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Abstract

It is well known that the complex adjacency algebra A of an association scheme has

a specific module, namely the standard module, that contains the regular module

of A as a submodule. The character afforded by the standard module is called the

standard character. In this paper we first define the concept of standard character

for C-algebras and we say that a C-algebra has the standard character condition

if it admits the standard character. Among other results we acquire a necessary

and sufficient condition for a table algebra to originate from an association scheme.

Finally, we prove that given a C-algebra admits the standard character and its all

degrees are integers if and only if so its dual.

1 Introduction

A table or, equivalently, C-algebra with nonnegative structure constants was introduced
by [2]. It is easy to see that the complex adjacency algebra of an association scheme (or
homogeneous coherent configuration) is an integral table algebra. On the other hand, the
adjacency algebra of an association scheme has a special module, namely the standard
module, that contains the regular module as a submodule. The character afforded by the
standard module is called the standard character, see [8]. This leads us to generalize the
concept of standard character from adjacency algebras to table algebras. As an application
of this generalization, we provide a necessary and sufficient condition for a table algebra
to originate from an association scheme, see Theorem 4.7.

The paper is organized as follows. In Section 2 we recall the concept of C-algebras
and table algebras and some related properties which we will use in this paper.

∗corresponding author
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In Section 3 we first define the standard feasible trace for C-algebras which is a gener-
alization of the standard character in the theory of association schemes. Thereafter, we
show that the standard feasible multiplicities of the characters of a table algebra and its
quotient are the same. Furthermore, we prove that the set of standard feasible multiplic-
ities preserve under C- algebras isomorphism.

In Section 4 we give an example of C-algebra for which the standard feasible trace is a
character, such character is called the standard character. By using the standard character
we obtain a necessary and sufficient condition for which a table algebra to originate from
an association scheme. Finally, we prove that a C-algebra (A,B) admits the standard
character and is integer degree, i.e., all degrees |b|, b ∈ B are integers, if and only if so is

its dual (Â, B̂), see Corollary 4.11.

2 Preliminaries

Although in algebraic combinatorics the concept of C-algebra is used for commutative
algebras, in this paper we will also consider non-commutative algebras. Hence we deal
with C-algebras in the sense of [7] as the following:

Let A be a finite dimensional associative algebra over the complex field C with the
identity element 1A and a base B in the linear space sense. Then the pair (A,B) is called
a C-algebra if the following conditions (I)-(IV) hold:

(I) 1A ∈ B and the structure constants of B are real numbers, i.e., for a, b ∈ B:

ab =
∑

c∈B

λabcc, λabc ∈ R.

(II) There is a semilinear involutory anti-automorphism (denoted by ∗) of A such that
B∗ = B.

(III) For a, b ∈ B the equality λab1A
= δab∗ |a| holds where |a| > 0 and δ is the Kronecker

symbol.

(IV) The mapping b → |b|, b ∈ B is a one dimensional ∗-linear representation of the
algebra A, which is called the degree map.

Remark 2.1. In the definition above if the algebra A is commutative, then (A,B) becomes
a C-algebra in the sense of [4].

If the structure constants of a given C-algebra (resp. commutative) are nonnegative
real numbers, then it is called a table algebra (resp. commutative) in the sense of [2] (resp.
[1]).

A C-algebra (table algebra) is called integral if all its structure constants λabc are
integers. The value |b| is called the degree of the basis element b. From condition (IV)
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we see that |b| = |b∗| for all b ∈ B, and from condition (II) for a =
∑

b∈B xbb we have
a∗ =

∑
b∈B xbb

∗, where xb means the complex conjugate to xb. This implies that the
Jacobson radical J(A) of the algebra A is equal to {0} which means A is semisimple.

Let (A,B) and (A′, B′) be two C-algebras. An ∗-algebra homomorphism f : A → A′

such that f(B) = B′ is called a C-algebra homomorphism from (A,B) to (A′, B′). Such
C-algebra homomorphism is called C-algebra epimorphism (resp. monomorphism) if f is
onto (resp. into). A C-algebra epimorphism f is called a C-algebra isomorphism if f is
monomorphism too. Two C-algebras (A,B) and (A′, B′) are called isomorphic, if there
exists a C-algebra isomorphism between them.

