
On sum of powers of the Laplacian and

signless Laplacian eigenvalues of graphs

Saieed Akbari 1,2 Ebrahim Ghorbani 1,2 Jacobus H. Koolen 3,4

Mohammad Reza Oboudi 1,2

1Department of Mathematical Sciences
Sharif University of Technology

P.O. Box 11155-9415, Tehran, Iran
s akbari@sharif.edu

e ghorbani@math.sharif.edu

m r oboudi@math.sharif.edu

2School of Mathematics
Institute for Research in Fundamental Sciences (IPM)

P.O. Box 19395-5746, Tehran, Iran

3Department of Mathematics
Pohang University of Science and Technology (POSTECH)

Pohang 790-785, South Korea
koolen@postech.ac.kr

4Pohang Mathematics Institute (PMI)
Pohang University of Science and Technology (POSTECH)

Pohang 790-785, South Korea

Submitted: 12 Jan, 2010; Accepted: 27 Jul, 2010; Published: 16 Aug, 2010

Mathematics Subject Classifications: 05C50

Abstract

Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and
Laplacian eigenvalues µ1, . . . , µn. It is proved that for any real number α with
0 < α 6 1 or 2 6 α < 3, the inequality qα

1 + · · · + qα
n > µα

1 + · · · + µα
n holds, and

for any real number β with 1 < β < 2, the inequality q
β
1

+ · · · + q
β
n 6 µ

β
1

+ · · · + µ
β
n

holds. In both inequalities, the equality is attained (for α 6∈ {1, 2}) if and only if G

is bipartite.

1 Introduction

Let G be a graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}.
The adjacency matrix of G, A = (aij), is an n × n matrix such that aij = 1 if vi and vj
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are adjacent, and otherwise aij = 0. The incidence matrix of G, denoted by X = (xij), is
the n×m matrix, whose rows are indexed by the set of vertices of G and whose columns
are indexed by the set of edges of G, defined by

xij :=

{

1, if ej is incident with vi;
0, otherwise.

If we consider an orientation for G, then in a similar manner as for the incidence matrix,
the directed incidence matrix of the (oriented) graph G, denoted by D = (dij), is defined
as

dij :=







+1, if ej is an incomming edge to vi;
−1, if ej is an outgoinging edge from vi;
0, otherwise.

Let ∆ be the diagonal matrix whose entries are vertex degrees of G. The Laplacian
matrix of G, denoted by L(G), is defined by L(G) = ∆ − A, and it is easy to see that
L(G) = DD⊤ holds. The signless Laplacian matrix of G, denoted by Q(G), is defined by
Q(G) = ∆ + A, and again it is easy to see that Q(G) = XX⊤. Since L(G) and Q(G) are
symmetric matrices, their eigenvalues are real. We denote the eigenvalues of L(G) and
Q(G) by µ1(G) > · · · > µn(G) and q1(G) > · · · > qn(G), respectively (we drop G when
it is clear from the context). We call the multi-set of eigenvalues of L(G) and Q(G), the
L-spectrum and Q-spectrum of G, respectively. The matrices L and Q are similar if and
only if G is bipartite (see, e.g., [5]). The incidence energy IE(G) of the graph G is defined
as the sum of singular values of the incidence matrix [9]. The directed incidence energy
DIE(G) is defined as the sum of singular values of the directed incidence matrix [7]. In
other words,

IE(G) =
n

∑

i=1

√

qi(G), and DIE(G) =
n

∑

i=1

√

µi(G).

The sum of square roots of Laplacian eigenvalues was also defined as Laplacian-energy
like invariant and denoted by LEL(G) in [10]. The connection between IE and Laplacian
eigenvalues (for bipartite graphs) was first pointed out in [6]. For more information on IE
and DIE/LEL, see [7, 14] and the references therein.

In [2], it was conjectured that
√

q1 + · · · + √
qn >

√
µ1 + · · · + √

µn or equivalently
IE(G) > DIE(G). In [1], it is proved that this conjecture is true by showing that for any
real number α with 0 < α 6 1, the following holds:

qα
1 + · · · + qα

n > µα
1 + · · · + µα

n. (1)

Let G be a graph of order n. In [1], the authors proved that if
∑n

i=0
(−1)iaiλ

n−i and
∑n

i=0
(−1)ibiλ

n−i are the characteristic polynomials of the signless Laplacian and the
Laplacian matrices of G, respectively, then ai > bi for i = 0, 1, . . . , n. Then, using
an analytical method, they showed that (1) holds for 0 < α 6 1. But one question was
remained open, namely is it true that equality holds in (1), for α 6= 1, if and only if G
is bipartite? In this note we give a completely different proof for this statement and we
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show that equality holds if and only if G is bipartite. Moreover, we show that the Inequal-
ity (1) holds for any real number α with 2 6 α 6 3. Furthermore for every 1 6 α 6 2 the
following holds:

qα
1 + · · · + qα

n 6 µα
1 + · · · + µα

n.

