is an edge in M .

Nevertheless, for many natural classes of graphs, the best upper bound for their game
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chromatic number is obtained by considering the game colouring number (see definition
in the next section) of these graphs. In Section 2, we shall see that for any digraph D,
the weak game chromatic number of D is also bounded above by the game colouring
number gcol(D) of its underlying graph D. This implies that if D is a planar digraph,
then χwg(D) 6 17 [27]; if D is an outerplanar digraph, then χwg(D) 6 7 [10]; if D is
a digraph whose underlying graph is a partial k-tree, then χwg(D) 6 3k + 2 [26], etc.
However, by simply considering the underlying graphs of digraphs D, the information on
the orientation of edges are not used at all. In Section 2, analogue to the game colouring
number of undirected graphs, we shall study a weak marking game on digraphs, and define
a parameter, called the weak game colouring number for digraphs. We prove that the
weak game chromatic number of a digraph is bounded above by its weak game colouring
number. Then we prove that if D is an oriented graph, then its weak game colouring
number is at most ⌈gcol(D)/2⌉. As a consequence, we know that if D is an oriented planar
graph, then its weak game chromatic number is most 9; if D is an oriented outerplanar
graph, then its weak game chromatic number is at most 4; if D is an oriented partial
k-tree, then its weak game chromatic number is at most ⌈3k+2

2
⌉.

In Section 3, we shall prove that the maximum weak game colouring number of oriented
partial k-trees is equal to ⌈3k+2

2
⌉; the maximum weak game colouring number of oriented

interval graphs of clique size k + 1 is equal to ⌈3k+1
2
⌉; the maximum weak game colouring

number of oriented outerplanar graphs is equal to 4.
Indeed, in Section 2, we shall also define the weak (a, b)-game colouring number

(a, b)-wgcol(D) of digraphs D, and we shall prove that for an oriented graph D, (a, b)-

wgcol(D) 6

⌈

(a,b)-gcol(D)
2

⌉

. We shall show that this bound is sharp for many natural classes

of graphs in Section 3.
In Section 4 and Section 5, we consider another type of game colouring number of

digraphs, which was introduced earlier by Andres [1, 2]. For distinction, we call it the
strong game colouring number of digraphs and denote the strong game colouring number
of a digraph D by sgcol(D). This concept and its asymmetric variant were introduced by

Andres in [1, 2]. Let
−→
F be the class of oriented forests, it is shown in [2] that for a > b,

(a, b)- sgcol(
−→
F ) = b + 2; for a < b, (a, b)- sgcol(

−→
F ) = ∞. As a consequence, for the class

−→
Q of oriented outerplanar graphs, if a > b, then (a, b)- sgcol(

−→
Q) 6 b + 5.

For a graph G, the maximum average degree of G is defined as Mad(G) = max{2|E(H)|
|V (H)|

:

H is a non-empty subgraph of G}. The following fact is well-known (cf. [11], Theorem 4):

Fact 1.1 Let G be a graph. Then G has an orientation such that the maximum outdegree
of G is at most k if and only if Mad(G) 6 2k.

In Section 4, we shall prove that for any undirected graph G, there is an orientation D
of G such that sgcol(D) > gcol(G)−⌈Mad(G)/2⌉. In particular, for any planar graph G,
there is an orientation D of G such that sgcol(D) > gcol(G)− 3. The best known upper
bound for the game colouring number of planar graphs is 17 [27]. For oriented planar
graphs D, we shall prove that the strong game colouring number of D is at most 16.
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In Section 5, we shall study the strong (a, b)-game colouring number (a, b)-sgcol(D) of
digraphs D, which was first introduced by Andres in [2]. By extending the Harmonious
Strategy to the (a, b)-strong marking game of digraphs, we show that if D is an oriented
graph with Mad(D) 6 2k and a > k, then (a, 1)-sgcol(D) 6 k + 2.

2 Marking games on graphs and weak marking games

on digraphs

The marking game on graphs was first formally introduced in [25] as a tool in the study
of game chromatic number of graphs. The game is also played by two players: Alice and
Bob, with Alice playing first. At the start of the game all vertices are unmarked. A play
by either player marks an unmarked vertex. The game ends when all the vertices have
been marked. Together the players create a linear order L on the vertices of G defined
by u <L v if u is marked before v. For v ∈ V (G), the neighbourhood of a vertex v
is denoted by NG (v). Let V +

L (v) = {u : u <L v} and V −
L (v) = {u : v <L u}. Let

N+
G,L(v) = NG(v) ∩ V +

L (v) and N+
G,L[v] = N+

G,L(v) ∪ {v}. The score of the game is s,

where s = maxv∈V (G) |N
+
G,L [v] |. Alice’s goal is to minimize the score, while Bob’s goal

is to maximize the score. The game colouring number of G, denoted by gcol (G), is the
least s such that Alice has a strategy that results in a score of at most s.

In the marking game above and the colouring game discussed in Section 1, each move
by any player marks or colours exactly one vertex. Given positive integers a, b, the (a, b)-
marking game is the same as the marking game, except that in each of Alice’s moves, she
marks a unmarked vertices, and in each of Bob’s moves, he marks b unmarked vertices
(in the last move, if there are not enough unmarked vertices, then the player just marks
all the remaining unmarked vertices). The (a, b)-colouring game is defined similarly.