A nonempty subset C ⊆ B is called a closed subset, if C∗C ⊆ C. We denote by C(B)
the set of all closed subsets of B.

Let (A,B) be a table algebra with the basis B and let C ∈ C(B). From [3, Proposition
4.7], it follows that {CbC | b ∈ B} is a partition of B. A subset CbC is called a C-double
coset or double coset with respect to the closed subset C. Let

b//C := |C+|−1(CbC)+ = |C+|−1
∑

x∈CbC

x

where C+ =
∑

c∈C c and |C+| =
∑

c∈C |c|. Define B//C = {b//C | b ∈ B} and let A//C be
the vector space spanned by the elements b//C, for b ∈ B. Then [3, Theorem 4.9] follows
that the pair (A//C,B//C) is a table algebra. The table algebra (A//C,B//C) is called the
quotient table algebra of (A,B) modulo C.

We refer the reader to [12] for the background of association schemes.

3 The standard feasible trace for C-algebras

In this section we first define the standard feasible trace for C-algebras and then we show
that the standard feasible multiplicities of the characters of a table algebra and its quo-
tient are the same. Furthermore, we prove that the set of standard feasible multiplicities
preserve under C-algebras isomorphism.

Let (A,B) be a C-algebra and let Irr(A) be the set of irreducible characters of A.
We define a linear function ζ ∈ HomC(A,C) by ζ(b) = δ1Ab|B

+|, for b ∈ B, where
|B+| =

∑
b∈B |b|. It is easily seen that ζ(bc) = ζ(cb), for all b, c ∈ B. This shows that ζ

is a feasible trace in the sense of [9]. In addition, since radζ = {0}, where radζ = {x ∈
A : ζ(xy) = 0, ∀y ∈ A}, it is a non-degenerate feasible trace on A. Therefore, from [9] it
follows that

ζ =
∑

χ∈Irr(A)

ζχχ, (1)

where ζχ ∈ C and all ζχ are nonzero. We call ζ the standard feasible trace, ζχ the standard
feasible multiplicity of χ and {ζχ| χ ∈ Irr(A)} the set of standard feasible multiplicities of

the electronic journal of combinatorics 17 (2010), #R113 3



the C-algebra (A,B).

Let (A,B) be a C-algebra with the standard feasible trace ζ . Since A is a semisimple
algebra, we have

A =
⊕

χ∈Irr(A)

Aεχ

where εχ’s are the central primitive idempotents.

Lemma 3.1. (i) Let χ ∈ Irr(A). Then

εχ =
1

|B+|

∑

b∈B

ζχχ(b∗)

|b∗|
b. (2)

(ii) (Orthogonality Relation) For every φ, ψ ∈ Irr(A)

1

|B+|

∑

b∈B

1

|b∗|
φ(b∗)ψ(b) = δφψ

φ(1)

ζφ
. (3)

(iii) If (A,B) is commutative then for every b, c ∈ B
∑

χ∈Irr(A)

ζχχ(b)χ(c∗) = δbc|b||B
+|.

Proof. Let B := {b1, b2, . . . , bm} and let b̂1, b̂2, . . . , b̂m be the dual basis defined by

ζ(bib̂j) = δij , in the sense of [9, 4.1]. On the other hand, ζ(bib
∗
j ) = δij |bi||B

+|, for bi, bj ∈ B.

This follows that b̂i =
b∗i

|bi||B+|
, for each bi, 1 6 i 6 m. Now parts (i) and (iii) follow from

[9, 5.7] and [9, 5.5′], respectively. Part (ii) follows from the equality εφεψ = δφψεφ by
replacing b∗ by 1A. 2

Remark 3.2. From (2) one can see that if A is a commutative table algebra, ζχ is the
coefficient of 1A in the linear combination of |B+|εχ in terms of the basis elements of B.