We recall that for a real number α the quantity Sα := µα
1 + · · ·+ µα

n has been already
studied (see [11, 12, 13]). In [12], some upper and lower bounds have been obtained for
Sα. In this paper we establish some new upper and lower bounds for Sα in terms of the
signless Laplacian spectrum.

2 Sum of powers of the Laplacian and signless

Laplacian eigenvalues

In this section we prove the main result of the paper. Let G be a graph with the adjacency
matrix A and ∆ be the diagonal matrix whose entries are vertex degrees of G. Note that
tr(∆ + A) = tr(∆ − A) and since tr(∆A) = 0, tr(∆ + A)2 = tr(∆ − A)2, which implies
that qα

1 + · · ·+ qα
n = µα

1 + · · ·+ µα
n, for α = 1, 2.

We use the interlacing property of the Laplacian and signless Laplacian eigenvalues
which follows from the Courant-Weyl inequalities (see, e.g., [8, Theorem 4.3.7 ]).

Lemma 1. Let G be a graph of order n and e ∈ E(G). Then the Laplacian (and the
signless Laplacian) eigenvalues of G and G′ = G − e interlace:

µ1(G) > µ1(G
′) > µ2(G) > µ2(G

′) > · · · > µn(G) = µn(G
′) = 0.

Now, we are in a position to prove the following theorem.

Theorem 2. Let G be a graph of order n and let α be a real number.

(i) If 0 < α 6 1 or 2 6 α 6 3, then

qα
1 + · · · + qα

n > µα
1 + · · · + µα

n.

(ii) If 1 6 α 6 2, then
qα
1 + · · · + qα

n 6 µα
1 + · · · + µα

n.

For α ∈ (0, 1) ∪ (2, 3), the equality occurs in (i) if and only if G is a bipartite graph.
Moreover, for α ∈ (1, 2), the equality occurs in (ii) if and only if G is a bipartite graph.

Proof. We recall that, for any real number s, the binomial series
∑∞

k=0

(

s
k

)

xk converges
to (1 + x)s if |x| < 1. This also remains true for x = −1 if s > 0 (see, e.g., [3, p. 419]).
Let ℓ := 2n. By Lemma 1, we find that,

µ1 6 µ1(Kn) = n, and q1 6 q1(Kn) = 2n − 2.
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Hence
∣

∣

qi

ℓ
− 1

∣

∣ < 1 if qi > 0 and qi

ℓ
− 1 = −1 if qi = 0. Therefore,

(q1

ℓ

)α

+ · · · +
(qn

ℓ

)α

=

∞
∑

k=0

(

α

k

)

(q1

ℓ
− 1

)k

+ · · ·+
∞

∑

k=0

(

α

k

)

(qn

ℓ
− 1

)k

=

∞
∑

k=0

(

α

k

)

tr

(

1

ℓ
(∆ + A) − I

)k

.

In a similar manner as above, we obtain that,

(µ1

ℓ

)α

+ · · · +
(µn

ℓ

)α

=

∞
∑

k=0

(

α

k

)

tr

(

1

ℓ
(∆ − A) − I

)k

.

We claim that

if k is even, tr(∆ + A − ℓI)k
6 tr(∆ − A − ℓI)k;

if k is odd, tr(∆ + A − ℓI)k
> tr(∆ − A − ℓI)k.

If one expands ((∆ − ℓI) + A)k and ((∆ − ℓI) − A)k in terms of powers of ∆ − ℓI and
A, then the terms appearing in both expansions, regardless their signs, are the same. To
prove the claim, we determine the sign of each term in both expansions. In the expansion
of ((∆−ℓI)+A)k, consider the terms in which there are exactly j factors equal to ∆−ℓI,
for some j = 0, 1, . . . , k. As all the entries of ∆ − ℓI are non-positive and those of A are
non-negative, the sign of the trace of each such a term is (−1)j or 0. On the other hand,
in the expansion of ((∆− ℓI)−A)k in each term all factors are matrices with non-positive
entries, so the sign of the trace of each term is (−1)k or 0. This proves the claim.