The (a, b)-game colouring number of a graph G, denoted by (a, b)-gcol (G), is the least
s such that Alice has a strategy that results in a score of at most s, in the (a, b)-marking
game of G. The (a, b)-game chromatic number of a graph G, denoted by (a, b)-χg (G), is
defined similarly through the (a, b)-colouring game of G.

So the original marking game and colouring game is just a (1, 1)-marking game and a
(1, 1)-colouring game. The (a, b)-marking games and the (a, b)-colouring games are called
asymmetric marking games and asymmetric colouring games. Asymmetric marking games
and colouring games of undirected graphs were studied in [13, 14, 19, 23, 24]. This concept
naturally extends to asymmetric weak colouring games of digraphs. Given a digraph D,
the weak (a, b)-game chromatic number (a, b)-χwg(D) of D is the least number of colours
needed so that Alice has a winning strategy in the weak (a, b)-colouring game of D.

It is easy to see that for any graph G, (a, b)-χg (G) 6 (a, b)-gcol (G). This upper bound
applies to any digraph D.

Lemma 2.1 If D is a digraph, then (a, b)-χwg(D) 6 (a, b)-gcol(D).

Proof Assume Alice and Bob play the (a, b)-colouring game on D with (a, b)-gcol(D)
colours. Alice uses her strategy in the marking game of D to choose the next vertex to
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be coloured, and colour the chosen colour with any legal colour. To prove that this is a
winning strategy, it suffices to show that at any moment, any uncoloured vertex has a
legal colour. By the definition of (a, b)-game colouring number, any uncoloured vertex v
has at most (a, b)-gcol(D) − 1 coloured neighbours. It is obvious that a colour not used
by any neighbour of v is a legal colour for v. So v has a legal colour, and hence this is a
winning strategy for Alice.

This strategy does not take the orientation of the edges of D into consideration. For
a colour to be legal to an uncoloured vertex v, it is not necessary that the colour be not
used by any of its neighbours, because two adjacent vertices are allowed to be coloured
the same colour. We just need to avoid producing a monochromatic directed cycle. So if a
colour α is not used by any in-neighbour of v, or not used by any out-neighbour of v, then
α is a legal colour for v. This motivates the definition of the following game colouring
number of digraphs.

The weak (a, b)-marking game on a digraph D is defined in the same way the (a, b)-
marking game on its underlying graph D. Except that the score is defined differently.
Suppose a linear ordering L of the vertices of D is determined. For a vertex v, let N+

D(v)
denote the set of all out-neighbours of v in D, i.e., N+

D (v) = {u ∈ V : u ← v}; let
N−

D (v) denote the set of all in-neighbours of v in D, i.e., N−
D (v) = {u ∈ V : u→ v}. Let

N+,+
D,L (v) = N+

D(v) ∩ V +
L (v) and N−,+

D,L (v) = N−
D(v) ∩ V +

L (v). Let N+,+
D,L [v] = N+,+

D,L (v) ∪ {v}

and N−,+
D,L [v] = N−,+

D,L (v) ∪ {v}. The score s(v) of a vertex v is defined as

s(v) = min{
∣

∣N+,+
D,L [v]

∣

∣ ,
∣

∣N−,+
D,L [v]

∣

∣}.

The score of the game is
s = max

v∈V (G)
s(v).

The weak (a, b)-game colouring number wgcol (D) of D is the least s such that Alice
has a strategy that results in a score of at most s. Suppose v is an uncoloured vertex
of D. Then any colour α not used by its out-neighbours or not used by its in-neighbours
is a legal colour for v. So the proof of Lemma 2.1 proves the following lemma.

Lemma 2.2 If D is a digraph, then (a, b)-χwg(D) 6 (a, b)-wgcol(D).

If D is a symmetric digraph, then the definition of wgcol(D) coincides with the defi-
nition of gcol(D). However, if D is an oriented graph, then we have the following upper
bound for (a, b)-wgcol(D) in terms of (a, b)-gcol(D).

Lemma 2.3 If D is an oriented graph, then

(a, b) -wgcol(D) 6

⌈

(a, b) -gcol(D)

2

⌉

.

Proof Assume (a, b) -gcol(D) = s. Then Alice has a strategy for the (a, b)-marking game
on D so that at any moment of the game, any unmarked vertex v has at most s−1 marked
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neighbours. Alice uses the same strategy for playing the weak marking game on D. Since
D is an oriented graph, D+(v) ∩ D−(v) = ∅. So at any moment of the game, at least
one of the sets D+(v), D−(v) contains at most ⌊(s−1)/2⌋ marked vertices. Therefore the
weak (a, b)-game colouring number of D is at most ⌊(s− 1)/2⌋+ 1 = ⌈s/2⌉.

Let Ik be the class of interval graphs with clique number k + 1, Q be the class of
outerplanar graphs, PKk be the family of partial k-trees, P be the class of planar graphs.

For a class K of graphs, let
−→
K be the set of all orientations of graphs in K. Denote by

gcol(K) the maximum game colouring number of graphs in K; by wgcol(
−→
K ) the maximum

weak game colouring number of digraphs in
−→
K .

Since planar graphs have game colouring number at most 17 [27], outerplanar graphs
have game colouring number at most 7 [10], partial k-trees have game colouring number
at most 3k+2 [26], interval graphs with clique number k+1 have game colouring number
at most 3k + 1 [8], we have the following corollary.