Let (A,B) be a table algebra and C ∈ C(B). Set e = |C+|−1C+. Then e is an
idempotent of the table algebra A and the vector space eAe spanned by the elements
ebe, b ∈ B is a table algebra which is equal to the quotient table algebra (A//C,B//C)
modulo C, see [3]. Let ζ be the standard feasible trace of the table algebra (A,B).
We claim that the restriction ζA//C of the standard feasible trace ζ to the subalgebra
eAe is the standard feasible trace for (A//C,B//C). To do so, assume that T ⊆ B be
a complete set of representatives of C-double cosets of A. Then B =

⋃
b∈T CbC and

|C+|−1|B+| =
∑

b∈T |b//C|. Since

ζA//C(b//C) =

{
|C+|−1|B+|, if b = 1A

0, if b 6= 1A

it follows that ζA//C is the standard feasible trace for (A//C,B//C). Thus we proved the
following lemma:
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Lemma 3.3. Let (A,B) be a table algebra with the standard feasible trace ζ and let
C ∈ C(B). Then ζA//C is the standard feasible trace of (A//C,B//C). 2

The following theorem gives the relationship between the standard feasible multiplicity
of a character of a table algebra (A,B) and the quotient table algebra (A//C,B//C).

Theorem 3.4. Let (A,B) be a table algebra with the standard feasible trace ζ and let
χ ∈ Irr(A). Then the standard feasible multiplicity of χA//C is equal to that of χ if
χA//C 6= 0, for C ∈ C(B).

Proof. From [10, Theorem 3.2] there is a bijection between the set of Irr(A//C) and
the set {χ ∈ Irr(A) | χA//C 6= 0}. It follows that {eεχ| χ ∈ Irr(A)}\{0} is the set of central
primitive idempotents of the quotient table algebra (A//C,B//C) where e = |C+|−1C+

and {εχ | χ ∈ Irr(A)} is the set of central primitive idempotents of A. This shows that
for χ ∈ Irr(A//C) we have

ζ(eεχ) = ζA//C(eεχ). (4)

On the other hand, by (1) we conclude that

ζ(eεχ) = ζχχ(eεχ) (5)

But from Lemma 3.3 it follows that ζA//C(eεχ) = ζχA//C
χA//C(eεχ), where ζχA//C

is the
standard feasible multiplicity of χA//C . The latter equality along with (4) and (5) imply
that ζχχ(eεχ) = ζχA//C

χA//C(eεχ). Thus ζχ = ζχA//C
, as claimed. 2

Suppose that (A,B) is a C- algebra and ρ ∈ HomC(A,C) such that ρ(b) = |b|. Then ρ
is an irreducible character of A, which is called the principle character of (A,B). From (3)
by replacing φ and ψ by ρ we conclude that ζρ = 1. Moreover, if (A,B) is a commutative
table algebra, then [4, Corollary 5.6] shows that ζχ > 0. In the following lemma we give
a lower bound for the standard feasible multiplicities of the characters of a table algebra.

Lemma 3.5. Let (A,B) be a table algebra. Then |ζχ| > χ(1A)−1, for every χ ∈ Irr(A).
In particular, if (A,B) is commutative table algebra then ζχ > 1.

Proof. From [10, Proposition 4.1] we have |χ(b)| 6 |b|χ(1), where b ∈ B and χ is a
character of A. Now by applying the degree map | · | on the both sides of the equation
(3) the first statement of the lemma follows.

The second statement is an immediate consequence of the first one, since χ(1A) = 1
when (A,B) is commutative. 2

Lemma 3.6. The set of standard feasible multiplicities of two isomorphic C-algebras are
the same.

Proof. Let (A,B) and (A′, B′) be two C-algebras and f : (A,B) → (A′, B′) be
an isomorphism. Let ζ and ζ ′ be the standard feasible traces of (A,B) and (A′, B′),
respectively. Let P = {εχ | χ ∈ Irr(A)} be the set of central primitive idempotents
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of A. Then it is easily seen that the set P ′ = {εχf | χ ∈ Irr(A)} is the set of central
primitive idempotents of A′, where χf (a′) = χ(f−1(a′)) and a′ ∈ A′. It follows that for any
χ ∈ Irr(A) there exists ψ ∈ Irr(A) such that (εψ)

f = εχf , and so ψ(1) = χ(1). Therefore,
by comparing the coefficient of 1A′ in the both sides of the former equality we get