Now, note that if 0 < α < 1 or 2 < α < 3, then the sign of
(

α
k

)

is (−1)k−1 except that
(

α
2

)

> 0, for 2 < α < 3. This implies that for 0 < α < 1 and every k,
(

α

k

)

tr(∆ + A − ℓI)k
>

(

α

k

)

tr(∆ − A − ℓI)k. (2)

This inequality remains true for 2 6 α 6 3 as tr(∆ + A − ℓI)2 = tr(∆ − A − ℓI)2. Thus,
Part (i) is proved. For 1 < α < 2, the sign of

(

α
k

)

is (−1)k with one exception that
(

α
1

)

> 0.
Since tr(∆ + A − ℓI) = tr(∆ − A − ℓI), Part (ii) is similarly proved.

Now, we consider the case of equality. If G is bipartite, Q and L are similar which
implies that the equality holds in both (i) and (ii). If G is not bipartite, then there
exists an odd integer r such that trAr > 0, since for any positive integer i, tr Ai is
equal to the total number of closed walks of length i in G (see [4, Lemma 2.5]). Hence
tr(∆+A− ℓI)r > tr(∆−A− ℓI)r and so the inequalities in both (i) and (ii) are strict. 2

3 The inequality for real powers

In this section we study the behavior of

fG(α) :=
n

∑

i=1

qi>0

qα
i −

n
∑

i=1

µi>0

µα
i
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as a function of α. In the previous section, we saw that for any graph G, fG(α) > 0 for
α ∈ [0, 1] or α ∈ [2, 3]; and fG(α) 6 0 for α ∈ (1, 2). In this section, we show that, for
α ∈ (−∞, 0) and α ∈ (2k − 1, 2k), for any integer k > 2, the same kind of inequalities
do not hold. We do this by comparing fKn

, fCn
, for odd n, where Kn and Cn denote

the complete graph and the cycle graph of order n, respectively, and H2n is the graph
obtained by attaching two copies of Kn by a new edge.

It can be shown that fKn
(α) > 0 for any α ∈ R \ [1, 2] and any integer n > 3. The

proof of this fact is rather involved, so we prove the following weaker assertion which is
sufficient for our purpose.

Lemma 3. For every α < 1 and each integer n > 3, fKn
(α) > 0. Also for every α > 2,

there exists an integer n(α) such that for every n > n(α), fKn
(α) > 0.

Proof. We note that the Q-spectrum and L-spectrum of Kn are {[2n − 2]1, [n − 2]n−1}
and {[n]n−1, [0]1}, respectively, where the exponents indicate the multiplicities. Therefore,

fKn
(α) = (2n − 2)α + (n − 1)(n − 2)α − (n − 1)nα.

This is clear that fKn
(α) > 0 for any α 6 0. If 0 < α < 1, then by Theorem 2, fKn

(α) > 0.
If α > 2, then fKn

(α) > 0 if and only if

2α

(

1 − 1

n

)α

+ (n − 1)

(

1 − 2

n

)α

> n − 1.

By Bernoulli’s inequality, the left hand side is at least

2α
(

1 − α

n

)

+ (n − 1)

(

1 − 2α

n

)

which is bigger than n − 1 for large enough n. 2

Lemma 4. For every integer n > 3, there exists αn < 0 with limn→∞ αn = 0 such that
for any α 6 αn, fH2n

(α) < 0.

Proof. First, notice that if G is a connected non-bipartite graph, then fG(0) = 1. So
fG(α) is always positive in a neighbor of the origin. We determine the Q-spectrum and
the L-spectrum of H2n. If e is the edge joining two copies of Kn, then G − e is 2Kn. So,
the Q-spectrum of G − e is {[2n − 2]2, [n − 2]2n−2}. By Lemma 1, the Q-spectrum of G
contains 2n− 2 and n− 2 of multiplicities at least 1 and 2n− 3, respectively. Thus, there
are only two eigenvalues q1, q2, say, which need to be determined. Since tr Q = 2m, and
trQ2 = tr ∆2 + 2m, where m is the number of edges of H2n, we find that

q1 + q2 = 3n − 2 and q2

1 + q2

2 = 5n2 − 8n + 8.