Corollary 2.4 The following upper bounds on weak game colouring numbers hold:

wgcol(
−→
Ik) 6 ⌈(3k + 1)/2⌉,

wgcol(
−→
Q) 6 4,

wgcol(
−−→
PKk) 6 ⌈(3k + 2)/2⌉,

wgcol(
−→
P ) 6 9.

Corollary 2.5 If D is an orientation of G and Mad(G) 6 2k and a > k, then (a, 1)-
wgcol (D) 6 k + 1.

Proof By Fact 1.1, if Mad(G) 6 2k, then G has an orientation ~G with maximum outdegree
at most k. It was proved in [19] that for a graph G, if a > k, then (a, 1)-gcol (G) 6 2k+2.
Thus (a, 1)-wgcol (D) 6 k + 1.

3 Lower bounds for the weak game colouring number

Intuitively, if D is an oriented graph, then D has only half of the directed edges of its
underlying graph D (by viewing D as a symmetric digraph). So it seems reasonable that
wgcol(D) is about half of gcol(D). However, for a particular digraph D, it is possible
that wgcol(D) is much less than half of gcol(D). For example, if D is an orientation of
Kn,n with all vertices of Kn,n being either a source or a sink, then wgcol(D) = 1 and
gcol(D) = n + 1. Nevertheless, we have the following conjecture:

Conjecture 3.1 For any undirected graph G, there is an orientation D of G such that

wgcol(D) =

⌈

gcol(G)

2

⌉

.
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In particular, for a class C of undirected graphs,

wgcol(
−→
C ) =

⌈

gcol(C)

2

⌉

.

The following result shows that this conjecture is true for partial k-trees, interval
graphs and outerplanar graphs.

Lemma 3.2 The weak game colouring numbers of oriented interval graphs, outerplanar
graphs and partial k-trees (with k > 2) are as follows:

wgcol(
−→
Ik) = ⌈gcol(Ik)/2⌉ = ⌈(3k + 1)/2⌉,

wgcol(
−→
Q) = ⌈gcol(Q)/2⌉ = 4,

wgcol(
−−→
PKk) = ⌈gcol(PKk)/2⌉ = ⌈(3k + 2)/2⌉.

Proof By using Corollary 2.4, it suffices to show that wgcol(
−→
Ik) > ⌈(3k+1)/2⌉, wgcol(

−→
Q)

> 4 and wgcol(
−−→
PKk) > ⌈(3k + 2)/2⌉. The proof of wgcol(

−→
Ik) > ⌈(3k + 1)/2⌉ and

wgcol(
−→
Q) > 4 is provided next in Example 3.5 and Example 3.7.

Here we shall only consider the case of partial k-trees with k > 2. For any k > 2,
in [22], a partial k-tree G with gcol(G) = 3k + 2 is constructed. The partial k-tree
constructed in [22] is as follows: Let P k

n be the kth power of the path Pn, i.e., P k
n has

vertex set a1, a2, . . . , an, in which ai ∼ aj if and only if |i − j| 6 k. For k + 1 6 i 6 n
which is not a multiple of k, add a vertex bi and connect bi to each of ai, ai−1, . . . , ai−k+1.
For 1 6 i < j 6 i + k 6 n and m = 1, 2, add a vertex ci,j,m and connect ci,j,m to ai, aj .
The resulting graph G is a partial k-tree and it is shown in [22] that gcol(G) = 3k + 2.

The vertices ai are called A-vertices, bi are called B-vertices and ci,j,m are called C-
vertices. Let A′ = {ak+1, ak+2, . . . , an−k}. Each vertex ai ∈ A′ has 2k A-neighbours (i.e.,
neighbours that are A-vertices) and k − 1 B-neighbours and 4k C-neighbours. Now we
orient the edges of G (the resulting oriented graph is D) so that for aj ∈ A′, we have
d+

A (aj) = d−
A (aj) = k, d+

B (aj) > ⌊k−1
2
⌋, d−

B (aj) > ⌊k−1
2
⌋ (this can be easily done). For

edges ci,j,mai and ci,j,maj in E(G), orient the edges ci,j,1ai and ci,j,1aj from ci,j,1 to ai,
aj in D, orient the edges ci,j,2ai and ci,j,2aj from ai, aj to ci,j,2 in D. This will make
d+

C (aj) = d−
C (aj) = 2k for aj ∈ A′.

If n is large enough, by using the same strategy as in [22], Bob can make sure that at a
certain step, a vertex aj in A′ is not marked yet, but all its A-neighbours and B-neighbours
are marked; moreover, at least for some i, two of its neighbours in C (ci,j,1 and ci,j,2) are
marked. Then the unmarked vertex aj will have at least k+⌊k−1

2
⌋+1 marked in-neighbours

and out-neighbours. Therefore the score of aj is s(aj) > 1 + ⌊(3k + 1)/2⌋ = ⌈(3k + 2)/2⌉.

The following technical lemma extends Lemma 16 in [19] to the weak marking games
of digraphs, we use it to prove our examples for interval graphs and outerplanar graphs.
For a digraph D = (V, E), a vertex v ∈ V and a set X ⊆ V , let d+ (v) = |N+ (v)|,
d− (v) = |N− (v)|, dX (v) = |N (v) ∩X|, d+

X (v) = |N+ (v) ∩X|, d−
X (v) = |N− (v) ∩X|.