ψ(1)

|B+|
ζψ =

χ(1)

|B′+|
ζ ′χf

where ζψ and ζ ′χf are the standard feasible multiplicities of ψ and χf with respect to
standard feasible traces ζ and ζ ′, respectively. This implies that ζψ = ζ ′χf . Therefore the

set of standard feasible multiplicities of the C-algebras (A,B) and (A′, B′) are the same,
as desired. 2

4 The standard character

Let X be a set with n elements. According to [9] a linear subspace W of the algebra
MatX(C) of all n × n-complex matrices whose rows and columns are indexed by the
elements of X, is called a coherent algebra on X if In, Jn ∈ W; W is closed under the
matrix and the Hadamard (componentwise) multiplications and W is closed under the
conjugate transpose, where In is the identity matrix and Jn is the matrix all of whose
entries are ones. Denote by M the set of primitive idempotents of W with respect to the
Hadamard multiplication. Then M is a linear basis of W consisting of {0, 1}-matrices
such that ∑

A∈M

A = Jn, and A ∈ M ⇔ At ∈ M.

Let W be a coherent algebra with the basis A0 = In, A1, . . . , Ad consisting of {0, 1}-
matrices. Define binary relations gi, for i = 0, 1, . . . , d, on X as follows:

∀x, y ∈ X : (x, y) ∈ gi ⇔ (Ai)x,y = 1

where (Ai)x,y is the (x, y)-entry of the matrix Ai. Now from the definition of coherent
algebra it follows that (X, {gi}

d
i=0) is an association scheme whose complex adjacency

algebra is W. Conversely, any complex adjacency algebra of a given association scheme
is a coherent algebra.

Let (X,G) be an association scheme and let CG =
⊕

g∈G Cσg be the complex adja-
cency algebra of G. Let CX be the C-vector space with the basis X. Clearly CX is a
CG-module which is called the standard module of CG. The character of CG afforded by
the standard module is called the standard character of CG, see [12]. We shall denote
the standard character of CG by χCX . Moreover, χCX(σ1X

) = |X| and χCX(σg) = 0 for
1X 6= g ∈ G and

χCX =
∑

χ∈Irr(G)

mχχ. (6)
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In this case by setting A = CG and B = {σg : g ∈ G}, the pair (A,B) is a table algebra
with the standard feasible trace ζ = χCX given in (6). Therefore, the standard feasible
multiplicities ζχ = mχ for χ ∈ Irr(G) are nonnegative integers.

Let (A,B) be a C-algebra with the standard feasible trace ζ . In general, the standard
feasible multiplicities ζχ are not nonnegative integers, see Example 4.3. Moreover, there
exists a table algebra which does not originate from association schemes but its standard
feasible trace is a character, see Example 4.2. In the case that the standard feasible trace
ζ of a C-algebra (A,B) is a character, we shall call ζ the standard character of (A,B).

Definition 4.1. We say that a C-algebra has standard character condition, if it possesses
the standard character. We denote by S the class of all such C-algebras.

Clearly association schemes belong to the class S and Example 4.2 below shows that
the class S is larger than the class of association schemes. Even this class does not contain
the class of integral table algebras. In fact, Example 4.3 gives an integral table algebra
does not belong to S.

For a given strongly regular graph (X,E) with parameters (n, k, λ, µ) one can find an
association scheme C = (X,G) where G = {1X , g, h} with structure constants λgg1X

=
k, λggg = λ, λggh = µ. In [6] some of the necessary conditions for the existence of a strongly
regular graph with parameters (n, k, λ, µ) are given. One of them is integrality condition.
If we consider the adjacency algebra of the association scheme C, which is an integral table
algebra (A,B) of dimension 3, then one can see that the standard character condition for
(A,B) is equivalent to integrality condition for the existence strongly regular graphs with
parameters (n, k, λ, µ).

