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Abstract

We give two new proofs of Winquist’s identity. In the first proof, we use basic
properties of cube roots of unity and the Jacobi triple product identity. The latter
does not use the Jacobi triple product identity.

1 Introduction

Winquist’s identity was discovered by L. Winquist [6] in 1969. He used it to prove the
congruence
p(1ln +6) =0 (mod 11),

where p(n) is the number of partitions of the positive integer n. In 1972, L. Carlitz and M.
V. Subbarao [1] gave a simple proof and a generalization of Winquist’s identity. In 1987,
M. D. Hirschhorn [3] gave another generalization of Winquist’s identity. In 1997, S.-Y.
Kang [4] gave a simple proof using the Jacobi triple product identity, the quintuple product
identity and two other identities from Ramanujan’s notebooks. In 2003, S. Kongsiriwong
and Z.-G. Liu [5] gave a simple proof using the Jacobi triple product identity and some
properties of cube roots of unity. In this paper we give two new proofs of Winquist’s
identity: for any complex number ¢ with |¢| < 1, and any nonzero complex numbers a

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R116 1



and b,

. 1)m+nq(3m2 +3n24-3m+n)/2

—3mb—3n _ a—3mb3n+1 _ a—3n+1b—3m—1 4 a3n+2b—3m—1)

4 9)2 (a5 @)oo (@ 43 @)oo (B Q) (b7 65 ¢) o
ab; q)oo (0”075 @)oo (ab ™5 @)oo (0™ 'G5 @)oo (1.1)

where (a;q)s denotes H(l — aq™ ). In both proofs, we will use the fact about w =
n=1
exp(27i/3) that, for any complex number a,

(1—a)(1—aw)(l—aw®) =1—ad’. (1.2)

2 First Proof

In this section, we prove Winquist’s identity by using some properties of cube roots of
unity and the Jacobi triple product identity: for each pair of complex numbers z and ¢
with z # 0 and |¢| < 1,

oo

(=1 = (45 0)oo (2 Qo270 @) ocr

n=—oo

Let g(a,b) denote the right hand side of (1.1). Since h(z) := (2; @)oo (271¢; @) is analytic
on 0 < |z| < oo, we can write h as a Laurent series

h(z) = Z anz".

n=—oo

Since g(a,b) = (q;q)* h(a)h(b)h(ab)h(ab™'), we can write g as a double Laurent series

gla,b) = Z Z Crn@™ 0" = Z cma™ (2.1)

m=—00 N=—00 m=—0oo

where ¢, = > 07 ¢ppb™. From the definition of g, we find that g(a,b) = —a*g(aq,b)
and g(a,b) = —a3g(a~!,b). Thus, from (2.1), we have, for all integers m, ¢,, = —¢"™ >¢pn_3

and ¢,, = —c_,,+3. The first equation implies that, for each m,

Cam = (_1)mq(3m2—3m)/260’
Comen = (—1)"gOm e

Camy2 = (—1)™

LS

1,
(3m2+m)/2

LS

Ca,
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whereas the second equation implies that ¢; = —cy. By putting all these together, we
have

g9(a,b) = co Z (—1)mgBm*=3m/2g3m | o) Z (—1)mg(Bm®=m)/2g8m+1
— Z (_1)mq(3m2+m)/2a3m+2. (2.2)

By putting a = w in (2.2), we have

e} [e.e]

m_(3m?—3m m _(3m?—m
g(w,b) = ¢ Z (—=1)mgBm =3m/2 4 ¢} (w — w?) Z (—1)mq® )2,

m=—o0 m=—oQ

Note that, by using the Jacobi triple product identity, we have Z (—1)mq(3m2_3m)/ 2 =0.

m=—00

Then

[e.e]

g(w,b) = c1(w — w? Z (=1)mg®m*=m/2, (2.3)

m=—0Q

From the definition of g and (1.2),

g(w,b) = =b" (w — w*)(¢; D)oo (0 ¢*) o (%5 %) oe (020" ¢7) oo (2.4)

From (2.3), (2.4), and the Jacobi triple product identity, we obtain

o =—b"! i (—1)mqme=sm)/2pim (2.5)
By letting a = b in (2.2), we have
0=g(b,b) = cq i (—1)mgBm=3m2pim 4 ¢y i (—1)mgBm=m)/2pdmt
— e i (_1)mq(3m2+m)/2b3m+2'
Using (2.5), we have
Co = i (—1)mgBm*—m/2pdm _ f: (=1)mgB3m+m/2ymtL (2.6)