Let distD (x, y) denote the distance between x and y in the underlying graph D.
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Lemma 3.3 Let a and d be positive integers and let D = (V, E) be a digraph whose
vertices are partitioned into sets L and S. Let B ⊆ L and T ⊆ S. If

1. d+ (v) > d and d− (v) > d for all v ∈ L− B,

2. distD (x, y) > a + 1 for all distinct x, y ∈ T and

3. a (|B|+ |S − T |+ 1) < |L− B|

then (a, 1)-wgcol (D) > d + 1.

Proof The proof is analogous to Lemma 16 in [19]. We shall provide Bob with a strategy
by which he can obtain a score of at least d + 1 in the weak (a, 1)-marking game. Bob
will begin by making sure that all the vertices in B ∪ (S − T ) are marked by the end of
his first |B ∪ (S − T )| plays. Alice can mark at most a (|B|+ |S − T |) vertices in |L−B|
before Bob accomplishes this task. So by (3) there are still more than a unmarked vertices
in L − B. Bob’s next task is to mark as many of the vertices in T as possible. If all the
vertices in S are eventually marked before some vertex in L− B then the last unmarked
vertex in L − B will have at least d marked in-neighbours and d marked out-neighbours
by (1) and so the score will be at least d + 1. So we may assume that for the rest of the
game Bob marks vertices in T . Since Alice can only mark a vertices at a time, Bob will
eventually have a turn on which P = (L−B)∩U satisfies 0 < |P | 6 a, where U denotes
the set of unmarked vertices. Let Q be a connected component of P . Then by (2) there
is at most one neighbour of Q in T , since otherwise T would have distinct vertices whose
distance was at most a + 1 in D. Let x be an unmarked element of T and if possible let
x be a neighbour of Q. Bob will mark x. Then when the last element of Q is marked it
will have at least d marked in-neighbours and d marked out-neighbours. So the score will
be at least d + 1.

We shall apply Lemma 3.3 repeatedly to obtain some sharp results for the classes of
orientations of chordal, interval, and outerplanar graphs.

First we consider orientations of chordal graphs and in particular interval graphs.
Example 3.4 is analogous to Example 17 in [19]. For a positive integer t, [t] denotes
the set {1, 2, . . . , t}. Let Ik,t be the interval graph determined by the set of intervals
Lk,t = {[i, i + k] : i ∈ [t]}. We identify V (Ik,t) with Lk,t in the natural way and set
vi = [i, i + k]. Then, for example, {vi, ..., vi+k} is a (k + 1)-clique in Ik,t. Clearly Ik,t has
t vertices and ω (Ik,t) = k + 1.

In
−→
Ik,t, we orient the edges in Ik,t in the following way: suppose vivj ∈ E (Ik,t), where

vi = [i, i + k], vj = [j, j + k]. If i < j, then orient the edge vivj from vj to vi in
−→
Ik,t, i.e.,

(vj , vi) ∈ E
(−→
Ik,t

)

. Then all the vertices of
−→
Ik,t have outdegree and indegree k except the

2k vertices in the border set Bk,t = {vi : i ∈ [k] ∪ ([t]− [t− k])}.

Example 3.4 For all positive integers k and a there exists an oriented interval graph D
with ω (D) = k + 1 and (a, 1)-wgcol (D) > k + 1.
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Proof Let t = (a + 1) (2k + 1), D =
−→
Ik,t, L = Lk,t, B = Bk,t, S = T = ∅, d = k. Then

a (|B|+ |S − T |+ 1) = 2ak + a

= t− 2k − 1

< |L− B| .

So we are done by Lemma 3.3.

Example 3.5 is analogous to Example 4.3 in [24]. Let I+
k,t be the interval graph deter-

mined by the set of intervals Wk,t = Lk,t ∪ Sk,t, where Sk,t =
{[

i + 1
2
, i + 1

2

]

: k < i < t
}

.
We identify V

(

I+
k,t

)

with Wk,t in the natural way and set xi =
[

i + 1
2
, i + 1

2

]

. Notice that

dist (xi, xj) =
⌊

|i−j|
k

⌋

+ 2.

In
−→
I+
k,t, we oriented the edges in I+

k,t in the following way: for edges vivj ∈ E (Ik,t), orient

them in the same way as
−→
Ik,t. For vixj ∈ E

(

I+
k,t

)

, where vi = [i, i + k], xj =
[

j + 1
2
, j + 1

2

]

,

if j is odd, then orient the edge vixj from xj to vi in
−→
I+
k,t, i.e., (xj , vi) ∈ E

(−→
I+
k,t

)

; otherwise

(j is even), orient the edge vixj from vi to xj in
−→
I+
k,t, i.e., (vi, xj) ∈ E

(−→
I+
k,t

)

.

Example 3.5 For every positive integer 1 6 a < k there exists an oriented interval
graph D such that ω (D) = k + 1 and (a, 1)-wgcol (D) > k + ⌊ k

2a
⌋+ 1.

Proof Let r = 3k + 1, s = ⌊ rk2+k
a
⌋ − ⌊k

a
⌋, t = rk2 + 2k, L = Lk,t, B = Bk,t, S =

{

xia+1 : i ∈
[

⌊ rk2+k
a
⌋
]

−
[

⌊k
a
⌋
]

}

, T = {xjak+1 : j ∈ [r]}. Let D =
−→
I+
k,t be the oriented

interval graph defined above. Then all the vertices in Lk,t have outdegree and indegree at
least k + ⌊ k

2a
⌋ except the 2k vertices in the border set Bk,t = {vi : i ∈ [k] ∪ ([t]− [t− k])}.