Example 4.2. Let A be a C-linear space with the basis B = {1A, x, y} such that

x2 = 9 1A + 4y

y2 = 18 1A + 10x+ 12y

xy = yx = 8x+ 5y

Then one can see that the pair (A,B) is a table algebra. By using the orthogonality
relation given in Lemma 3.1 part (ii) the character table of (A,B) is as the following:

1A x y ζχi

χ1 1 9 18 1
χ2 1 1 −2 21
χ3 1 −5 4 6

Table (1)

From Table (1), one can see that (A,B) ∈ S. On the other hand, the fact that any
association scheme of rank 2 gives a strongly regular graph along with the argument in
[8, Section 12] imply that the table algebra (A,B) can not originate from an association
scheme.
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Example 4.3. Let A be a C-linear space with the basis B = {1A, b, c} such that

b2 = 2 1A + b

c2 = 25 1A + 25b+ 22c

bc = cb = 2c

Then one can see that the pair (A,B) is an integral table algebra. By using the or-
thogonality relation given in Lemma 3.1 part (ii) the character table of (A,B) is as the
following:

1A b c ζχi

χ1 1 2 25 1
χ2 1 2 −3 25

3

χ3 1 −1 0 56
3

Table (2)

Thus from Table (2) the standard feasible multiplicities of (A,B) are not integers. This
shows that (A,B) /∈ S.

In this section we find a necessary and sufficient condition for which a table algebra
to originate from an association scheme in the following sense:

Definition 4.4. We say that a table algebra (A,B) originates from an association scheme,
if there are an association scheme (X,G) and a table algebra isomorphism T : (A,B) →
(CG,C), where C = {σg : g ∈ G} is the basis of the complex adjacency algebra CG.

Lemma 4.5. Let (A,B) ∈ S be a table algebra and let D be a matrix representation of A
which affords the standard character ζ. Then (D(A), D(B)) is a table algebra isomorphic
to (A,B). In particular, the structure constants of (A,B) and (D(A), D(B)) are the same.

Proof. Let B = {b0 = 1A, b1, . . . , bd} and let {λijk}i,j,k be the structure constants of
the table algebra (A,B). Let D : A→ Matn(C) be a matrix representation of A affording
the standard character ζ . We first show that D(B) = {D(1A), D(b1), · · · , D(bd)} is a basis
of the algebra D(A). To do this we need to prove that D(bi), i = 0, 1, . . . , d, are linearly
independent. Suppose that

∑d
i=0 µiD(bi) = 0 where µi ∈ C. If µj 6= 0, then multiplying

both sides of the latter equation by D(b∗j) will yield

µ0D(b∗j ) + µ1D(b1b
∗
j) + · · ·+ µjD(bjb

∗
j ) + · · ·+ µdD(bdb

∗
j ) = 0. (7)

If we apply the trace function to both sides of (7) we obtain µjλjj∗1|B
+| = 0. It implies

that µj = 0, a contradiction.
Let {γijk}i,j,k be the structure constants of the algebra D(A) with the basis D(B).

Then D(bi)D(bj) =
∑d

k=0 γijkD(bk). On the other hand, since D is an algebra homomor-

phism we have D(bibj) =
∑d

k=0 λijkD(bk). Thus γijk = λijk, for all i, j, k.
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Define D(b)∗ := D(b∗) and |D(b)| := |b|. It is easy to verify that ∗ is a semilinear
involutory anti-automorphism of the algebra D(A) such that

D(B)∗ = D(B) and γij0 = δij∗|D(bi)|

and the mapping D(bi) → |D(bi)|, bi ∈ B is a one dimensional ∗-linear representation of
the algebra D(A). Thus (D(A), D(B)) is a table algebra. 2

Remark 4.6. If (A,B) is a table algebra which originates from an association scheme,
then from Lemma 3.6 it follows that (A,B) ∈ S. Therefore, from Lemma 4.5 we conclude
that the structure constants of (A,B) are non-negative integers.

In [5, Theorem 3.28], which is a reformulation of [11, Theorem 1.8], it is shown that a
given table algebra originates from an association scheme if and only if it has a maximal
irreducible action. In the next theorem and corollary we provide another point of view of
this result for table algebras in terms of standard character.

Theorem 4.7. Let (A,B) be a table algebra. Then (A,B) originates from an association
scheme if and only if (A,B) ∈ S and a matrix representation D which affords the standard
character ζ satisfies the following conditions for any b ∈ B:

(1) D(b∗) = D(b)t.

(2) D(b) is a {0, 1}-matrix.