Substituting ¢y and ¢; in (2.2), we obtain Winquist’s identity.
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3 Second Proof

In this section, we prove Winquist’s identity with no use of the Jacobi triple product
identity. First, we let g(a,b,q) denote the right hand side of (1.1). From the first proof,

we write
g(a,b,q) Z Z Crmon(q)a™b".

m=—0o0 N=—0o0

From Kongsiriwong and Liu’s proof of Winquist’s identity [5], we have

a b, q Z Z { m+n (3m2 3m+3n? —n)/2(1 bqn)a3mb3nco’0(q)

m=—00 Nn=—00

+ (_1)m+nq(3m2_m+3n2—3n)/2(1 o aqm)a’?)m—l—lb?m—lCl’_l(q)}.

Setting a = b = ¢'/?, we obtain

B S (T

m=—00 N=—00

m-+mn m2 m n2 m
+(=1) + q(3 +2m+3 )/2(1—q +1/2)C1,_1(q)}.

It follows that co(q) = —c1,-1(¢). Thus we have

(a b q —COO Z Z m—l—n (3m2—3m+3n2—n)/2

mM=—00 N=—00

{a3mb3n o qna3mb3n+1 _ a3n+1b3m—1 + qna3n+263m—1}. (31)

Next, we show that ¢oo(q) = 1; this part of the proof is similar to Kongsiriwong and
Liu’s proof of the Jacobi triple product identity [5] and Chan’s proof of the quintuple
product identity [2]. By putting « = w and b = —w in (3.1), we have

o

g(w’_w q —COO Z Z m+n (3m2 3m+3n2—n)/2

{(—1)" + (=1)"¢"w+ (1) — (_1)mqnw}-
Since

2 if m and n are even,

n

—2q"w if m is even and n is odd,

(=" + (=D""w+ (=1)" = (=1)"¢"w

2¢"w  if m is odd and n is even,

-2 if m and n are odd,
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we obtain

2 2 2_ 2
g(w, —w,q) = 2(1 — w)coo(q) {Z Z 6k —3k+61—1 _ Z Zqﬁk 3k-+61 5z+1}.

k=—o00l=—c0 k=—o00l=—
(3.2)

By the definition of g and (1.2), we have

9(w, —w,q) = 2(1 = w)(¢; Voo(—"; ¢*) (4" ¢°) o- (3.3)
By (3.2) and (3.3), we have

(4 0)oo(—0% ¢*) 0 (4% ¢°) o
2_ 2_ 2 2_
:co,o(Q){ Z Z OF—3k+6 =1 _ Z Z Ok —3k+61 5z+1}' (3.4)
k=—o00l=—0c0 k=—o00l=—00

Next, we evaluate g(—w?q, —wq, ¢*). By (3.1), we have

9(—w’q, —wq,q") = (1 — w)coolg { Z Z g —dmGn®—n

m=—00 N=—00

i i q6m2—3m+6n2—5n+1}. (3.5)

Again, we evaluate g(—w?q, —wq, ¢*) as an infinite product:
9(=w?q, —wq, ¢") = (¢4 0% (—0%¢ ) oo (%5 M) oo (—0 5 ¢V oo (—w?¢%; ¢") oo
(6% 400 (0% 4100 (w5 €)oo (WP ¢1) oo
(1= w0)(6"%50™) o0 0" oo (6% 012 (=0% €)oo (=¢"; ¢
B (=4 4")oo( =% ¢Y)
(1 = w)(@"% ¢ o0 (0% 0%) 0 (0% ") oo (=% ¢°) o

(¢ ¢%) s
_ (1= w)(0% 6%)oc (=% 6%) o (@ D)oo (=8 D)oo (0% 01 oo (=% ¢°)
(=4 ¢%) oo
= (1= w)(¢% ¢°)oo (=% ¢*) oo (45 @) o (3.6)

Substituting (3.6) in (3.5), we obtain

(e} [e.e]

m2— m n2—n
(Q§q>oo(_q3§q3)oo(q6;q6>oo:CO,O(q4>{ > g

m=—0o0 N=—00

i i q6m2—3m+6n2—5n+1 } . (3.7)

m=—0o0 N=—00

Comparing (3.4) with (3.7), we see that cgo(q) = coo(q?). It follows that

0070((]) = 0070((]4) = 0070((]16) = ...= CO,O(q4k) = ... = 0070(0) = 1

Hence we have proved Winquist’s identity.
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