Let d = k + ⌊ k
2a
⌋. Note that the distance between any two vertices in T is at least a + 2,

and

a (|B|+ |S − T |+ 1) = a (2k + s− r + 1)

= a

(

2k + ⌊
rk2 + k

a
⌋ − ⌊

k

a
⌋ − 3k − 1 + 1

)

= a

(

⌊
rk2 + k

a
⌋ − ⌊

k

a
⌋ − k

)

< rk2

= |L−B| .

So (a, 1)-wgcol (D) > k + ⌊ k
2a
⌋+ 1 by Lemma 3.3.

Next we consider outerplanar graphs. Examples 3.6 and 3.7 are analogous to Ex-
ample 25 and Example 27 in [19]. Let Ht be the outerplanar graph on the vertex set
Wt = {vi : i ∈ [2t− 1] ∪ {0}} obtained from the union of the cycle C = v0v1...v2t−1v0

and the path P = v2t−1v1v2t−2v2 . . . vt+1vt−1. In
−→
Ht, we orient the cycle C by making
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it a directed cycle in
−→
Ht, orient the path P by making it a directed path in

−→
Ht. Let

B′
t = {v0, vt−1, vt, v2t−1}. Note that every vertex in Wt−B′

t has outdegree and indegree 2

in
−→
Ht.

Example 3.6 For every positive integer a there exists an oriented outerplanar graph D
with (a, 1)-wgcol (D) > 3.

Proof Let, D =
−→
Ht, L = Wt, B = B′

t, S = T = ∅, d = 2, where 5a < 2t− 4. Then

a (|B|+ |S − T |+ 1) = 5a < |L−B|

and we are done by Lemma 3.3.

For the next example let
−→
H+ be the oriented outerplanar graph obtained from

−−→
H24 by

adding the vertices in the set X24 = {x0, x1, ..., x22}∪{x24, ..., x46} so that (vi, xi), (xi, vi+1)

∈ E(
−→
H+). Note that dist (xi, xj) = |i− j|+ 1 if i, j 6 22.

Example 3.7 There exists an oriented outerplanar graph D with wgcol (D) = 4.

Proof Let D =
−→
H+, L = W24, B = B′

24, S = {xi : i ∈ {0} ∪ [46]− {23}}, T = {x2i−1 :
i ∈ [11]}, a = 1 and d = 3. Then d+ (v) = d− (v) = 3 for all v ∈ L − B, the distance
between any two vertices in T is at least 3, and

a (|B|+ |S − T |+ 1) = 4 + 46− 11 + 1 < 44 = |L− B| .

So we are done by Lemma 3.3.

Conjecture 3.1 can also be extended to asymmetric weak game colouring numbers:

Conjecture 3.8 For any positive integers a, b, for any undirected graph G, there is an
orientation D of G such that

(a, b) -wgcol(D) =

⌈

(a, b) -gcol(D)

2

⌉

.

Similar to Lemma 3.2, we can show that Conjecture 3.8 is true for those classes of
undirected graphs whose game colouring number is known. Note that the upper bounds of
Lemma 3.9 can be obtained from Corollary 2.5, the lower bounds are proved in Example
3.4 and Example 3.6.

Lemma 3.9 The following equalities hold:

• If a > k, then (a, 1) -wgcol(
−→
Ik) =

⌈

(a,1)-gcol(Ik)
2

⌉

= k + 1.

• If a > 2, then (a, 1) -wgcol(
−→
Q) =

⌈

(a,1)-gcol(Q)
2

⌉

= 3.

• If a > k, then then (a, 1) -wgcol(
−−→
PKk) =

⌈

(a,1)-gcol(PKk)
2

⌉

= k + 1.
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4 The strong game colouring number

In the definition of game colouring number of a digraph D, the score s(v) of a vertex v is
chosen to be the minimum of two numbers: s(v) = min{|N+,+

D,L [v]|, |N−,+
D,L [v]|}. A natural

variation is to fix one of the two numbers to be the score of a vertex. This gives another
type of marking game on digraphs. This marking game was first studied by Andres [1, 2].

The strong marking game on a digraph D is the same as the weak marking game
on D, except the score is calculated differently. If L is the linear ordering produced by
a play of the marking game on D, then the score of v is s(v) = |N−,+

D,L [v]|. The score of
the game is s = maxv∈V (D) s(v). Alice’s goal is to minimize the score, while Bob’s goal is
to maximize the score. The strong game colouring number of D, denoted by sgcol (D), is

the least s such that Alice has a strategy that results in a score of at most s. If
−→
C is a

class of digraphs then sgcol(
−→
C ) = max

D∈
−→
C

sgcol (D).
If G is a symmetric digraph, then sgcol(G) = gcol(G). So the strong game colouring

number can also be viewed as a generalization of the game colouring number of undirected
graphs to digraphs. By Theorem 2.3, if D is an oriented graph, then wgcol(D) is bounded
from above by half of gcol(D). The following lemma shows that the behavior of the strong
game colouring number is quite different.

Lemma 4.1 For any undirected graph G, there is a digraph D which is an orientation of
G such that sgcol(D) > gcol(G)− ⌈Mad(G)/2⌉.

Proof By Fact 1.1, there is an orientation D of G such that D has maximum outdegree
at most ⌈Mad(G)/2⌉. Now for any linear ordering L of the vertices of D, for any vertex
v of D,

|N−,+
D,L [v]| > |N+

G,L[v]| − ⌈Mad(G)/2⌉.