Proof. Suppose that (A,B) originates from an association scheme (X,G). So there
exists a table algebra isomorphism T from A onto CG. Then T (A) = CG and T (b∗) =
T (b)t. It follows that |b| = |T (b)|, for b ∈ B. Therefore, T induces a matrix representation
D of degree |B+| and conditions (1) and (2) are valid for D. It shows that the character
which is afforded by D has values |B+| at 1A and 0 at any b ∈ B \ {1A} and so it is the
standard character ζ of (A,B). It means that (A,B) ∈ S. In particular, from Remark
4.6 we see that (A,B) is an integral table algebra.

Conversely, suppose that (A,B) ∈ S and conditions (1) and (2) hold for a matrix rep-
resentation D of A which affords the standard character ζ . We claim that (D(A), D(B))
is a coherent algebra. From Lemma 4.5 (D(A), D(B)) is a table algebra isomorphic to
(A,B) and its structure constants {λijk}i,j,k are equal to the structure constants of (A,B).
Now we prove that the algebra D(A) is closed with respect to the Hadamard multiplica-
tion and

∑d
i=0D(bi) = Jn, where n = |B+| and B = {b0, b1, . . . , bd}. For bi, bj ∈ B we

have

D(bi)D(bj) =

d∑

k=0

λijkD(bk). (8)

Furthermore, for bt ∈ B − {1A} we have

tr(D(bt)) = ζ(bt) = 0, (9)
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and from condition (1) and equation (8) we get

D(bt)D(bt)
t = D(bt)D(b∗t ) = |bt|D(1A) +

d∑

k=1

λtt∗kD(bk). (10)

Now since D(bt) is a {0, 1}-matrix, from (9) and (10) it follows that the diagonal entries
of the matrix D(bt) are 0, |bt| is an integer and the matrix D(bt) contains |bt| ones in each
row and each column. On the other hand, from equation (8) it follows that each diagonal
entry of the matrix D(bi)D(b∗j) is equal to λij∗0, for bi, bj ∈ B. Hence, if bi 6= bj , then
D(bi) and D(bj) have no nonzero common entries. So the Hadamard product of D(bi)

and D(bj) is equal to δijD(bi). Thus
∑d

i=0D(bi) = Jn. Furthermore, since D(bi), bi ∈ B
are {0, 1}-matrices, we conclude that (A,B) is an integral table algebra. This implies
that (D(A), D(B)) is a coherent algebra and so is a complex adjacency algebra of an
association scheme. This completes the proof of the theorem. 2

Example 4.8. Let A be a C-linear space with the basis B = {1A, b, c} such that

b2 = 1A

c2 = 2 1A + 2b (11)

bc = cb = c

Then one can check that the pair (A,B) is a table algebra with b∗ = b, c∗ = c and
|b| = 1, |c| = 2 . By using the orthogonality relation given in Lemma 3.1 part (ii) the
character table of (A,B) is as the following:

1A b c ζχi

χ1 1 1 2 1
χ2 1 1 −2 1
χ3 1 −1 0 2

Table (3)

From Table (3) we conclude that the standard feasible multiplicities of the characters of
(A,B) are non-negative integers. This shows that (A,B) ∈ S. It is easily seen that the
map D : A→ Mat4(C) defined by

D(1A) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , D(b) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , D(c) =




0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0




is a matrix representation of A which affords the standard character ζ . Moreover, the
representation D satisfies conditions (1) and (2) of Theorem 4.7. Now from Theorem 4.7
we conclude that (A,B) originates from an association scheme.

Apart from Theorem 4.7, it is not hard to see that the constant structures of the
adjacency algebra of the association scheme associated with the strongly regular graph
with parameters (n, k, λ, µ) = (4, 2, 0, 2) satisfy (11).
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Let (A,B) be a C-algebra. The coordinate-wise multiplication ◦ with respect to the
basis B by b ◦ c = δbcb, for b, c ∈ B is defined in the sense of [7]. We say that a matrix
representation D of A preserves the Hadamard product if D(b ◦ c) = D(b) ◦ D(c), for
b, c ∈ B.

For a matrix C, τ(C) denotes the sum of all entries C. One can see that for any two
square matrices C and D of the same size:

τ(C ◦D) = tr(CDt) = tr(CtD).

Corollary 4.9. Let (A,B) ∈ S be a table algebra and let D be a matrix representation
of A which affords the standard character ζ. Then the table algebra (D(A), D(B)) is a
coherent algebra if and only if D perseveres Hadamard products.