This follows that

q1,2 =
3n

2
− 1 ±

√
n2 − 4n + 12

2
.
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In a similar manner we see that the L-spectrum of H2n is {[µ1]
1, [n]2n−3, [µ2]

1, [0]1}, in
which

µ1,2 =
n

2
+ 1 ±

√
n2 + 4n − 4

2
.

Therefore, it turns out that for any α < 0,

fH2n
(α) = qα

1 + qα
2 + (2n − 2)α + (2n − 3) ((n − 2)α − nα) − µα

1 − µα
2 < 3 − µα

2 .

It is seen that 0 < µ2 < 2/n. Therefore,

fH2n
(α) < 3 −

(

2

n

)α

.

It turns out that if α 6 αn := ln 3/(ln 2 − ln n), then fH2n
(α) < 0. 2

For cycle C2n+1, the sign of fC2n+1
(α) alternately changes on the intervals

(0, 1), (1, 2), . . . , (2n − 1, 2n).

Lemma 5. For every integer n > 1, fC2n+1
(α) is positive on the intervals (2i, 2i + 1),

i = 0, . . . , n − 1 and is negative on the intervals (2i − 1, 2i), i = 1, . . . , n.

Proof. For every α ∈ (2i, 2i + 1) and each k with k − 1 > 2i + 1, we have sign
(

α
k

)

=
(−1)k−1. Similarly, for every α ∈ (2i−1, 2i) and each k with k−1 > 2i, sign

(

α
k

)

= (−1)k.
Therefore, for any α ∈ [0, 2n] and k > 2n + 1, (2) is satisfied. We show that for the
remaining values of k, the equality holds in (2). We have

(∆ − ℓI + A)k − (∆ − ℓI − A)k = ((2 − ℓ)I + A)k − ((2 − ℓ)I − A)k

=

k
∑

i=0

(

k

i

)

(2 − ℓ)k−i(1 − (−1)i)Ai.

The summands for even i is zero. For all odd i 6 2n − 1, since C2n+1 has no closed walk
of length i, tr Ai = 0. This shows that for k 6 2n, the equality holds in (2). Thus the
result follows similarly as in the proof of Theorem 2. 2

By the above three lemmas the following corollary is immediate:

Corollary 6. For each α ∈ (−∞, 0) ∪
⋃

k>2
(2k − 1, 2k), there are graphs G and G′ such

that fG(α) > 0 and fG′(α) < 0.

We close this section by posing the following problem:

Problem. Is it true that for any graph G, the function fG(α) is non-negative for α ∈
(2k, 2k + 1), where k = 2, 3, . . .?
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4 The inequality for real sequences

Let n be a positive integer, and let (ai)06i6n and (bi)06i6n be two sequences of non-negative
real numbers satisfying that for all integer k > 1 one has

n
∑

i=0

ak
i >

n
∑

i=0

bk
i ,

and equality holds for k = 1, 2. One might ask whether

n
∑

i=0

a
1/2

i >

n
∑

i=0

b
1/2

i

holds. Here we show that this is not the case. Let

ai = i, for i = 0, 1, . . . , 2m − 1, and

b0 = · · · = bm−1 = m − 1

2
−

√
12m2 − 3

6
, bm = · · · = b2m−1 = m − 1

2
+

√
12m2 − 3

6
.

Computations show that

2m−1
∑

i=0

ak
i =

2m−1
∑

i=0

bk
i , for k = 1, 2, 3.

Note that the leading term of
∑

2m−1

i=0
ik is 2k+1

k+1
mk+1. On the other hand,

∑

2m−1

i=0
bk
i =

(αk + βk)mk+1 + O(mk), where

α = 1 +

√
3

3
, and β = 1 −

√
3

3
.

We have αk + βk 6
2k+1

k+1
with equality if and only if k = 1, 2, 3. Thus, for large enough

m, one has
2m−1
∑

i=0

ak
i >

2m−1
∑

i=0

bk
i , for k > 4.

Now, we look at the sum of square roots. We observe that

2m−1
∑

i=0

√
i <

∫

2m

0

√
x dx =

4
√

2

3
m3/2.

On the other hand,
∑

2m−1

i=0

√
bi = (

√
α +

√
β)m3/2 + O(m). Since

√
α +

√
β > 4

√
2

3
, for

large enough m we have
2m−1
∑

i=0

√
ai <

2m−1
∑

i=0

√

bi.
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