Thus if Bob has a strategy to ensure that when playing the marking game on G, there is a
vertex of score at least k, then the same strategy ensures that when playing the marking
game on D, there is a vertex of score at least k − ⌈Mad(G)/2⌉. This completes the proof
of the lemma.

Corollary 4.2 For the classes of oriented planar graphs, outerplanar graphs, partial k-
trees, interval graphs of clique size k + 1, we have

sgcol(
−→
P ) > 8,

sgcol(
−→
Q) > 5,

sgcol(
−→
PKk) > 2k + 2,

sgcol(
−→
I k) > 2k + 1.

Proof This follows from the known lower bounds on the game colouring number of these
classes of graphs and the upper bound on Mad(G) for these graphs.
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For planar graphs, we have gcol(P) > 11 (by Theorem 4 of [22]) and Mad(P) 6 6, so

sgcol(
−→
P ) > 8. For outerplanar graphs, we have gcol(Q) > 7 (by Example 27 of [19]) and

Mad(Q) 6 4, so sgcol
(−→
Q

)

> 5. For partial k-trees, if k > 2, we have gcol(PKk) > 3k+2

(by Theorem 3 of [22]), so sgcol
(−→
PK

)

> 3k + 2 − k = 2k + 2. For interval graphs of

clique size k + 1, we have gcol(Ik) > 3k + 1 (by Example 4.3 of [24]), so sgcol
(−→
I k

)

>

3k + 1− k = 2k + 1.

It is shown in [1] that the maximum game colouring number of oriented forests is 3,
where the maximum game colouring number of (undirected) forests is 4. However, it is
unknown whether or not the trivial upper bound sgcol(D) 6 gcol(D) can be improved in
general (excluding some trivial cases such as an empty graph or a star). The currently
known best upper bound for the game colouring number of planar graphs is 17. So for
any oriented planar graph D, sgcol(D) 6 17. Using a similar technique, we can improve
this upper bound by 1, i.e., for any oriented planar graph D, sgcol (D) 6 16. For the
proof of this result, we use the activation strategy.

Suppose D is a digraph and L is a linear ordering of the vertices of D. For each vertex
v of D, choose a subset W (v) of N−,−

D,L (v) (where N−,−
D,L (v) = N−

D(v) ∩ V −
L (v)). We say

a vertex u is two-reachable from v with respect to L and W (v) if either u ∈ N+,+
D,L (v), or

u <L v and there is a vertex z ∈ (N−,−
D,L (v) −W (v)) ∩ N−,−

D,L (u). The latter case means
that u <L v and there is a path P = (v, z, u) of length 2 from v to u (so u can be reached
from v in two steps), where z is not in W (v) and is larger than v (in the ordering L) and
the two edges are oriented as (z, v) and (z, u). Let R2

D,L(v) denote the set of all vertices u
that are two-reachable from v in D with respect to L and W (v), let a(v) = |R2

D,L(v)|, let

sL,W (v) = 2a(v) + |N−,+
D,L (v)|+ |W (v)|+ 2.

Lemma 4.3 Suppose D is a digraph, L is a linear ordering of V (D), W (v) and sL,W (v)
are defined as above. Then Alice has a strategy for playing the strong marking game so
that for any vertex v, the score of v is at most sL,W (v).

Proof The strategy is the activation strategy, which is widely used in the marking game
and colouring game of undirected graphs. Alice will activate and mark the least vertex
in her first move (the order in the proof always refers to the linear ordering L). Here by
activating a vertex, it means that vertex is put into a set A of active vertices. Alice will
use the set A in determining her later moves. Suppose Bob has marked a vertex b. Alice
activates b if it is inactive. If all vertices in N+,+

D,L (b) are marked, then Alice activates and
marks the least unmarked vertex. Otherwise, Alice jumps from b to the least unmarked
vertex in N+,+

D,L (b). Then she repeats the following process until she marks a vertex:
Suppose Alice has jumped to a vertex v. If v is inactive, then she activates v and then
jumps to the least unmarked vertex in N+,+

D,L [v]. If v is active, then Alice marks v.
We say v made a contribution to u (or u received a contribution from v) if Alice made

a jump from v to u. Observe that when a vertex v is activated, it makes a contribution to
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its least unmarked out-neighbour, if v has an unmarked out-neighbour preceding it in L.
Otherwise, v makes a contribution to itself. When a vertex receives the first contribution,
it is activated. When it receives the second contribution, it is marked. So a vertex receives
at most two contributions.

Assume Alice has just finished a move and v is an unmarked vertex. The set M(v) of
marked in-neighbours of v is partitioned into three subsets: M(v)∩N−,+

D,L (v), M(v)∩W (v)

and M(v) ∩N−,−
D,L (v)\W (v). Note that each vertex u in M(v) ∩N−,−

D,L (v)\W (v) is active,

and hence made a contribution to some vertices in V +
L (u). Since v is unmarked, and

hence v can receive contributions from u, so the vertex which received a contribution
from u precedes v in L and hence is two-reachable from v with respect to L and W (v).
(Note that if the contribution goes to v, since v is unmarked, this contribution is passed
on to some vertex in N+,+

D,L (v) immediately.) As each vertex can receive at most two

contributions, we conclude that |M(v) ∩ N−,−
D,L (v)\W (v)| 6 2a(v). Therefore |M(v)| 6

2a(v) + |N−,+
D,L (v)| + |W (v)|. If Bob makes another move, the size of M(v) may increase

by 1. Thus the score of v is at most sL,W (v).