Proof. The necessity is obvious. For the sufficiency, since D(b), b ∈ B, persevere
Hadamard products, each D(b), b ∈ B is {0, 1}- matrix. On the other hand,

τ(D(b∗) ◦D(c)t) = tr(D(b∗)D(c)) b, c ∈ B.

But tr(D(b∗)D(c)) = 0 if and only if b 6= c. Thus D(b∗) = D(b)t. Now the result follows
from Theorem 4.7 and we are done. 2

In the rest of this section, we suppose that (A,B) is a commutative C-algebra of
dimension d with the set of the primitive idempotents {εχ| χ ∈ Irr(A)}. Then from [4,
Section 2.5] there are two matrices P = (pb(χ)) and Q = (qχ(b)) in Matd(C), where b ∈ B
and χ ∈ Irr(A) such that PQ = QP = |B+|I, where I is the identity matrix in Matd(C),
and

b =
∑

χ∈Irr(A)

pb(χ)εχ and εχ =
1

|B+|

∑

b∈B

qχ(b)b. (12)

Then from Remark (3.2) and (12) we get

qχ(1A) = ζχ and χ(b) = pb(χ), (13)

where b ∈ B and χ ∈ Irr(A). The dual of (A,B) in the sense of [4] is as follows: with each
linear representation ∆χ : b 7→ pb(χ), we associate the linear mapping ∆∗

χ : b 7→ qχ(b).

Since the matrix Q = (qχ(b)) is non-singular, it follows that the set B̂ = {∆∗
χ : χ ∈ Irr(A)}

is a linearly independent and so form a base of the set of all linear mapping Â of A into
C. From [4, Thorem 5.9] the pair (Â, B̂) is a C-algebra with the identity 1 bA = ∆∗

ρ and
involutory automorphism which maps ∆∗

χ to ∆∗
χ, where χ is complex conjugate to χ. The

C-algebra (Â, B̂) is called the dual C-algebra of (A,B). Moreover, the structure constants

of (Â, B̂) which are given in [4, (5.26)] can be written as the following

qχϕψ =
ζϕζψ
|B+|

∑

b∈B

1

|b|2
pb(ϕ)pb(ψ)pb(χ) (14)
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which are real numbers, where pb(χ) is the complex conjugate to pb(χ). From (14) and

(3) one can see that qρχ,χ = ζχ. Then |B̂+| =
∑

χ∈Irr(A) ζχ. The primitive idempotents

fb, b ∈ B of Â are given by [4, 5.23] as the following

fb =
1

|B̂+|

∑

χ∈Irr(A)

pb(χ)∆∗
χ. (15)

Lemma 4.10. Keeping the notation above, there is a bijection correspondence between
the standard feasible multiplicities of the characters of (Â, B̂) and the degrees of basis
elements B.

Proof. From (15), one can see that the coefficient of the unit element 1 bA of Â in the

linear decomposition of |B̂+|fb in terms of the basis elements B̂ is equal to pb(ρ). On the
other hand, from the equation of the right hand side of (13) we get pb(ρ) = ρ(b) = |b|. But

from Remark 3.2 any standard feasible multiplicity of the characters of (Â, B̂) corresponds
to the number pb(ρ) for some b ∈ B, as desired. 2

A C-algebra is called integral degree if its all degrees |b|, b ∈ B, are integers.

Corollary 4.11. Let (A,B) be a C-algebra. Then (A,B) is integral degree and belongs

to S if and only if so is (Â, B̂).

Proof. Let (A,B) be a C-algebra and (Â, B̂) be its dual with the standard feasible

traces ζ and ζ̂ , respectively. To prove the necessity, since (A,B) is in S the equality

qρχ,χ = ζχ implies that (Â, B̂) is integral degree. Since (A,B) is integral degree, from

Lemma 4.10 we conclude that (Â, B̂) is in S.

To prove the sufficiency, by the necessity we see that (
̂̂
A,

̂̂
B) ∈ S is integral degree.

Now the proof follows from Lemma 3.6 and the Duality Theorem [4, Theorem 5.10], i.e.,

(A,B) ≃ (
̂̂
A,

̂̂
B). 2
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