Theorem 4.4 If D = (V, E) is an oriented planar graph, then sgcol (D) 6 16.

Proof By Lemma 4.3, it suffices to construct a linear ordering L of the vertices of D, and
choose W (v) for each vertex v so that for each vertex v, sL,W (v) 6 16.

Fix a planar drawing of D. Initially we have a set of chosen vertices C = ∅ and a set
of unchosen vertices U = V . At any stage of the construction we choose a vertex u ∈ U ,
and then add the vertex to L, such that for any x ∈ U\{u}, y ∈ C, we have x <L u <L y.
Then let U := U − {u}; C := C ∪ {u}.

Let H be the planar digraph obtained from D by deleting all arcs between vertices
in C; deleting all arcs with tails in U and heads in C; deleting each vertex y ∈ C such
that |N+

D(y)∩U | 6 3, and adding one directed edge (in either direction) between any two
nonadjacent vertices of N+

D (y) ∩ U . Clearly H is still an oriented planar graph.
For each vertex v of H , let c(v) = 2

3
d+

H(v) + d−
H(v) be the initial charge of v. Then

∑

v∈V (H)

c(v) =
5

3
|E(H)| < 5|V (H)|.

If xy is an edge of H with x ∈ U and y ∈ C, then move a charge of 7
12

from x to y.
Denote by c′(v) the new charge of a vertex v ∈ V (H). If v ∈ C, then since v has outdegree
at least 4, we conclude that c′(v) > 4(2

3
+ 7

12
) = 5. As

∑

v∈V (H) c′(v) < 5|V (H)|, there is

a vertex u ∈ U with c′(u) < 5. We choose a vertex u ∈ U with c′(u) < 5 and add u to C,
and the ordering is that for any x ∈ U − {u}, y ∈ C − {u}, we have x <L u <L y. Let
W (u) = C ∩ NH(u). Although the linear ordering L is not completely determined yet,
the value of sL,W (u) is determined.

Indeed, R2
D,L(u) ⊆ NH(u) ∩ U . To see this, it suffices to note that if a vertex z ∈

(N−,−
D,L (u) −W (u)), then |N+

D(z) ∩ U | 6 3. Therefore, by the construction of H , if w is

two-reachable from u with respect to L and W (u), either w ∈ N+,+
H,L (u) or w ∈ N−,+

H,L (u).
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Also note that N−,+
D,L (u) ⊆ N−

H (u) ∩ U and W (u) = N−
H(u) ∩ C. Define σ =

∣

∣N+,+
H,L (u)

∣

∣,

α =
∣

∣N−,+
H,L (u)

∣

∣, β =
∣

∣N−,−
H,L (u)

∣

∣. Then

c′(u) =
2

3
σ + α +

5

12
β.

sL,W (u) = 2|R2
D,L(u)|+ |N−,+

D,L (u)|+ |W (u)|+ 2

6 2(σ + α) + α + β + 2

= 2σ + 3α + β + 2.

Since σ, α and β are nonnegative integers satisfying c′(u) < 5, we have

sL,W (u) 6 16.

This finishes the proof.

5 Asymmetric strong marking games on digraphs

For the strong marking game on directed graphs, we have seen that for an oriented
graph D, sgcol(D) can be much larger than half of gcol(D). However, for certain asym-
metric strong marking games, the situation can be different.

The strong (a, b)-game colouring number (a, b)-sgcol(D) of D is the least s such that
Alice has a strategy that results in a score of at most s in the strong (a, b)-marking game
of D. Let Gk be the class of graphs G with Mad(G) 6 2k. It follows from results in [19]

that for a > k, 2k + 1 6 (a, 1)-gcol(Gk) 6 2k + 2. We shall show that (a, 1)-sgcol(
−→
G k) is

about half of this number.

Theorem 5.1 If a > k, then k + 1 6 (a, 1) -sgcol(
−→
Gk) 6 k + 2.

Proof Since (a, 1) -gcol(Gk) > 2k + 1, there is a graph G ∈ Gk such that (a, 1) -gcol(G) >

2k+1. As Mad(G) 6 2k, by Fact 1.1, there is an orientation D of G such that ∆+(D) 6 k.
When playing the strong (a, 1)-marking game on D, Bob uses his strategy for the (a, 1)-
marking game on G. Thus there is a vertex v ∈ V (G) which has at least 2k neighbours
marked before v. Since d+(v) 6 k, so v has at least k in-neighbours in D marked before v.
I.e., for the strong marking game on D, s(v) > k + 1. Hence (a, 1) -sgcol(D) > k + 1.

It remains to show that for any G ∈ Gk, for any orientation D of G, (a, 1)-sgcol(D) 6

k +2. Since G ∈ Gk, there is an orientation ~G of G with ∆−( ~G) 6 k. Define two auxiliary

digraphs ~Gr and ~Gl as follows:

1. Both ~Gr and ~Gl have the same vertex set as D.

2. For any arc (u, v) ∈ E(D), if also (u, v) ∈ E( ~G), then add (u, v) to E( ~Gr); else (that

is the case in which (u, v) ∈ E(D) and (v, u) ∈ E( ~G)), then add (v, u) to E( ~Gl).
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Thus ~Gr and ~Gl are subdigraphs of ~G and E( ~G) = E( ~Gr)∪E( ~Gl), E( ~Gr)∩E( ~Gl) = ∅.

Let Gl be the underlying (undirected) graph of ~Gl. Instead of playing the strong
(a, 1)-marking game on D, Alice views it as a (a, 1)-marking games on Gl, and she uses
the so-called Harmonious Strategy for this game.

Here is a formal description of the strategy. To unify the description we consider an
equivalent version of the marking game in which Bob plays first by marking a new vertex
x0 with no neighbours in V (Gl). Let Π (Gl) be the set of linear orderings on the vertex set
of Gl. Fix any L ∈ Π (Gl). For a subset X of vertices of D, L-minX means the smallest
vertex of X with respect to the order of L. In the description of the strategy, U denotes
the set of unmarked vertices. For a vertex v, Sv denotes the set of in-neighbours u to
whom v has not yet contributed.

Initialization: U := V (Gl); for v ∈ V (G) do Sv := N−
~Gl

(v) end do;

Now suppose that Bob has just marked a vertex x. Alice plays by performing the
following steps.
Alice’s play: for i from 1 to a while U 6= ∅ do

1. if Sx ∩ U 6= ∅ then y := L-min Sx ∩ U else y := L-min U end if;

Sx := Sx − {y};

2. while Sy ∩ U 6= ∅ do z := L-min Sy ∩ U ; Sy := Sy − {z}; y := z end do;

3. U := U − {y} end do;

For an unmarked vertex u, we say u receives a contribution from v and v made a
contribution to u, if: in Line 1, we have u = y := L-min Sx ∩ U and v = x; or in Line 2,
we have u = z := L-min Sy ∩ U and v = y.

So in Step 1 Alice selects a vertex y and then x contributes to y. In Step 2 this contri-
bution is passed along until finally it arrives at a vertex y that has already contributed to
all its in-neighbours. This strategy is used in [19] for (a, 1)-marking games on undirected
graphs. The following lemmas were proved in [19].

Lemma 5.2 The Harmonious Strategy always terminates with Alice completing her turn.

Lemma 5.3 Suppose that k 6 a and Alice follows the Harmonious Strategy. Consider a
time when Alice has just marked a vertex v. Then

1. Any unmarked vertex has received the same number of contributions as it has made.

2. The vertex v has contributed to all its unmarked in-neighbours, i.e., Sv ∩ U = ∅.

3. If Alice has completed her turn then every marked vertex x satisfies Sx ∩ U = ∅.
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Suppose that Alice uses the Harmonious Strategy on the graph ~Gl. Consider any time
when a vertex v has just been marked by Alice. If Alice has not yet completed her turn,
let x be the last vertex marked by Bob. Otherwise x is undefined. It suffices to show
that any unmarked vertex u has at most k marked in-neighbours in D other than x. This
allows for the fact that if x is defined, then it may be an in-neighbour of u in D; and
otherwise it is Bob’s turn, and he may be about to mark a vertex that is an in-neighbour
of u. In the former case we treat x separately because it may have not yet contributed to
all of its unmarked in-neighbours in ~Gl.

Suppose s = |N−
~Gr

(u) | and t = |N−
~Gl

(u) |. By Lemma 5.3 (2,3) every marked out-

neighbour of u in ~Gl other than x has contributed to u and by Lemma 5.3 (1) each

contribution to u is matched by a unique contribution to an in-neighbour of u in ~Gl.
Therefore, the number of marked out-neighbours of u in ~Gl other than x is at most t.

Every marked in-neighbour of u in D is either an in-neighbour of u in ~Gr or an out-
neighbour of u in ~Gl. As s + t = |N−

~G
(u) | 6 k, we conclude that u has at most k marked

in-neighbours other than x in D.

Corollary 5.4 • If a > k, then (k, 1)-sgcol
(−→
PKk

)

6 k + 2.

• If a > 3, then (a, 1)-sgcol
(−→
P

)

6 5.

• If a > 2, then (a, 1)-sgcol
(−→
Q

)

6 4.

The Harmonious Strategy only applies to (a, 1)-marking games on graphs G with
a > Mad(G)/2. It is known that if a < k then (a, 1)-gcol(Gk) = ∞ (refer Example 14,
[19]). The first paragraph of the proof of Theorem 5.1 shows that this implies (a, 1)-

gcol(
−→
G k) = ∞. One technique can be used in the game if G can be decomposed into

two graphs: one with small maximum average degree, and the other with small maximum
indegree (refer Observation 1, [2]).

Corollary 5.5 If G is the edge disjoint union of G1 and G2, where ⌈Mad(G1)/2⌉ = k 6 a
and ∆−(G2) = k′, then for any orientation D of G, (a, 1)-sgcol (D) 6 k + k′ + 2.

Proof Alice plays the marking game on the orientation of G1 so that each unmarked
vertex v has at most k + 1 marked in-neighbours in the orientation of G1. Plus those
marked in-neighbours of v in the orientation of G2, we conclude that v has at most
k + k′ + 1 marked in-neighbours in D. So (a, 1)-sgcol (D) 6 k + k′ + 2.

It was proved in [25] that every planar graph G can be edge-partitioned into two
subgraphs G1 and G2 such that Mad(G1) 6 4 and ∆ (G2) 6 8. Thus we have the
following corollary:

Corollary 5.6 If D is an orientation of a planar graph, then (2, 1)-sgcol (D) 6 12.
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